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This study aimed to explore the effects of oregano essential oils (OEO) on the rumen

digestive ability using multi-omics sequencing techniques. Twenty-seven castrated

Pingliang red cattle were randomly separated into three groups (3 cattle/pen; n

= 9) and fed on a daily basal diet supplemented with 0 (Con group), 130mg

(L group), and 260mg (H group) OEO. The finishing trial lasted for 390 days,

and all cattle were slaughtered to collect rumen tissue and content samples. We

found that the rumen papillae length in the H group was higher than in the Con

group. Amylase concentrations were decreased in the H group than the Con group,

whereas the β-glucosidase and cellulase concentrations increased. Compared to

the Con group, the relative abundance of propionate and butyrate in the H group

was significantly higher. Higher relative abundance of Parabacteroides distasonis and

Bacteroides thetaiotaomicron were observed with increasing OEO concentration. The

function of rumen microbiota was enriched in the GH43_17 family, mainly encoding

xylanase. Besides, metabolites, including heparin, pantetheine, sorbic acid, aspirin, and

farnesene concentrations increased with increasing OEO dose. A positive correlation

was observed between Parabacteroides distasonis, Bacteroides thetaiotaomicron, and

β-glucosidase, cellulase and propionate. The abundance of Parabacteroides distasonis

and Parabacteroides_sp._CAG:409 were positively correlated with sorbic acid and

farnesene. In summary, OEO supplementation increased the rumen digestive ability by

modulating epithelial development and microbiota composition in beef cattle. This study

provides a comprehensive insight into the OEO application as an alternative strategy to

improve ruminant health production.

Keywords: oregano essential oil, rumen, microbiome, metabolome, VFAs, digestive enzyme, beef cattle

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2021.722557
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2021.722557&domain=pdf&date_stamp=2021-11-09
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles
https://creativecommons.org/licenses/by/4.0/
mailto:leizm@gsau.edu.cn
https://doi.org/10.3389/fnut.2021.722557
https://www.frontiersin.org/articles/10.3389/fnut.2021.722557/full


Zhang et al. Rumen Microbiota of Beef Cattle

INTRODUCTION

Residual antimicrobial agents caused by excessive use of growth-
promoting antibiotics in feed pose an emergent threat to human
health and the environment (1, 2). Banning the application
of antibiotics as feed additives in livestock production has
sparked great interest in exploring other natural pollution-
free alternatives like plant secondary metabolites as substitutes
for antibiotics and elucidating its mechanism of action
(3). Oregano essential oils (OEO) is a potential alternative
to growth-promoting feed antibiotics because of its broad-
spectrum antimicrobial and anti-oxidant properties. Its main
active ingredients include thymol, carvacrol, and terpinene (4).
Different studies reported that they could inhibit the growth of
pathogenic microorganisms by causing conformational changes
in cell membranes to become less impermeable (5). Subsequently,
growth-promoting effect (6), anti-diarrhea (7) and anti-oxidant
function (8), microbial homeostasis regulation (9), etc., have been
found to attract extensive attention of animal nutritionists.

Plant secondary metabolites, mainly essential oils, have been
widely used in monogastric animals to provide nutritional
regulation. They enhance growth phenotype (10), feed
digestibility (11), and reduce diarrhea rate and oxidative
stress (8, 12), particularly in piglets and broilers. However,
the application of these materials in ruminants has been
limited because of their complex digestive system. Previous
studies reported that OEO has been associated with increases
average daily gain (6) and feed utilization (13) in dairy cattle;
and decreases diarrhea rate of neonatal calf (7, 14). As a
fermentation site for forage and grain, the rumen is colonized
by bacteria, protozoa, archaea and fungi, which play key
roles in ensuring stability and increasing its ability to adapt
to a wide range of dietary. Rumen epithelial cells absorbed
nutrient substances into host internal circulatory system for
energy supply. Therefore, the balance of rumen ecological
environment and the development of rumen itself are critical
for ruminant nutrition. Obviously, these microbes are closely
interacted with the rumen pH value, fermentation parameters
and epithelial development to further affect digestive ability.
Evidences showed that OEO supplementation could regulate
rumen fermentation parameters (15, 16) and microbiota
composition in ruminants (17). Tea tree essential oils inhibit
inflammatory cytokines expression in goat rumen epithelial
cells (18). Our published data showed that supplementing
OEO in goat feed improved growth performance and meat
quality (19) and altered rumen fermentation parameters (20).
Recently, the growth phenotype and meat quality of this study
were described, indicating that OEO increased the average daily
gain and feed conversion ratio (21). However, the phenomenon
underlying these molecular system mechanisms remains largely
unidentified. We speculated that diet supplementation with OEO
would change rumen microbiota composition and function,
influence the fermentation parameters and digestive enzyme
activities and further promote epithelial development to increase
rumen digestive ability. In this study, we used metagenomic
sequencing and metabolomics to investigate the OEO effects on
rumen microbiota composition and metabolic adaption of beef

cattle. We aimed to provide new insights into the underlying
mechanisms of OEO affecting the rumen digestive ability.

MATERIALS AND METHODS

This study was conducted at the Pingliang red cattle breeding
center of Jingchuan County, Gansu, China. Animal sampling was
approved by the Institutional Animal Care and Use Committee
of the Gansu Agricultural University under permit NO.GAU-LC-
2018-12.

Animals, Diets, and Experimental Design
Twenty-seven castrated Pingliang red cattle, with an initial
average body weight of 270.47± 16.26 kg (aged 12 months), were
randomly assigned into three groups (3 cattle/pen; n = 9), and
there were no statistically significant differences in initial body
weight among the three groups (P > 0.05). The cattle were fed
daily using the basal diet supplemented with 0 (Con group),
130mg (L group), and 260mg (H group) OEO. These OEO
levels were obtained by adding its Rum-A-Fresh form (Ralco, Inc.
Marshall, MN), containing 1.3% oregano oil and clinoptilolite as
a feed-grade inert carrier. Beef cattle were fed a total mixed ration
(TMR) consisting of corn silage and grain mixtures to meet or
exceed their nutritional requirements outlined by the National
Research Council (NRC 2003). For each group, the appropriate
amount of OEO was accurately weighted and mixed with 1 kg
grain daily and top-dressed to the feed bunk. The ration inclusion
amounts were changed monthly (Supplementary Table S1), and
all cattle were fed with fresh feed twice daily at 07:00 and 15:00.
During the experimental period, all animals had access to feed
and water ad libitum. Finally, the finishing plan lasted 390 days,
after which all cattle were slaughtered.

Sample Collection
At the end of the experimental period, all cattle were slaughtered
after they fasted for 12 h. Subsequently, rumen tissue samples
(about 2 × 2 cm) were immediately and carefully separated
from the left dorsal sac to avoid squeezing and fixed in
4% paraformaldehyde solution for histological analyses using
the hematoxylin-eosin (H&E) staining. Then, 5mL of rumen
content was collected from each animal, transferred into a
sterile tube, immediately frozen using liquid nitrogen, and
stored at −80◦C awaiting DNA extraction. Another 15mL
rumen content was sampled and stored in a sterilized container
at −20◦C for digestive enzyme activities measurement and
fermentation parameters evaluation. Rumen contents of all cattle
were collected from the left dorsal sac in a mixture of liquid and
solid components.

Epithelial Parameters
Epithelial parameters, including rumen papillae length and
width, were obtained through the H&E staining technique
as previously described (22). Briefly, the fixed rumen tissues
were dehydrated in ethanol, cleared in xylene, and embedded
in paraffin blocks. Then, the cooling concretionary samples
were sectioned at 5µm thickness and mounted on glass slides.
Paraffin sections were dewaxed to xylene (with water), rehydrated
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through graded ethanol series, rinsed in distilled water, and
stained with H&E. Subsequently, the paraffin was sealed with
neutral gum after being dehydrated again and immediately
examined. Finally, a minimum of 10 well-oriented intact papillae
length and width sections were photographed and measured
using a light microscope (Motic BA 210, Xiamen, China) fitted
with an image analyzer (Image-Pro Plus 6.0, Media Cybernetics,
Bethesda, MD, USA).

Digestive Enzyme Activities
The rumen content and homogenate medium mixture
were placed in an ultrasonic pulp refiner to obtain a 10%
homogenization buffer. Then, it was centrifuged at 2500
rpm at 4◦C for 10min, and the supernatant was subjected
to β-glucosidase, cellulase, lipase, and amylase enzyme assays
to determine concentration. Lastly, enzyme activities were
measured using colorimetry method according to the instruction
of reagent kits (Biosino Biotechnology Co. Ltd., Beijing,
China; Mindray BS-240 automatic biochemical analyzer,
Mindray, China).

Fermentation Parameters
The pH value of the rumen content was immediately measured
after the animal was slaughtered using Ark Technology PHS-
10 portable acidity meter (Chengdu, China). The volatile fatty
acids (VFAs) concentrations were tested as previously described
(23). Briefly, the rumen content was centrifuged at 5,400 rpm for
10min. We subsequently mixed 1mL supernatant and a 0.2mL
25% metaphosphate solution, containing 2 EB as an internal
standard and uniformly mixed in a new centrifuge tube. After
the reaction tube was immersed in an ice bath (30min), it
was centrifuged at 10,000 rpm for 10min. The supernatant
was passed through a 0.22µm organic phase filter membrane
and stored in 2mL bottles awaiting subsequent analysis. A gas
chromatograph (GC-2010, Agilent, Kyoto, Japan) fitted with
an AT-FFAP capillary column (50m × 0.32mm × 0.25µm)
was used to determine the different VFAs concentrations. The
column temperature was maintained at 60◦C for 1min, raised to
115◦C at 5◦C/min without reservation, and increased to 180◦C at
15◦C/min. Notably, the detector and injector temperatures were
260◦ and 250◦C, respectively.

DNA Extraction and Metagenomic
Sequencing
Rumen content metagenomic DNA was extracted using the
E.Z.N.A. R© Soil DNA Kit (Omega Bio-tek, Norcross, GA, U.S.)
following the provided instructions by the manufacturer. Its
concentration and purity were determined using TBS-380 and
NanoDrop2000, respectively. Quality was checked on 1% agarose
gel. Then, the DNA was fragmented to an average size of
about 400 bp for paired-end library construction using Covaris
M220 (Gene Company Limited, China). Consequently, paired-
end sequencing was performed on an Illumina NovaSeq6000
platform (Illumina Inc., San Diego, CA, USA) at the Majorbio
Bio-Pharm Technology Co., Ltd. (Shanghai, China). The paired-
end Illumina reads were trimmed of adaptor sequences, and
low-quality reads (length <50 bp or with a quality value <20

or having N bases) were removed using the fastp software
(version 0.20.0) (24). Reads were aligned to the Bos taurus
reference genome assembly using BWA (version 0.7.9a) (25),
and any hit linked with the reads and their mated reads were
discarded. Metagenomics sequence data were assembled using
Multiple_Megahit (version 1.1.2) (26), contigs with lengths≥300
bp were selected as the final assembling result. They were used
for further gene prediction and annotation. The best candidate
open reading frames (ORFs) were predicted using Metagene
(27). The predicted ORFs with lengths ≥100 bp were retrieved
and translated into amino acid sequences using the NCBI
translation table. A non-redundant gene catalog cluster analysis
was constructed using CD-HIT (version 4.6.1) (28) with 90%
sequence identity and coverage. After quality control, all high-
quality paired-end reads (with 95% identity) were mapped to the
non-redundant gene catalog using SOAPaligner (version 2.21)
(29), and the abundance of each gene in each metagenomics
sample was evaluated. Subsequently, representative sequences
of the non-redundant gene catalog were aligned to the NCBI
NR database using BLASTP (Version 2.2.28+) (30) (with a
best-hit e-value cutoff of 1e−5) to obtain annotation results
and species abundance. Principal coordinates analysis (PCoA)
was used to provide an overview of genetic differences among
samples. The ORFs were aligned with the CAZy database using
the hmmscan tool at an optimized e-value cutoff of 1e−5.
Lastly, the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway annotation approach was performed against the KEGG
database using a BLAST search (Version 2.2.28+) at an optimized
standard cutoff e-value of 1e−5 (31).

Metabolite Extraction and Metabolic
Pathways Analysis
The rumen content samples were thawed on ice. Then, they were
vortexed for 10 s. A total of 50 µL of rumen content sample
and 150 µL precooled cold methanol (including 1µg/mL 2-
chlorobenzene alanine as internal standard) were vortexed for
3min and centrifuged at 12,000 rpm at 4◦C for 10min. The
supernatant was centrifuged at 12,000 rpm at 4◦C for 5min, and
finally, the supernatant was collected into 2mL bottles and used
for subsequent LC-MS/MS analysis.

In the data acquisition system, we used Ultra-Performance
Liquid Chromatography (UPLC, Shim-pack UFLC SHIMADZU
CBM30A) and Tandem Mass Spectrometry (MS/MS)
(QTRAP R©). The UPLC running conditions were as follows: the
chromatographic column used was Waters ACQUITY UPLC
HSS T3 C18 (1.8µm× 2.1mm× 100mm); column temperature
was 40◦C; flow rate was 0.4 mL/min; injection volume was 2
µL; the mobile phase consisted of eluent A (water, 0.1% formic
acid) and eluent B (acetonitrile, 0.1% formic acid); and gradient
elution was 95:5 V/V at 0min, 10:90 V/V at 10.0min, 10:90 V/V
at 11.0min, 95:5 V/V at 11.1min, and 95:5 V/V at 14.0 min.

We acquired LIT and triple quadrupole (QQQ) scans on a
triple quadrupole-linear ion trap mass spectrometer (QTRAP).
Then, the QTRAP R© LC-MS/MS System, equipped with an
ESI Turbo Ion-Spray interface, was operated in a positive
and negative ion mode and controlled using the Analyst 1.6.3
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software (Sciex). The following were the ESI source operation
parameters: source temperature 500◦C; ion spray voltage (IS)
5500V (positive), −4500V (negative); ion source gas I (GSI),
gas II (GSII), and curtain gas (CUR) was set at 55, 60, and
25.0 psi, respectively; the collision-activated dissociation (CAD)
parameter was set high. Instrument tuning and mass calibration
were performed with 10 and 100 µmol/L polypropylene glycol
solutions in QQQ and LIT modes, respectively. Finally, a specific
set of MRM transitions were monitored for each period based on
the metabolites eluted within that particular period.

Statistical Analysis
All data were statistically analyzed using the One-way ANOVA
procedure of SPSS (version 24.0). All data were presented as
mean with SEM levels. GraphPad Prism version 8.0 software was
used to conduct all analyses. Metagenomics statistics data were
presented using the Kruskal-Wallis H test bar plots. Metabolome
statistics data were analyzed based on retention time and ion
current strength using the MultiQuant software to calculate the
relative content of each compound. The Pearson’s correlation
coefficient analysis was conducted for the rumen microbiota,
epithelial parameters, digestive enzyme activity, fermentation
parameters, and metabolic profiles.

RESULT

OEO Increased Rumen Epithelial
Parameters
Our previous study showed that dietary OEO supplementation
strongly increased beef cattle average daily gain and feed
conversion rate, this most likely to associated with promoting
rumen digestive ability (Supplementary Figure S1). Here, we
analyzed the papillae length and width via H&E staining to
explore the effects of OEO on rumen epithelial parameters
(Figure 1A). In the three experimental groups, papillae width
was not significantly different (P > 0.05). On the other hand,
papillae length in the H group was greater than in the Con group
(Figure 1B, P< 0.05), which was increased by 31.68%. Therefore,
OEO considerably improved rumen papillae length.

OEO Changed Rumen Content Digestive
Enzyme Activities
We measured the rumen content digestive enzyme activities
to evaluate the rumen digestive ability (Figure 1C). Compared
to the Con group, the OEO supplemented diet significantly
decreased amylase concentration in the H group and increased
its β-glucosidase compared to the Con and L groups (P < 0.05).

FIGURE 1 | Effects of OEO on rumen epithelial parameters, digestive enzyme activities, and fermentation parameters in beef cattle. (A) Rumen papillae H&E staining

result. (B) Increased rumen papillae length. (C) Increased rumen content β-glucosidase and cellulase concentrations and decreased amylase concentration. (D)

Increased rumen content pH value. (E) Decreased rumen content acetate to propionate ratio. (F) Altered rumen content VFAs levels. n = 9 individuals/group.

*P < 0.05.
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Cellulase levels in the L andH groups were significantly increased
than in the Con group (P = 0.001). Nevertheless, lipase levels
were not significantly different in the three groups (P > 0.05).

OEO Changed Rumen Fermentation
Parameters
The pH andVFAs levels were determined to investigate the effects
of the OEO supplementation on rumen fermentation parameters.
The pH value was significantly increased in the L and H groups
than in the Con group (Figure 1D, P < 0.001). Compared to the
Con group, the relative abundance of propionate in the L and
H groups was significantly increased (P = 0.043). The relative
abundance of butyrate and valerate in the H group was higher
than those in the Con group (P < 0.05), whereas the acetate
levels were lower in the H group than in the Con group (P =

0.036). Notably, other VFAs were not significantly different in the
three groups (Figure 1F, P > 0.05). Lastly, the lower acetate to
propionate ratio was found in the L and H groups than in the
Con group (Figure 1E, P < 0.05).

OEO Changed the Composition and
Functional Profiles of Rumen Microbiota
We further investigated the taxonomic and functional profiles of
the rumenmicrobiota. Metagenomic sequencing of the microbial
DNA extracted from 27 rumen content samples was performed.

A total of 259.01 Gb high-quality reads were obtained, with an
average of 9.59 Gb per sample. 2.51 million contigs with an
average N50 length of 896.15 bp were assembled. A total of
33.90 million ORFs were predicted, and they had an average
ORF length of 590.72 bp. Of note, the PCoA at the species level
illustrated a slight difference in the three groups (ANOSIM, Bray-
Curtis metric: R = 0.03, P = 0.20; Supplementary Figure S2).
Briefly, the microbiota in the H group was closely clustered
and slightly differentiated from those in the Con group. In
contrast, the L group showed substantial cross fusion with the
other two groups. Thus, compared to the Con group, OEO
supplementation resulted in a considerable difference in the
rumen microbiota of L and H groups.

We discovered that Bacteroidetes and Firmicutes are the
predominant bacteria in beef cattle at the phylum level (P
> 0.05, Supplementary Figure S3). We focused on screening
microorganisms whose gradient varied with high OEO dosage
based on the epithelial parameters, digestive enzyme, and
fermentation parameters results. One hundred and fifty-seven
different genera were identified in the three groups. Among
them, Parabacteroides, Tannerella and Coprobacter had relatively
high abundances and significantly increased with the addition
of OEO (P < 0.05, Figures 2A,C). At the species level,
780 differential bacteria were identified among the three
groups. However, the relative abundances of Parabacteroides

FIGURE 2 | Rumen microbiota composition in beef cattle. (A) Differential bacteria at the genus level. (B) Differential bacteria at the species level. (C) The top three

bacteria whose relative abundances significantly increased after OEO supplementation at the genus level. (D) The top three bacteria whose relative abundances

significantly increased after OEO supplementation at the species level. n = 9 individuals/group. *P < 0.05, **P < 0.01.
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distasonis, Bacteroides thetaiotaomicron, Tannerella forsythia,
Parabacteroides_sp._CAG:409, and Proteiniphilum acetatigenes
were considered the top five significantly increased after OEO
supplementation (P < 0.05, Figures 2B,D).

We examined the CAZyme profiles of different lignocellulose
degradation efficiencies. Here, the glycosyl hydrolase family of
GH43_17 abundances were higher in the L and H groups
than in the Con group (P < 0.05) and is usually involved in
plant xylan degradation. Moreover, these genes corresponded to
encode arabinanase (EC 3.2.1.99) and xylanase (EC 3.2.1.8). On
the other hand, the GH23 family, which is involved in starch
and glycogen degradation and encodes alpha-galactosidase (EC
3.2.1.22) and beta-galactosidase (EC 3.2.1.23), was considerably
lower in the L and H groups than in the Con group (P < 0.05,
Figure 3A). Furthermore, we determined that OEO expressed
different KEGG functional potential. The genes involved in
steroid hormone biosynthesis were highly enriched in the H
group, while those in retinol metabolism were enriched in the L
group (P < 0.05, Figure 3B).

OEO Changed the Metabolite Profiles of
Rumen
We further investigated the difference in microbiota-induced
metabolic profiles using LC-MS/MS. Five hundred and sixty
metabolites were obtained from 27 rumen content samples. The
OPLS-DA score plots showed that the three groups had a good
separation of the rumen metabolites. The random permutation
test indicated the satisfactory accuracy of the model (R2X =

0.452, R2Y= 0.942, Q2 = 0.31, Figure 4A).
The parameters of VIP > 1.0 and P < 0.05 were used as the

criterion for separating the rumen metabolic compounds to
assess which compounds were responsible for the differences
in the three groups. Then, K-means clustering analysis was
used to screen the relative abundance of metabolites gradient
change with increasing OEO supplementation. Twenty-one
differential compounds, including four aldehydes, ketones,
esters (2-ethylhexyl phthalate, dibutyl phthalate, 9-octadecenal,

and 2-pentyl-3-phenyl-2-propenal), four lipids [1-single palm
essence, cis-11,14,17-eicosatrienoic acid, MAG (16:1) isomer,
and MAG (16:1)], two organic acids (sorbic acid and aspirin),
four alcohol and amines (2,2,2-trichloroethanol, methylamine,
2-nonanol, and heparin), two benzene (pyrene and 4-tert-
butylbenzoic acid), one bile acid (taurocholic acid sodium
salt hydrate), 1 Coenzyme and vitamins (pantetheine), and
three others (alpha-cadinene, beta-cubebene, and farnesene)
were obtained. Notably, these metabolites abundances
were increased with increasing OEO supplementation
(P < 0.05, Table 1).

Metabolic pathway enrichment analysis was conducted to
identify the functional capacity of the different metabolic profiles.
Herein, four metabolic pathways resulting from significantly
different metabolites were obtained. Fc epsilon RI signaling
pathway, inositol phosphate metabolism, phosphatidylinositol
signaling system, and chemical carcinogenesis were highly
enriched in the H group than the Con group (P < 0.05, Rich
factor > 0.5, Figure 4B).

Correlation Analysis Between Rumen
Epithelial Parameters, Digestive Enzyme,
Fermentation Parameters, Metabolite
Profiles, and Microbiota
Species with significantly different abundances (P < 0.05)
top 15 and rumen epithelial parameters, rumen digestive
enzyme, and fermentation parameters were evaluated
by regression analysis using the Pearson’s correlation
coefficient analysis (R > 0.4 or R < −0.4, P < 0.05;
Figure 5A). The relative abundances of Parabacteroides
distasonis, Parabacteroides_sp._CAG:409, Proteiniphilum
acetatigenes, and Tannerella_sp._oral_taxon_BU063 were
positively correlated with β_glucosidase, cellulase, propionate,
and valerate, whereas they were negatively correlated
with acetate. Furthermore, the relative abundances of
Bacteroides thetaiotaomicron and Tannerella forsythia were

FIGURE 3 | OEO diets changed rumen microbiota functional profiles. (A) CAZy genes with significant differences were selected. (B) Differential KEGG metabolic

pathways were selected. n = 9 individuals/group. *P < 0.05, **P < 0.01.
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FIGURE 4 | OEO diets changed rumen content metabolite levels in beef cattle. (A) OPLS-DA analysis. (B) Metabolic pathway enrichment analysis. n = 9

individuals/group.

TABLE 1 | OEO diets changed rumen content metabolites in beef cattle.

Number Compounds VIP P

1 2-Ethylhexyl phthalate 3.328 P < 0.001

2 Dibutyl phthalate 3.324 P < 0.001

3 Pantetheine 3.309 P < 0.001

4 Taurocholic acid sodium salt hydrate 2.999 P < 0.001

5 2,2,2-Trichloroethanol 2.950 P < 0.001

6 1-Single palm essence 2.949 P < 0.001

7 9-Octadecenal 2.699 P <0.001

8 Cis-11,14,17-eicosatrienoic acid (C20:3) 2.667 P < 0.001

9 Sorbic acid 2.570 P < 0.001

10 MAG (16:1) isomer 2.555 P < 0.001

11 MAG (16:1) 2.555 P < 0.001

12 Alpha-cadinene 2.495 P < 0.001

13 Beta-cubebene 2.495 P < 0.001

14 Methylamine 2.421 0.004

15 Pyrene 2.329 0.004

16 2-nonanol 2.292 P < 0.001

17 2-Pentyl-3-phenyl-2-propenal 2.156 0.019

18 Farnesene 1.863 0.003

19 Heparin 1.753 0.049

20 Aspirin 1.530 0.038

21 4-tert-butylbenzoic acid 1.437 P < 0.001

positively associated with β_glucosidase, cellulase, and
propionate. Besides, amylase was positively linked with
Proteiniphilum acetatigenes. Conversely, pH level was
negatively correlated with Proteiniphilum acetatigenes and
Tannerella_sp._oral_taxon_BU063; papillae width was negatively
associated with Lachnospiraceae_bacterium_AC2029 and
Faecalibacterium_sp._CAG:74, and isobutyrate and isovalerate
were negatively correlated with Parabacteroides_sp._CAG:409.

Subsequently, species with significantly different abundances
top 15 and metabolites with VIP > 1.0 and P < 0.05
(Table 1) were analyzed using the Pearson’s correlation
coefficient (R > 0.4 or R < −0.4, P < 0.05; Figure 5B). The
relative abundance of aspirin was positively correlated with
Parabacteroides distasonis, whereas 4-tert-butylbenzoic acid
was positively associated with Proteiniphilum acetatigenes
and Tannerella_sp._oral_taxon_BU063. Finally, sorbic acid
and farnesene were positively correlated with Parabacteroides
distasonis and Parabacteroides_sp._CAG:409.

DISCUSSION

The growth performance, feed conversion rate, and carcass
characteristics were previously published (21). Briefly, compared
to Con group, the higher average daily gain and body weight
were found in the L and H groups, which resulted in greater
carcass weights. Moreover, OEO supplementation resulted in
similar dry matter intakes among the three groups, but increased
feed conversion rate by 9.33 and 16.04% for L and H groups.
These data demonstrate that OEO diet improved the growth
performance, feed efficiency, and carcass weight of cattle.
However, the present study focused on rumen digestive ability,
which is reported closely linked with epithelial development,
microbiota composition, VFAs, digestive enzyme activities and
metabolite profiles of rumen.

Rumen epithelial development is influenced by dietary
intervention. A previous study reported that tylosin could
promote papillae length in the dorsal sac of adult beef steers
and reduce the abundance of Fusobacterium necrophorum. This
prevents the inflammation of the rumen wall and enhances
papillae development (32). Additionally, butyrate infusions
stimulate cellular proliferation in the ruminal epithelial tissue
of sheep (33). Interestingly, the present study established that
OEO feed supplementation increases the papillae length of beef
cattle, this may be correlated with high butyrate concentration in
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FIGURE 5 | Correlation analysis between rumen epithelial parameters, digestive enzyme activities, fermentation parameters, metabolite profiles, and microbiota in

beef cattle. (A) Pearman correlation heatmap differences between rumen epithelial parameters, digestive enzyme activities, fermentation parameters, and microbiota.

(B) Pearman correlation heatmap differences between rumen metabolites and microbiota. *P < 0.05, **P < 0.01, and ***P < 0.001.

rumen. The change in papillae length could increase the nutrient
contact surface area and further crush the feed to promote
digestion and feed efficiency (34). Therefore, these findings
demonstrated OEO is beneficial for rumen papillae development.

A digestive enzyme is a protein that promotes the hydrolysis
of macromolecular materials into smaller molecules that can
be easily absorbed by the body. Generally, digestive enzymes
have substrate specificity characteristics; thus, complete digestion
of complex structural polysaccharide plants requires specific
enzyme combinations to break down diverse compounds
(35). It has been reported that OEO increases fibrolytic
bacteria abundance (i. e. Fibrobacter succinogenes, Ruminococcus
albus, and Ruminococcus flavefacien) (36). Besides, it decreases
amylolytic bacteria abundance because of reduced adhesion
in readily digestible solids and starch (15, 37). Notably, these
findings are similar to those observed in our study and indicate
OEO could promote fiber digestive ability.

The pH value balance is an important index to evaluate the
internal rumen environment. When the pH value is appropriate
(6.0–6.3), rumen microbes could multiply and produce volatile
fatty acid amounts to meet the host energy requirement. The
rumen pH value is up-regulated after OEO supplementation,
preventing rumen acidosis in current highly concentrated
conditions. It is reported that the thyme essential oil (its main
ingredient is thymol, 42.3% of DM) supplementation results
in increased pH value in the rumen of cattle (38). This is
because thymol inhibited the growth of lactic acid-producing
bacteria (39). Furthermore, abrupt changes in rumen pH could
affect microbiota and the fermentation products. This study
has observed a high concentration in propionate, butyrate,
and valerate and a low acetate concentration and acetate to
propionate ratio. The lower acetate levels in the rumen denote

less methane because methanogens could use acetate to produce
methane (16). The high propionate concentration could attribute
to energy supplementation via the gluconeogenic pathway to
promote glucose synthesis (40). The low acetate to propionate
ratio indicates a high energy efficiency in the feed (23). The
butyrate would stimulate cellular proliferation of gastrointestinal
epithelial tissue (17) and is recognized as an important mediator
of gut microbiota regulation during energy homeostasis (41, 42).
Study reported that EO feed increases propionate and butyrate
metabolism in the intestinal microbiota (43). Moreover, the high
nutrient levels and diet intake could reduce acetate concentration
and increase the proportion of propionate (44). In the present
study, OEO supplementation increased propionate and butyrate
concentration. Several studies also obtained similar results in
sheep after OEO supplementation (5, 9).

Like the changes observed in rumen fermentation parameters,
the data on the taxonomic and functional annotation of the
metagenome increased gene counts associated with energy
metabolism after OEO supplementation. At the phylum level,
OEO has no considerable effects on the relative abundance of
Bacteroidetes and Firmicutes; however, at the genus level, the
members of Bacteroidetes (Parabacteroides, Tannerella, and
Coprobacter genera) are significantly increased following OEO
supplementation. The primary Bacteroidetes function is to
express several genes encoding carbohydrate-active enzymes,
thus promoting the breakdown of the structural polysaccharide
in the rumen to regulate glucose metabolism in the host
animal (45, 46). This indicates that OEO could accelerate
polysaccharide degradation to provide an adequate nutritional
supply for rumen bacteria and the host. At the species level,
Parabacteroides distasonis, which is the Parabacteroides mode
species, could produce succinate to modulate host glucose
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metabolism (47). Succinate is a crucial intermediate toward
microbial propionate synthesis (48). Simultaneously, it is
an important precursor for the formation of glucose via the
intestinal gluconeogenesis (IGN) pathway (40). Meanwhile,
Parabacteroides distasonis increases the expression of the tight
junction proteins and maintains the intestinal barrier integrity
to promote digestibility and absorption capacity (49). The
present study indicates that Parabacteroides distasonis positively
correlated with propionate concentration. This could be because
the former is a propionate-producing bacteria, as also reported
by Wang et al. (47). Bacteroides thetaiotaomicron, an obligate
anaerobe colonizing the gastrointestinal food particles and
mucus, forms several polysaccharide utilization loci (PULs)
to break down numerous dietary polysaccharides and provide
genes to promote the acquisition and utilization of carbohydrates
(45, 50). Evidence has shown that Bacteroides thetaiotaomicron
could activate different genes to produce proteins attaching the
polysaccharide-rich food surface and to degrade polysaccharides
(51). Besides, Bacteroides thetaiotaomicron has been reported to
confer keystone status during arabinogalactan degradation (52).
Therefore, Bacteroides thetaiotaomicron has a higher ability to
digest dietary fiber polysaccharides and host glycans. A positive
correlation was found between Bacteroides thetaiotaomicron
and β-glucosidase and cellulase levels. This could be due to
the various glucoside hydrolase activities by the Bacteroides
thetaiotaomicron., including β-glucosidase and cellulase
activities (53). Thus, the increased abundance of Bacteroides
thetaiotaomicron in the rumen after OEO supplementationmight
indicate the beneficial function of OEO in promoting rumen
digestive ability. Tannerella forsythia, an obligate anaerobe
colonized in the oral cavity, has been demonstrated as an
essential periodontal pathogen (54). However, in this study, they
have been considered as discriminative bacteria that respond to
OEO utilization in beef cattle.

CAZyme degrade diet structural polysaccharides to provide
nutrient substances for absorption by rumen epithelium. The
diversity of carbohydrate compounds has been matched with
specific enzymes that break down their bonds. For example, the
GH43 family is primarily involved in encoding and degrading
xylanase and xylan, respectively. Endo-1,4-xylanases (EC 3.2.1.8)
targeted the backbone of xylan and converted it into short-chain
xylose oligosaccharides and β-xylosidase (EC 3.2.1.37) could
degrade xylose oligosaccharides to produce exlose. Then, α-L-
arabinofuranosidase (EC 3.2.1.55) degrades side chains to acquire
monosaccharides for the host (55). Apart from the GH23 family
being involved in starch and glycogen degradation, it can also
promote starch and glycogen transformation into dextrin to
further break down the molecule into D-Glucose (56). Herein,
the GH43 family genes were highly enriched in the H group.
On the contrary, the GH23 family genes were highly enriched in
the Con group, indicating OEO functional potential to degrade
plant polysaccharides. These reports are similar to our data on
the rumen digestive enzyme. Furthermore, KEGG functional
taxonomy showed that retinol metabolism and steroid hormone
biosynthesis were enriched in the L and H group; however, their
abundance changes were not correlated with the increased in
OEO dosage. Studies reported that retinol metabolism could

maintain mucosal integrity and increase mucus production by
the goblet cells (57); while the steroid hormone biosynthesis
related with cholesterol production and regulated glucose and
lipid metabolism. This illustrated that the function pathways of
OEO was focused on energy metabolism.

Apart from affecting the rumen microbiota composition and
function, OEO also alters the rumen metabolites and metabolic
pathways. Some of these pathways are implicated in energy
metabolism, cell growth, and immunoregulation. The Fc epsilon
RI signaling pathway is initiated by the interaction between an
antigen with immunoglobulin E (IgE) bound to the extracellular
domain of the alpha chain of Fc epsilon RI. Subsequently,
the activated mast cells release preformed granules, especially
heparin, to increase the vascular permeability and further
maintain rumen development (58). Conversely, pantothenate
and CoA biosynthesis pathway plays a significant role in energy
metabolism. Pantothenate is the precursor of CoA, and CoA is
an essential enzyme in the TCA cycle. CoA also participates in
the biosynthesis of fatty acids and cholesterol (59). Furthermore,
about 85% of the dietary pantothenic acid is in CoA or
phosphopentetheine forms, which is hydrolyzed by the ruminal
microbiota into phosphopantetheine and pantetheine for energy
provision. Previous studies showed that pantothenate could
stimulate the ruminal cellulolytic bacteria (60) and that it might
be correlated with Flavobacteriia abundance (61). Moreover, the
abundance of heparin and pantetheine increased after dietary
supplementation with OEO. Besides, A positive correlation was
found between Parabacteroides distasonis and farnesene, sorbic
acid, and aspirin. Farnesene belongs to the sesquiterpenoid
family that has a similar action mechanism with monoterpenes.
They are the main component in plants essential oils and
have a broad spectrum in antimicrobial activity (62). It was
reported that farnesene play a significant role during oxidative
injury of eukaryotic cells (63). Sorbic acid, a food preservative
and feed additive (64), could inhibit the dehydrogenase
system of bacteria preventing their reproduction (65). Evidence
shows that diets with sorbic acid exert prebiotic properties,
stimulating the development of beneficial bacteria taxa (64).
Aspirin, which has antibacterial and anti-inflammation activities,
could prevent colorectal cancer by inhibiting cyclooxygenase
enzymes and maintain intestinal barrier integrity (66, 67).
Briefly, OEO supplementation alters rumen content metabolites
and metabolic pathways. However, the further research is
required to elucidate the causal relationship between microbiota
and metabolites.

CONCLUSION

In summary, OEO dietary intervention altered the rumen
microbiota composition and function, increased rumen VFAs
(propionate and butyrate) and enhanced the Parabacteroides
distasonis and Bacteroides thetaiotaomicron abundance.
Furthermore, the rumen digestive ability was increased by
improving rumen epithelium papillae development, cellulase
and β-glucosidase, heparin, pantetheine, farnesene, and sorbic
acid concentration levels. Our study provided new insights into
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microbiota-mediated regulation of rumen digestive ability and
provided a growth-enhancing dietary strategy involving the
modulation of rumen microbiota.
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