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Abstract

Background: Nasal potential difference (NPD) and intestinal current measurement (ICM) are functional CFTR tests
that are used as adjunctive diagnostic tools for cystic fibrosis (CF). Smoking has a systemic negative impact on CFTR
function. A diagnostic comparison between NPD and ICM and the impact of smoking on both CFTR tests has not
been done.

Methods: The sweat chloride test, NPD, and ICM were performed in 18 patients with CF (sweat chloride >60 mmol/l),
including 6 pancreatic sufficient (PS) patients, and 13 healthy controls, including 8 smokers. The NPD CFTR response to
Cl-free and isoproterenol perfusion (Δ0Cl− + Iso) was compared to the ICM CFTR response to forskolin/IBMX, carbachol,
and histamine (ΔIsc, forskolin/IBMX+ carbachol+histamine).

Results: The mean NPD CFTR response and ICM CFTR response between patients with CF and healthy controls was
significantly different (p <0.001), but not between patients with CF who were PS and those who were pancreatic
insufficient (PI). Smokers have a decreased CFTR response measured by NPD (p = 0.049). For ICM there is a trend
towards decreased CFTR response (NS). Three healthy control smokers had NPD responses within the CF-range. In
contrast to NPD, there was no overlap of the ICM response between patients with CF and controls.

Conclusions: ICM is superior to NPD in distinguishing between patients with CF who have a sweat chloride > 60 mmol/l
and healthy controls, including smokers. Neither NPD nor ICM differentiated between patients with CF who were PS from
those who were PI. Smoking has a negative impact on CFTR function in healthy controls measured by NPD and
challenges the diagnostic interpretation of NPD, but not ICM.

Keywords: (3–10): Cystic fibrosis, Nasal potential difference, Intestinal current measurement, Sweat chloride, Sweat test,
Diagnosis, Smoking
Background
Cystic fibrosis (CF) is diagnosed based on a defined clin-
ical phenotype and confirmation of cystic fibrosis trans-
membrane regulator (CFTR) dysfunction, commonly
demonstrated by a sweat chloride value of ≥ 60 mmol/l
and/or detection of two CF-causing mutations [1,2]. A
small but increasing number of patients present with
clinical symptoms characteristic of CF, an intermediate
(30–60 mmol/l) or negative (≤29 mml/l) sweat test, and
less than two CF-causing mutations [3-6]. For these
* Correspondence: lutz.naehrlich@paediat.med.uni-giessen.de
†Equal contributors
Department of Pediatrics, Justus-Liebig-University Giessen, Feulgenstrasse 12,
35385 Giessen, Germany

© 2014 Bagheri-Hanson et al.; licensee BioMed
Creative Commons Attribution License (http:/
distribution, and reproduction in any medium
Domain Dedication waiver (http://creativecom
article, unless otherwise stated.
query CF patients, a specific and sensitive CFTR func-
tional test to exclude or confirm a CFTR functional defect
characteristic of CF is needed [1,6]. CFTR modulating and
correcting drugs have improved CFTR-function in cell
cultures [7]. To test their effect in CF-patients, especially
those with rare mutations, CFTR-functional tests with low
variability and high reproducibility are needed [7].
In addition to sweat testing, two additional CFTR func-

tional tests have been developed over the past 30 years;
nasal potential difference (NPD) measurement [8] and in-
testinal current measurement (ICM) [9]. CFTR function is
measured in vivo in the respiratory epithelium by NPD
and ex vivo in superficial rectal biopsies by ICM. Inter-
national standard operating procedures (SOPs) have been
Central Ltd. This is an Open Access article distributed under the terms of the
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established for both tests [8,10]. Both tests block epithelial
sodium channels by amiloride and stimulate cAMP-
mediated CFTR-mediated chloride transport in chloride-
free solution and isoproterenol (NPD) or forskolin and
IBMX (ICM). In addition, cholinergic chloride transport is
tested by carbachol with ICM. The change after chloride-
free and isoproterenol perfusion (Δ0Cl− + Iso) with NPD
[8] and the sum of the responses after carbachol, forsko-
lin/IBMX ([11]) plus histamine (ΔIsc, forskolin/IBMX+

carbachol+histamine) with ICM [12] has been proposed to be
the best parameter of CFTR function. Both techniques
can discriminate CF patients from healthy controls (NPD
[13,14]; ICM [11,12,15,16]), but comparative clinical tri-
als are lacking. Smoking has a systemic negative impact
on CFTR-function [17,18], but the impact on the diag-
nostic aspects of NPD and ICM have not been
investigated.
We performed NPD and ICM measurement in CF-

patients and healthy controls to determine (1) the ability
of these measurements to differentiate CF patients from
healthy controls, and (2) the influence of smoking on
CFTR function in healthy controls.

Methods
Between October 2012 and February 2013, 18 patients
with CF and 13 healthy controls were recruited at the
Table 1 Characteristics and CFTR response of pancreatic insuf
with CF and controls

CF-PI (n = 12) C

Age, years 24.0 ± 6.1 2

22.0 (19.0 – 26.0) 1

Gender, females:males 3:9 5

Body mass index Z-score −1.18 ± 0.80 −

−1.05 (−2.40 – 0.00) 1

Sweat chloride (mmol/l) 110 ± 13** 8

106 (92 – 140) 9

NPD CFTR response
average Δ0Cl− + Iso (mV)

4.6 ± 3.9 1

5.1 (−3.0 -11.9) 1

ICM CFTR response
average ΔIsc (μA/cm2))
(forskolin/IBMX + carbachol + histamine)

−0.3 ± 8.1 5

−0.6 (−12.6 – 17.9) 5

Genotyping F508/F508 (6×) F

F508/G551D (2×) F

F508/G542X F

F508/N1303K F

F508/1248 + 1G-A

F508/dele 14a,15,16,17a,17b

Data are shown as ratios or the mean ± standard deviation incl. median (min – max
Justus-Liebig-University, Giessen, Germany. For this
study, the diagnosis of CF was based on at least one clin-
ical manifestation of CF, sweat chloride ≥60 mmol/l and
the presence of two CF-causing mutations [1]. Pancre-
atic sufficiency (PS) was defined as fecal elastase
>100 μg/g stool. Healthy controls had no clinical mani-
festation of CF and a sweat chloride value <60 mmol/l
(Non-CF). Smoking was defined as any active or passive
exposure to tobacco smoke. Exclusion criteria were par-
ticipation in another medical clinical trial during the
past 30 days, acute respiratory symptoms, intake of
ivacaftor, known hemorrhoids, or bleeding diathesis.
The ethics committee of the Justus-Liebig-Universität
Giessen approved the protocol (AZ109/12). The study
was performed in accordance with the declaration of
Helsinki. Written informed consent was obtained from
each participant aged 18 years and older. For partici-
pants younger than 18 years of age, written informed
consent was obtained from each participant’s parents
or legal guardian, and age-appropriate consent was
obtained from each participant. The sweat test, NPD,
and ICM were performed on the same day for each
subject.
The sweat test was performed according to Clinical and

Laboratory Standards Institute guidelines [19]. For sweat
stimulation and collection, the Macroduct® system (Wescor,
ficient (CF-PI) and pancreatic sufficient (CF-PS) patients

F-PS (n = 6) CF-all (n = 18) Controls (n = 13)

3.3 ± 11.8 22.8 ± 8.0 30.6 ± 10.4

6.0 (14.5 – 30.5) 20.5 (18.3 – 25.3) 25.0 (23.5 – 35.5)

:1 8:10 7:6

0.62 ± 1,41 −0.99 ± 1.03* 0.00 ± 0.65*

.41 (−0.20 – 0.70) −0.90 (−2.60 – 0.70) 0.00 (−1.10 - 1.30)

6 ± 14** 102 ± 17* 19 ± 8*

0 (70 – 99) 104 (70 – 140) 19 (10 – 36)

.5 ± 4.1 3.6 ± 4.1* −13.6 ± 8.5*

.5 (−3.2 – 6.23) 4.5 (−3.2 – 11.9) −12.7 (−26.4 - -1.92)

.3 ± 10.9 1.6 ± 9.2* 77.8 ± 34.8*

.0 (−9.7 – 19.0) 0.1 (−12.6 – 19.0) 65.3 (39.6 -140.9)

508/R347P (2×) 148 T/R117H-7 T

508/3849 + 10 kb C- > T (2×) F508/–

508/R334W −−/−−

508/? ND/ND (11)

). *p <0.001 (CF-all versus controls); **p = 0.003 (CF-PI versus CF-PS).
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Inc., Logan, USA) was used. Chloride was measured by
chloride titration. A sweat chloride level ≥60 mmol/l was
interpreted as within the CF range, 30–60 mmol/l as
equivocal, and ≤29 mmol as normal [1].
NPD was performed by one operator who was accre-

dited by the Cystic Fibrosis Foundations’ (CFF) Thera-
peutic Developments Network (TDN), and followed the
CFF TDN SOP (version: January 2009) [8]. We used ter-
butaline as a substitute for isoproterenol in accordance
with the SOP. The chloride-free and isoproterenol re-
sponse (Δ0Cl− + Iso) (NPD CFTR response) and the
Wilschanksi score (defined as e(response to chloride-free and

isoproterenol/response to amiloride)) [20] representing the CFTR
response were calculated as the average or best result from
both nostrils. The Δ0Cl− + Iso was interpreted as normal
when < −12 mV, as in the CF range when > −7.7 mV, and
as equivocal for results between −12 and −7.7 mV [6]. The
Wilschanski score was interpreted as normal (<0.65), in
the CF-range (>0.70), or equivocal (0.65–0.70) [20]. If the
mean Δ0Cl− + Iso was > −7.7 mV in healthy controls, the
NPD was repeated on a different day. Only the measure-
ment with the highest Δ0Cl− + Iso was reported. If both
measurements confirmed a Δ0Cl− + Iso in the CF range,
CFTR genotyping (sequencing and multiplex ligation-
Figure 1 Correlation of average Δ0Cl− + Iso (NPD) and sweat chloride
lines, and the intermediate range is shown between the solid and dotted l
dependent probe amplification) was offered as part of the
participant’s clinical care and reported as part of the base-
line data. Genotyping of all healthy controls was not ethic-
ally approved.
The ICM followed the European Cystic Fibrosis Society-

Therapeutic Development Network (ECFS-TDN) SOP
(V2.7; Oct 26, 2011), which is based on the Rotterdam
protocol. The tissues sliders (P2407C [1.5 mm diameter
aperture slider; area 0,018 cm2] or P2407B [1.2 mm diam-
eter aperture slider; area 0.011 cm2]; Physiologic Instru-
ments, San Diego, USA) were mounted without tissue in
the chambers (4-chamber system [EM-LVSYS-4; Physio-
logic Instrument, San Diego, USA]), which were filled on
both sides with 2 ml Meyler buffer solution (10 mM
Hepes; 0.3 mM Na2HPO4; 0.4 mM NaH2PO4; 1.0 mM
MgCl2; 1.3 mM CaCl2; 4.7 mM KCl; 128 mM NaCl;
20.2 mM NaHCO3; 10 mM D-Glucose; 0.01 mM indo-
methacin; pH 7.4; osmolarity 300 mOsm). PowerLab (4/30;
ADInstruments Ltd., Dunedin, New Zealand) and
Labchart® software (release 7.2; ADInstruments Ltd., Dun-
edin, New Zealand) were used for data acquisition. A stable
open Potential Difference (PD) was ensured and an input
offset to 0 mV was performed. Fluid resistance compensa-
tion was performed by applying short current pulses
. The normal range is indicated for values below and left of the dotted
ines.
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(15 μA) by the VCC MC4S Multi-Channel Voltage Current
Clamp (Physiologic Instrument, San Diego, USA) and
adjusting the fluid resistance.
For ICM, at least 4 superficial rectal biopsies were ob-

tained by suction biopsies (aspiration biopsy instrument ac-
cording to Wilital (UE7605); ulrich GmbH, Ulm, Germany)
without prior bowel preparation. Biopsies were immediately
stored in ice-cold buffer solution (Dulbecco’s phosphate
buffered saline and indomethacin, final concentration
10 μM) and mounted on adequate tissue sliders. After
mounting the sliders in the heated and slightly sparged
(95% O2/5% CO2) 4-chamber system, each basal resistance
was measured by applying short current pulses (15 μA) and
registering the corresponding change in Vt (typical range
15–30 Ohm × cm2) with the VCC MC4S Multi-Channel
Voltage Current Clamp (Physiologic Instrument, San
Diego, USA). After that the voltage was clamped at
0 mV and the raw short circuit current (rIsc) was re-
corded from then on. Due to different sliders with dif-
ferent areas (P2407C [1.5 mm diameter aperture slider;
area 0.018 cm2] or P2407B [1.2 mm diameter aperture
slider; area 0.011 cm2]); Physiologic Instruments, San
Diego, USA), the raw rIsc was converted to Isc (μA/
cm2). After applying 100 μM carbachol (which stimu-
lates cholinergic Cl− secretion by opening basolateral
Figure 2 Correlation of the average Wilschanski score (NPD) and swe
lines, and the intermediate range is shown between the solid and dotted l
K+ channels) to the serosal compartment, an Isc response
was evoked for quality control of the biopsy. After a
40-min equilibration in Meyler buffer, the basal Isc was
noted and 2 μl amiloride (to block amiloride-sensitive
sodium channels) was added to the mucosal compart-
ment. After 5 min or when the Isc was stable, 10 μM
forskolin and 100 μM IBMX (to stimulate cAMP-
dependent CFTR-Cl− transport) were added to the mu-
cosal and serosal compartments (ΔIsc, forskolin/IBMX).
After a minimum of 10 min, 10 μM genisteine (CFTR-po-
tentiator) was added to both compartments. After a mini-
mum of 5 min, 100 μM carbachol was added to the
serosal compartment (ΔIsc, carbachol). After a minimum of
10 min, 200 μM 4,4′-Diisothiocyano-2,2′-stilbenedisulfo-
nic acid (DIDS) (blocking non-CFTR-Cl− channels) was
added to the mucosal compartment. After 10 min, 500
μM histamine (to stimulate Ca2+ and proteinkinase C-
mediated CFTR Cl− secretion) was added to the serosal
compartment (ΔIsc, histamine). In the open circuit, the final
transepithelial voltage and final resistance were measured
by applying short current pulses as in the beginning. Pre-
liminary data suggested that the average ΔIsc, forskolin/IBMX+

carbachol+histamine is the best diagnostic ICM parameter for
chloride secretory response (ICM CFTR response), but
reference ranges have not been established [10].
at chloride. The normal range is shown below and left of the dotted
ines.
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Data are presented as the mean ± standard deviation
(SD) (normally distributed variables), respective the me-
dian values, and 25th and 75th percentiles (non-
normally distributed variables). Group comparisons were
performed using the Student’s t test or Mann–Whitney
U test for normally or non-normally distributed vari-
ables, respectively. Statistical significance was defined as
p < 0.05. All analyses were performed with IBM SPSS
Statistics 21 (release 21; IBM, Armonk, USA).

Results
Our study included 18 patients with CF and 13 healthy
controls with a median age of 20.5 and 25.0 years, re-
spectively (NS) (Table 1). As consequence of our inclu-
sion criteria, sweat chloride values distinguish patients
with CF from healthy controls (p < 0.001). Although the
mean sweat chloride differed between CF-PS and CF-PI
patients (p = 0.003), an individual overlap occurs (Table 1,
Figure 1). The mean NPD CFTR response significantly
discriminated between CF patients and healthy controls
(p <0.001), but not between patients with CF who were
PS versus PI (Table 1). Four healthy controls had an
average Δ0Cl− + Iso of > −7.7 mV. Three out of four
Figure 3 Correlation between the average ΔIsc (forskolin/IBMX + carb
The normal range is shown left of the dotted line. The intermediate range
IBMX + carbachol + histamine) represents a better CFTR response.
controls had a repeatable average NPD CFTR response
in the CF-range for Δ0Cl− + Iso > −7.7 mV (23% of all
healthy controls) (Figure 1), and two additional controls
when using the Wilschanski score (15% of all healthy
controls) (Figure 2). All these healthy controls were
smokers. CFTR genotyping was offered to these three
healthy controls as part of clinical routine and none had
two CF-causing mutations (Table 1). For ICM a median
of 6 (5–7) rectal biopsies were sampled per patient with-
out severe adverse events. The mean ICM CFTR re-
sponse was significantly different between CF patients
and healthy controls (p <0.001), but not between patients
with CF who were PS versus those who were PI (Table 1).
We could not detect any age-dependency of the response
to Isoproterenol/Forskolin. In contrast to NPD, there was
no overlap between CF-patients and controls (Figures 3
and 4). Using the best instead of the average NPD, the
CFTR response overlap did not change (Additional file 1).
Using the best instead of the average ICM, the CFTR re-
sponse resulted in one overlap (Additional file 2).
In healthy controls, smoking had no influence on

sweat chloride (NS), but decreased CFTR function as
measured by NPD (p = 0.049) (Table 2 and Figure 5),
achol + histamine) (ICM) and average Δ0Cl− + Iso (NPD).
is shown between the solid and dotted lines. A higher ΔIsc (forskolin/



Figure 4 Correlation between the average ΔIsc (forskolin/IBMX + carbachol + histamine) (ICM) and average Wilschanski score (NPD).
The normal range is shown left of the dotted line. The intermediate range is shown between the solid and dotted lines. A higher ΔIsc (forskolin/
IBMX + carbachol + histamine) represents a better CFTR-response.
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and resulted in intermediate or even abnormal NPD re-
sults, but not ICM or sweat chloride results. There is a
trend in ICM measurements indicative that smoking
might not only affect CFTR in the respiratory tract, but
also in the intestine (Table 2 and Figure 6).

Discussion
ICM is superior to NPD for distinguishing between CF pa-
tients with a sweat chloride >60 mmol/l and healthy
Table 2 Influence of smoking (active and/or passive) in
healthy controls on NPD and ICM CFTR responses

Nonsmokers Smokers p-value
n = 5 n = 8

Sweat chloride (mmol/L) 18 ± 8 20 ± 9 NS

NPD CFTR response −19.3 ± 7.4 −10.1 ± 7.3 0.049

Average Δ0Cl− + Iso (mV)

ICM CFTR response 97.2 ± 37.1 65.7 ± 29.1 NS

Average ΔIsc (μA/cm2)

(forskolin/IBMX + carbachol +
histamine)

All values are shown as the mean ± standard deviation.
controls, including smokers. Neither NPD nor ICM diffe
rentiated patients with CF who were PS from those who
were PI. Smoking has a negative impact on CFTR function
in healthy controls measured by NPD, and challenges the
diagnostic interpretation of NPD. There is a trend in ICM
indicative that smoking might not only affect CFTR in the
respiratory tract, but also in the intestine, which has no
impact on diagnostic interpretation.
NPD has been used as a diagnostic test for CF since the

late 1980s [14,21,22]. Studies have shown 94.8–100% sen-
sitivity and 96.5–100% specificity of Δ0Cl− + Iso for separ-
ating PI patients with CF from healthy controls [13,14,23].
Experience with a broader spectrum of patients with CF
[24,25] and equivocal patients (sweat chloride <60 mmol/l
and less than two CF-causing mutations) [20] described a
clinically relevant overlap for Δ0Cl− + Iso. Even in F508del
homozygous patients, a residual CFTR NPD response with
[26] or without [27,28] an observed clinical difference has
been described. Some centers introduced an intermediate
category for Δ0Cl− + Iso [6], interpret the highest NPD
CFTR response [29], or use a composite score that in-
cludes sodium and chloride conductance [20,30]. Irrespect-
ive of the diagnostic criteria, our result showed a clinically



Figure 5 Average Δ0Cl− + Iso (NPD) in healthy controls according to smoking status. The normal range is shown below the dotted line and the
intermediate range is shown between the solid and dotted lines.
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relevant overlap between patients with CF and healthy
controls. A normal average NPD CFTR response excludes
CF, but an abnormal average NPD CFTR response could
occur in healthy controls, especially in smokers, and can
lead to a false-positive diagnosis of CF. A repeated meas-
urement of a pathologic NPD response reduced the false-
positive results in 1 out of 4 healthy controls in our cohort
and should be recommended as a standard approach.
ICM was developed as a research tool for CFTR func-

tion in the 1990s [31] and has been used as a diagnostic
test since the early 2000s [15,32]. Two different proto-
cols are established; the Freiburg protocol [9] and the
original [33] and adapted [34] Rotterdam protocol. We
used the newest ECFS-ICM-SOP, which is an adapted Rot-
terdam protocol. The combination of cAMP-mediated Cl−

secretion, and the carbachol and histamine (Rotterdam
protocol) responses separate patients with CF from those
without CF [11,12,34], but not patients with CF who are
PS from those who are PI [11,12], which is in accordance
with our results. The 50% loss of CFTR protein in CF het-
erozygotes could not be detected by ICM [35] independ-
ent of the protocol [15,32]. For the Rotterdam protocol,
De Jonge postulated that the ICM response is not propor-
tional to the CFTR amount in the apical membrane of
coloncytes except at a low level (<10–15%) and could
therefore only detect an 80–85% loss of CFTR expression/
function [32]. Therefore, mild mutations could result in a
false-negative ICM. Interestingly, Derichs reported 8
patients with a sweat chloride >60 mmol/l, fewer than two
CF-causing mutations after sequencing, and a normal
ICM response who were judged as CF unlikely [12]. Our
results with the new ECFS-ICM SOP confirm the high
predictive value and practicability of this adapted ICM
Rotterdam protocol.
Our data suggest that NPD is more likely to detect

CFTR dysfunction in healthy controls than the ICM or
sweat test. This could be explained by tissue specific dif-
ferences in CFTR expression, alternative chloride channel
expression, or extrinsic factors. Kälin et al. showed identi-
cal CFTR expression in the respiratory and intestinal tract
of F508del-homozygous patients and healthy controls [36].
Highly variable CFTR expression in the nose [37] and colon
[38] of F508del homozygous patients has been described,
varying from 0–100% [37]. Therefore, in the respiratory
and intestinal tract, individual CFTR expression seems to
be more relevant than tissue specific expression. Alternative
chloride channels could contribute to the chloride conduct-
ance, but have not been described in the distal colon [39].
Furthermore, previous infections [40], milder trauma [14],
smoking [17], increased paracellular permeability [41], and
decreased CFTR expression [42] and CFTR response [43].
With the exception of smoking, these extrinsic factors are
relevant only for NPD, but not for rectal biopsies [44].
Smoking causes a decreased NPD response [17], but al-
though a decreased systemic CFTR function mediated by
acrolein [18]. Raju et al. demonstrated a 65% decrease in



Figure 6 Average ΔIsc (forskolin/IBMX + carbachol + histamine) (ICM) in healthy controls according to smoking status. A higher ΔIsc
(forskolin/IBMX + carbachol + histamine) represents a better CFTR response.
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the ICM CFTR response in healthy smokers compared with
non-smokers [18]. Our results confirm these findings. In
contrast to NPD, smoking did not influence the diagnostic
cut-off for ICM in our cohort. Therefore, ICM seems to be
a more robust diagnostic test than NPD to distinguish pri-
mary from secondary CFTR dysfunction. This is important
for the interpretation of NPD as an adjunctive diagnostic
test in patients with query-CF who are exposed to smoking.
Limitations of our study include the small number of

participants in each group, the lack of patients with CF
with a sweat chloride value < 60 mmol/l, and patients
with congenital bilateral absence of the vas deferens
(CBAVD). The strength of our study is the genotyping of
healthy controls with an abnormal CFTR NPD response,
and the use of standardized protocols for sweat testing,
NPD, and ICM.

Conclusions
From our results, a normal average NPD CFTR response
excludes CF, but an intermediate or abnormal NPD
CFTR response could be detected in healthy controls.
NPD should be judged carefully, especially in patients
with chronic rhinosinusitis and exposure to smoking.
ICM combined with cAMP-mediated and cholinergic Cl
secretion seems to be a practicable diagnostic test with
an increased specificity compared with NPD. Discordant
results of both CFTR functional tests could be detected
and challenge the diagnostic interpretation. Larger study
groups that include smokers and patients with CBAVD
or CF with a sweat chloride between 30–60 mmol/l are
needed to confirm our results.

Additional files

Additional file 1: Correlation of the best and average Δ0Cl− + Iso
(NPD). The normal range is shown below and left of the dotted lines.
The intermediate range is shown between the solid and dotted lines.

Additional file 2: Correlation of the best and average ΔIsc
(forskolin/IBMX + carbachol + histamine) (ICM). A higher ΔIsc
(forskolin/IBMX + carbachol + histamine) represents a better CFTR
response.
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