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Abstract

Current post-epidemic sero-surveillance uses random selection of animal holdings. A better strategy may be to estimate the
benefits gained by sampling each farm and use this to target selection. In this study we estimate the probability of
undiscovered infection for sheep farms in Devon after the 2001 foot-and-mouth disease outbreak using the combination of
a previously published model of daily infection risk and a simple model of probability of discovery of infection during the
outbreak. This allows comparison of the system sensitivity (ability to detect infection in the area) of arbitrary, random
sampling compared to risk-targeted selection across a full range of sampling budgets. We show that it is possible to achieve
95% system sensitivity by sampling, on average, 945 farms with random sampling and 184 farms with risk-targeted
sampling. We also examine the effect of ordering samples by risk to expedite return to a disease-free status. Risk ordering
the sampling process results in detection of positive farms, if present, 15.6 days sooner than with randomly ordered
sampling, assuming 50 farms are tested per day.
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Introduction

After the apparent end of an animal disease epidemic, a country

will normally benefit from demonstrating that infection is no

longer present in its livestock. This is both to satisfy international

trade requirements [1,2] and also to identify previously undiscov-

ered infection to prevent recrudescence. Demonstration that

infection has been controlled also has domestic, societal and

political advantages. The process is described as demonstration of

disease freedom [3] .With many diseases this process includes a

prescribed sampling of livestock in the vicinity of the previously

affected premises. Appropriate diagnostic tests are used to

determine the serological status of sampled animals and hence

infer the infection status of the whole region. Unless all animals are

simultaneously sampled with a perfect diagnostic test there will be

uncertainty in the subsequent estimate of a region’s infection

status. Much work has been done to determine optimal sample

sizes and performance limits of such surveys [3,4,5,6,7,8]. These

studies assume random sampling of animal holdings, usually

within a defined surveillance zone that would normally surround

the previously infected premises. Current disease control and

surveillance policies generally involve the definition of a

surveillance zone as a buffer at a prescribed radius around

previously detected, infected premises. In the case of foot-and-

mouth disease in the United Kingdom this is a 10 Km radius zone

around any designated infected premises. For the purposes of

illustration and discussion this study will focus on the design of

post-foot-and-mouth disease epidemic surveys although the

approach may be generalised to other diseases.

Post-epidemic demonstration of freedom from foot-and-mouth

disease is informed by guidelines from The World Organisation

for Animal Health (OIE). Previously these guidelines have been

prescriptive regarding the sampling strategy. Changes in OIE

guidelines have increased flexibility allowing a more pragmatic

approach to design, provided that the survey adequately supports

the claim of disease freedom [1].

The original guidelines required farms to be selected from

within the surveillance zone on a random basis to achieve an

expected survey system performance (e.g. a 95% confidence of

detecting an infected farm if infection is present at a predeter-

mined design prevalence such as 2%). Within each selected farm,

samples are taken to achieve a within-farm expected survey

performance; typically to detect infection on the farm with a 95%

probability if it were present at some previously defined, within-

group, design prevalence (often 5%). In the case of disease control

by vaccination, current procedures may advise testing of all

vaccinated animals on all vaccinated farms [9,10]. Diagnostic tests

have imperfect specificity, including those optimised for vaccinated

animals, and farms may occasionally be classified as previously

infected when they are not. These false positive farms will

normally be screened by further confirmatory diagnostic testing.

Our study examines the traditional approach for post epidemic

surveillance for disease freedom using random selection of farms

within the surveillance zone and suggests a more efficient

methodology. This targets farm selection using a model of un-

discovered infection risk to choose which farms to sample and

when to sample them. This approach is expected to reduce

sampling costs by requiring fewer farms to be tested and to
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expedite a region’s return to disease-free status by finding infected

farms, if they are present, more quickly. Risk based approaches

have been previously discussed for identification of disease

freedom from Trichinella in pigs [11] and Scrapie in sheep [12].

These studies showed significant benefits to risk-targeted sample

selection. Our study considers the application of risk-targeted

surveillance to a post-epidemic population.

Methods

In this study we discuss the estimation of surveillance system

performance from an estimated risk of undiscovered infection on

each animal holding. Then we compare the performance of risk-

targeted and random surveillance systems in a post-epidemic

setting using available data.

Surveillance system sensitivity
The purpose of post-epidemic sero-surveillance is to inform a

decision about the disease status of a region. A requirement of

classification of a region as free-of-disease is surveillance evidence

of no previously infected animals or circulating infection. In this

analysis we consider that the performance of a survey to

demonstrate disease freedom is assessed by the probability that it

detects infection or circulation of infection in a region if infection is

present. This is the system sensitivity (SSe) [13]. For this analysis

we assume that an optimally efficient survey design either:

1. Maximises, for a given budget, the probability (SSe) of

detecting any infected but previously undetected (hereafter

referred to as ‘undiscovered infected’) animals in the area, if

present, or;

2. Minimises the sampling cost of a survey that achieves a desired

probability (SSe) of detecting undiscovered infected animals, if

present, in the area.

The system sensitivity SSe is defined:

SSe~P(TzjDz) ð1Þ

Where Tz is the event of at least one farm testing positive in the

region, Dz is the event of at least one farm being infected but not

detected prior to the start of post-epidemic serological surveillance

and P Eð Þ is probability of an event E.

SSe can be estimated by assuming that the test system has

perfect system specificity as discussed in [14]. That is, any initially

test-positive farms are retested until they are demonstrated to be

genuine positive or cannot be shown to be negative. Effectively the

case definition for a test positive farm is a farm that tests positive

after confirmatory and follow-up retesting, irrespective of its true

infection status.

So generally with a diagnostic system:

P Tzð Þ~P TzjDzð Þ|P Dzð ÞzP TzjD{ð Þ|P D{ð Þ

Assuming perfect system specificity:

P TzjD{ð Þ~0

So:

P Tzð Þ~P TzjDzð Þ|P Dzð Þ

hence

P TzjDzð Þ~SSe~
P Tzð Þ
P Dzð Þ ð2Þ

To estimate the system sensitivity (SSe) of different post epidemic

sampling strategies using equation (2) it is necessary to estimate

P Tzð Þ:

P Tzð Þ~1{ P
i[s1::n

(1{Pi|ri)

Where Pi is the probability that farm i is infected and

undiscovered, s1...n are the indices of a sampled set of n farms

from the population of N farms and ri is the farm level sensitivity

on farm i (i.e. the probability of a positive farm result if an infected

farm is selected, sampled and tested). We assume that Pi and ri

are independent, i.e. the sensitivity with which infection is detected

on a farm is independent of the risk that the farm is infected and

undiscovered.

P Dzð Þ, the probability that undiscovered infected animals

remain in the region is estimated:

P Dzð Þ~1{ P
i[1::N

(1{Pi)

Giving:

SSe~

1{ P
i[s1::n

(1{Pi|ri)

1{ P
i[1::N

(1{Pi)
ð3Þ

Risk-targeted versus random farm selection
If all farms have an equal probability of being infected and

undiscovered, the survey has a constant farm level sensitivity

across all farms and the cost of sampling farms is constant there

will be no advantage of risk-targeted sampling over random

sampling. However if the probability of infection, Pi, or farm

sensitivity ri vary then maximum system sensitivity within a

sampling or cost constraint will be obtained by selecting a sample

set s1...n of n farms to maximize:

P Tzð Þ~1{ P
si~1::n

(1{ri|Pi)

As ri|Pi is always positive this is maximised by maximizing

ri|Pi. If the sampling constraint is simply a number of farms, n,

to be sampled this gives a sample set of the first n farms when they

are ordered by decreasing ri|Pi.

If the sampling constraint is a fixed sampling cost budget and it

is assumed that all farms have an equal sampling cost (cost of

visiting the farm plus cost of sampling on the farm) then the most

efficient sample will be the selection of as many farms as possible

choosing farms in order of decreasing ri|Pi until the budget

constraint is met.

The efficiency gains from risk-targeted sampling will depend on

the form of the distribution of undiscovered infection risk. In the

following section we adapt a previously published model for risk of

infection and use it to estimate potential gains in surveillance

system efficiency resulting from application of risk-based as

opposed to random sampling in a post-epidemic surveillance

scenario.

Risk-Targeted Post-Epidemic Surveillance
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Study scenario - Devon, UK 2001 foot-and-mouth disease
epidemic

We estimated the performance gains of risk-targeted surveil-

lance using historical data from the foot-and-mouth outbreak in

Devon, UK in 2001. The post-epidemic surveillance analysis is

confined to sheep only as this was the species subject to widespread

sero-surveillance. To estimate the gains of risk-targeted surveil-

lance we need an estimate of risk of undiscovered infection for the

candidate farms. In this example the risk of infection is estimated

using a statistical model [15].. Our analysis also requires an

estimate of probability that infection escapes discovery during the

outbreak period. In this example this was estimated from post-

outbreak surveillance data. In future application of risk-targeted

surveillance the discovery model results would have to be assumed

to be exchangeable across similar outbreaks or estimated from

local or small-scale surveillance data.

Epidemic model
The foot-and-mouth disease outbreak in Devon 2001 was

estimated to start on the 17th February and end with animals on

the last known infected premises culled on 19th June 2001. One

hundred and seventy two premises were declared as ‘infected

premises’ based on clinical signs and subsequent confirmation

during the outbreak. Disease was controlled with movement

restrictions and by culling and disinfection of the infected premises

and other designated high-risk holdings. Sero-surveillance during

and after the epidemic identified a further 15 farms in this area as

infected but otherwise undiscovered (these farms were recorded in

the DEFRA submission to the OIE to substantiate freedom from

disease and hence recorded in the disease control system database

[16,17]).

Diggle et al. [18] use a partial likelihood approach to

parameterise a model of daily infection probability for each farm

in Devon based on the modelling framework from Keeling et al.

[19]. This model will hereafter be referred to as the ‘transmission

model’. From the transmission model, the probability, Ii,t, that an

uninfected farm i becomes infected on day t of the epidemic is

estimated using formula 4.

Ii,t ~ 1{exp {
X

j[infected farms at time t

l(t)g(dij)AjBi

 !
ð4Þ

Where:

Aj~1:42N0:13
cattlezN0:13

sheep

Bi~36:2N0:13
cattlezN0:13

sheep

Aj represents the transmission potential of an infected farm j, Bi

the susceptibility of farm i. Ncattle and Nsheep are the stocking

numbers of cattle and sheep respectively. The parameter l tð Þ
is a baseline hazard. The distance kernel g dð Þ, representing the

decreasing risk of transmission between farms with increasing

Euclidean separation, d i,jð Þ is modelled:

g(d)~exp {
d

0:41

� �0:5
( )

z1:3|10{4 ð5Þ

Transmission model parameters were as used in [18] except the

baseline hazard (l tð Þ), which represented the overall risk of

transmission occurring in the Devon area, varying with time,

during the epidemic. In Diggle (2006) [18] this was estimated from

the daily case report data (approximately 561025 with slight

variation over the course of the epidemic). This baseline hazard

would be dependent on stocking densities, husbandry practices,

foot-and-mouth disease virus serotype, time of year and other

factors. For the Devon region the baseline hazard was relatively

constant with time so was kept fixed in our model for simulation

purposes.

We used this modified transmission model to estimate the day-

by-day probability of infection in each of the 4856 premises in

Devon recorded as having sheep in the June 2000 agricultural

censuses conducted in England and Wales by the Ministry of

Agriculture, Fisheries and Food (Department for Environment

Food and Rural Affairs (DEFRA) from June 2001. The simulation

used the estimated infection and culling dates from the 172

premises designated as ‘infected premises’ during the outbreak in

2001 from the disease control system (DCS) database [17] as

potential sources of infection.

There are two scenarios by which an infected farm will become

a farm with undiscovered infection by failure to observe clinical

disease: one is if infection on the farm is not clinically detectable

i.e. disease is effectively sub-clinical; the other is if clinical signs

are present but are not observed. The latter scenario is partially

time dependent, there being a limited period during which

infection may be clinically detected (of up to several weeks

duration). As serological surveillance will normally start several

weeks after the last clinically observed case and the frequency of

cases in the tail end of the epidemic is low the time dependent

effects may be disregarded and the two modes by which a farm

may be missed considered as one probability. It is necessary to

estimate a non-discovery multiplier to estimate the probability

that an infected farm is not detected and becomes an

undiscovered infected farm. This probability may be different

for every farm and is likely to change over the course of the

epidemic and post-epidemic period as surveillance efforts vary.

Unfortunately only limited data are available to estimate this

parameter for each farm.

Estimation of probability of discovery of infection
The post epidemic sero-surveillance in Devon after the 2001

epidemic involved sampling and testing of some 4,407 farms from

approximately 4,500 remaining sheep farms [16] using a well

validated solid phase ELISA test with confirmatory virus

neutralisation testing [20]. We assume that all farms that could

be serologically discovered were discovered. Sero-surveillance

identified ten holdings as sero-positive in Devon after the

slaughter date of the last infected premises (we have not

considered the five serologically detected premises prior to this

date as representative of infections not discovered during the

epidemic). One hundred and seventy two holdings were identified

as infected premises during the epidemic in Devon having been

detected either clinically or by in-epidemic sero-surveillance.

Exploratory data analysis suggests that farms that were

discovered during the epidemic were more likely to have cattle

present and more likely to be close to other infected premises. We

used a logistic regression approach, modelling the log odds of a

farm being serologically discovered as a linear function (equation

5) of risk factors to estimate the discovery probability across farms

and also to capture the large uncertainty in the associated

parameter estimates resulting from estimation based on only 10

positive cases . The probability of discovery d of an infected farm

was modelled:

Risk-Targeted Post-Epidemic Surveillance
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d~
ez

1zez

z~b0zbcattleXcattlezbnearXnear ð5Þ

Where eb0 is the baseline odds of discovery, ebcattle the odds ratio

for discovery if cattle are present and ebnear the odds ratio for

discovery if the farm is within 3 Km of an IP. Xcattle and Xnear are

indicator variables for presence of cattle and adjacency to an IP.

This model is hereafter referred to as the ‘discovery model’.

Given the limited number of serologically discovered farms in

the data set, binary predictor variables of cattle presence (i.e. cattle

numbers greater than zero) and adjacency of less than 3 Km

to the nearest infected premises (IP) were used to reduce the model

complexity. The 3 Km adjacency cut-off was selected as

regulations require there to be a heightened surveillance during

an epidemic in the zone within 3 Km of infected premises and

hence there is likely to be a higher probability that an infected

farm is discovered. The probability of detection is assumed to

remain fixed for each farm over the course of the epidemic.

The parameters of the discovery model were estimated from the

sero-surveillance results for Devon in 2001 using a Bayesian

approach with vague priors for the risk factor coefficients. The

Bayesian posterior estimates were generated with Monte Carlo

Markov chain simulation in JAGS software [21] called from the R

Statistical system [22] retaining 5000 sets of samples from the

posterior distribution of the parameters after discarding an initial

set of 5000 simulations. Alternative parameterisation and the

inclusion of different predictors were compared using the

Deviance Information Criterion [23]. Chain convergence was

assessed using the Brooks, Gelman and Rubin statistic [24].

Draws from these posterior distributions were then used with

demographic data from the 2001 Agricultural census (as a

sampling frame and source of stock/location data) to estimate

the mean probability of discovery, if infected, for each sheep farm

in Devon. Daily probability of infection from the transmission

model and probability of discovery if infected from the discovery

model are combined to estimate the daily probability for each

sheep farm that the farm has become infected and that the

infection has not been detected. This assumes that the probability

of discovery and probability of infection are independent,

conditional on the risk factors used in the transmission and

discovery models. i.e.

Pi,t~Ii,t|di

The resulting daily probability of farm i becoming infected yet not

clinically detected is converted to a probability that farm i has

become infected yet not clinically detected at any point during the

epidemic, Pi:

Pi~1{ P
t[T

1{Pi,tð Þ ð6Þ

Where Pi,t if the probability of undiscovered infection on farm i on

day t, estimated with the transmission and discovery models and T
is the duration of the epidemic.

System sensitivity versus number of farms sampled
The system sensitivity (SSe) of risk targeted surveys is estimated

using a range of farm sample sizes (n) from just one farm to the

whole population, by preferentially selecting the n farms with the

highest probability of undiscovered infection using equation 6. For

this estimation the farm-level diagnostic sensitivity (ri) was set at

95%. For comparison the expected system sensitivity for randomly

selected samples is estimated by simulation. The random sampling

is assumed to take place from within the 3 Km protection and

10 Km surveillance zones. For each sample (size n) of farms from 1

to the remaining, post-epidemic, population of 3526 sheep farms,

within the protection and surveillance zones, 1000 random

samples of size n were drawn (without replacement). The system

sensitivity of each sample was calculated using equation 3 and the

mean for each sample size stored.

Zonal location of sampled farms
Conventionally farms are sampled from within the surveillance

and protection zones. This may not be the most efficient

approach; it is possible that farms outside these zones may be at

higher risk of undiscovered infection and hence should be sampled

with priority. To investigate this farms were classified by

decreasing probability of undiscovered infection according to their

location within their zones. The zones used are the current 3 Km

protection and 10 Km surveillance zones constructed using the

respective buffers around the 172 infected premises from the

Devon 2001 epidemic.

Consequences of imperfect information
The above methodology makes the assumption that the overall

model used to estimate each farm’s probability of undiscovered

infection is correct i.e. the transmission model is precise and

unbiased and that the discovery model’s estimate of probability of

discovery is exchangeable between epidemic settings. It does not

assume perfect information about each farm’s undiscovered

infection status but perfect information about each farm’s

probability of undiscovered infection. In reality, any model

estimating the probability of infection in a farm will have error.

With risk-targeted sampling, it is the rank of estimated

probabilities of undiscovered infection and their heterogeneity

that determines the choice and expected benefits of farm selection.

A model that estimates the probabilities as a monotonic increasing

function of the true probabilities will still be able to perfectly

inform selection of an optimal sampling set (though give an

incorrect estimate of its system sensitivity) for a given sample size.

Sub-optimal farm selection will only occur when the model causes

incorrect selection of lower probability farms for inclusion in the

sample. Imperfect models that correctly rank the farms’ risk of

undiscovered infection will, however, incorrectly estimate the

system sensitivity achieved by a survey.

To investigate the effect of model uncertainty we explored two

approaches to adding an error component to the overall estimate

of probability of undiscovered infection derived from the

transmission and discovery models. One approach modifies the

estimated probability of infection for each farm by adding

normally distributed error on the log-odds scale. The other

randomises a proportion of the estimated probabilities so that only

a proportion of the farms’ have an accurately estimated risk of

infection. The estimates with added error are then used to select

farms and with the original, added error-free risk estimates, used to

estimate system sensitivity performance of the resulting simulated

datasets. These approaches are described in detail below.

Transformed normal error approach
The transmission model and discovery model are used to

estimate the probability of undiscovered infection Pi for each farm

i. This value is then transformed to the log-odds scale and a

Risk-Targeted Post-Epidemic Surveillance
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normally distributed error component is added. The result is then

re-transformed to the probability scale:

P
0
i~invLogit logit(Pi)zN(0,s)ð Þ ð7Þ

Where P
0
i is the transformed probability of undiscovered infection

on farm i and logit and invLogit are the logistic and inverse logistic

transformations respectively. For s greater than zero this will add

an error component to the model’s predictions. For a range of s
from 0 to 25 the estimated probabilities with error added as in

equation 7 were used to select farms for sampling and the

probabilities from the original model (with no error component

added) were used to estimate the resulting system sensitivity

(performance). This estimation was repeated 1000 times to provide

an estimate of the mean performance with each level of overall

prediction error.

An alternative partial knowledge approach
Rather than simulating errors in the estimation of each farm’s

risk, we also estimate the performance of risk-targeted sampling if

the risk is only correctly known for a proportion of farms. This was

done for proportions from 1 (i.e. perfect knowledge) to 0 (i.e. no

information on risk of undiscovered infection).

Effect of risk-targeted sampling on delay to declaration
of disease freedom

Given a selected set of farms for sero-surveillance sampling

(whether by the above transmission and discovery model-driven

method or by another, e.g. random sampling or a veterinary

expert directed method) there may be flexibility to choose the

order with which farms are visited and sampled. Sampling and

subsequent sample handling, analysis and recording may intro-

duce delays of several days between sampling and result. If a

sampled farm tests positive for infection and virus is subsequently

isolated on a farm it may be classified as a new outbreak and

consequently disease freedom may not be declared until a fixed

period has elapsed after the culling of stock on this farm. Hence it

is desirable to order sampling such that farms that are most likely

to have undiscovered infection will be visited, sampled and

analysed first.

To estimate the potential benefits of ordered sampling we

estimate time from start of sampling to identification (on average)

of the last positive farm for sero-surveillance in Devon. A sample

set of farms of a given size is selected, either at random from the

whole population, or by decreasing risk of undiscovered infection

using the transmission and discovery models. Sampling from these

farms is then simulated over a surveillance period assuming that 50

farms can be sampled each day. In the risk-targeted approach

high-risk farms are sampled first. In the random approach the

farms are sampled in a random order. Over repeated simulations

the status of sampled farms is simulated (using a bernoulli process

with probability equal to the farm’s probability of undiscovered

infection). For all farms this status is combined with their simulated

sample timing data to give the time that each positive farm was

sampled. Repeated over the simulation set the maximum of this

time delay gives an estimate of the time from start of sampling to

the sampling of the last positive farm for each approach.

d~max ti|bern(Pi)f gi[farms to sample ð8Þ

Where d is the date of sampling of last positive farm, ti the

sampling date for farm i and bern(Pi) a Bernoulli random variable

with probability Pi. We assume that 50 farms are sampled and

tested each day. The simulation was repeated 5000 times for a

range of sample sizes and the mean of the latest dates stored.

The transmission and discovery models, subsequent estimations

of risk and evaluations of system sensitivity were calculated with

the R Statistical System [22].

Results

Results from discovery model
Farms with cattle present were more likely to be detected, if

infected, during the epidemic, as were farms within 3 Km of a

previously infected farm. The magnitude of these estimates has a

large uncertainty. Detailed results are shown in Table 1.

Overall estimated of risk of undiscovered infection
The estimates of post-epidemic undiscovered infection combine

the transmission model with a farm-specific estimate of discovery

of infection from the discovery model. The model estimated an

expected 11.2 infected but not discovered farms in Devon with 7.8

within the protection zone (0–3 Km from the nearest IP), 3.0

within the surveillance zone (3–10 Km from the nearest IP) zones

and an expected 0.4 farms outside these zones. The results are

summarised, by zone, in Table 2. The spatial distribution of risk of

undiscovered infection is shown in Figure 1. Farms with a high risk

of undiscovered infection are spatially associated with the premises

that were identified as infected during the epidemic. The spatial

component of risk of undiscovered infection is a combination of

the increased risk of farms near to detected infected premises and

the increased probability of undiscovered farms being further from

detected infected premises. The results suggest that the modelled

infection risk overwhelms the estimated discovery risk such that,

overall, farms near to detected infected farms are more likely to be

infected but undiscovered.

Performance of risk-targeted sampling
The comparative results of risk-targeted sampling and random

sampling are shown in Figure 2. Risk-targeted sampling gives a

markedly better performance than random sampling for the same

sample size (number of farms visited); for example, assuming the

combination of transmission and discovery models provides

perfect information about a farm’s probability of undiscovered

infection, only 184 farms need to be sampled to give a 95% system

sensitivity as compared to 945 farms if random sampling is used.

These system sensitivity performance gains relative to sample size

would either increase the probability that the survey system detects

disease, if present, or reduce the cost of surveillance to attain a

required (95%) system performance. The relative gains of

employing risk-targeted sampling decrease as the sample size

Table 1. Results from Bayesian discovery model - mean and
SD of coefficients of logistic model (and odds ratio) predicting
discovery of an infected farm.

Variable Mean SD Odds

Cattle present1 3.11 0.97 22.5

Near IP (#3 Km)2 2.67 0.87 14.4

1Are any cattle recorded as present on the holding according to the agricultural
census?

2Is the holding in question within 3 Km of a previously determined infected
premises?

doi:10.1371/journal.pone.0020064.t001

Risk-Targeted Post-Epidemic Surveillance
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increases until approximately 2000 farms are sampled when both

risk-targeted and random sampling converge onto a system

sensitivity of 1. The improvement in performance using risk-

targeted sampling was found to be robust to error in the risk

estimate; risk-targeted sampling was still more efficient than

random sampling from the protection and surveillance zones when

the risk status was known for only 20% of the farms.

Zonal sampling
Conventionally, sampling has drawn samples, unless veterinary

judgement suggests otherwise, from within the 10 Km surveillance

zone. Figure 3 shows the zone that samples would be taken from

when risk-targeted sampling is used with the potential to draw

from any farm in the restricted area. As sample size increases to

1476 farms the first farm outside the protection and surveillance

zones will be selected. By a sample size of 2254 only 1% of farms

will be selected from the area outside the surveillance zone. These

sample sizes represent system sensitivities of virtually 100% and as

such would be unlikely to be required for regulatory purposes.

These results suggest that the conventional approach of sampling

within the surveillance zone is rational if random selection within a

geographical buffer zone is a regulatory requirement.

Figure 1. Risk-map for undiscovered infection. Estimated risk that individual sheep/mixed farms may be infected but undiscovered with foot-
and-mouth disease at the end of the UK 2001 outbreak in the county of Devon. Farms classified as infected premises (IP) in 2001 are shown as black
circles. The ten farms found to be sero-positive in 2001 after the epidemic are also shown (blue dots).
doi:10.1371/journal.pone.0020064.g001

Table 2. The mean result of 500 simulations for the 3 km protection zone, the 10 km surveillance zone and the whole region.

Zone Total farms1 Cumulative farms Expected undiscovered farms2 SSe (all farms in zone)3

Protection zone (0–3 Km) 1439 1439 7.79 0.976

Surveillance zone (3–10 Km) 2087 3526 3.01 0.821

Other (.10 Km) 1330 4856 0.381 0.337

Results are given for each zone and cumulatively across zones. They are the number of farms, the expected number of undiscovered infected farms and the system
sensitivity if all farms in the zone were sampled with an on-farm survey of 100% sensitivity.
1The total number of animal holdings within the zone.
2The expected number of farms in the zone that will have an undiscovered infection.
3The estimated system sensitivity to detect previous infection in the entire region if all the farms in the particular zone are sampled and tested.
doi:10.1371/journal.pone.0020064.t002
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Effect of ordering on delays to disease freedom
The time to last positive sample is plotted against the system

sensitivity for a risk-ordered and randomly ordered approach to

farm sampling in Figure 4. The result demonstrates that risk-

targeted sampling and ordering, given a desired system sensitivity,

will result in any farms that turn out to be test positive being

selected and sampled markedly sooner than if ordering is not used.

For a target system sensitivity of 95%, risk-targeted selection and

ordering (assuming 50 farms can be sampled and tested per day)

will, on average, mean that the last positive farm is sampled 2.8

days after sampling commences whereas random selection will

mean that the last positive farm is sampled 18.4 days after

sampling starts. Detection of a test positive farm will result in

follow up confirmatory tests and possible disease control

consequences such as further investigation of contact farms and

animal culling. Hence risk-targeted ordering may decrease delays

to ultimate declaration of disease freedom in a region that has

experienced a disease outbreak. Furthermore previously undis-

covered infected farms may be viable sources of onwards

transmission so prioritising detection of such farms with applica-

tion of appropriate disease control may reduce the probability of

disease reappearance compared to random ordering.

Discussion

This study shows that a suitable model of infection risk can be

used to target and order sero-surveillance sampling to increase

efficiency and reduce delays to declaring disease freedom after a

foot-and-mouth disease outbreak. Historically, post-epidemic

surveillance for foot-and-mouth disease has targeted sampling to

farms within the 3 Km protection zone and 10 Km surveillance

zone, presumably on the basis that any undetected infected farms

are most likely to be in these areas. This involves an implicit spatial

assumption about disease transmission that may be derived from

veterinary assessment. Risk-targeted selection refines this to target

specific farms within the vicinity of the outbreak/epidemic. The

benefits of this technique are shown to be potentially large with an

80% reduction in sample sizes for the same system performance

(95% SSe) and an expected 85% reduction in time to last positive

case.

Model uncertainty
The realization of these potential benefits is dependent on the

accuracy with which a predictive risk model can order farms by

undiscovered infection risk. We have used simple approaches to

model uncertainty to explore the consequences of imperfect

knowledge of farm infection risk. This shows that the benefits of

targeted sampling were reasonably robust to the introduction of

noise/uncertainty into model estimates; risk-targeted sampling

with knowledge of only 20% of farms’ infection risk will still result

in a better performance than surveillance-zone targeted sampling.

As long as a risk model has some information value it will increase

efficiency and reduce delays to declaring disease freedom.

However, if a predictive model of farm infection risk is

particularly poor (i.e. almost random in its predictions) its

application could result in a survey with efficiency and timing

worse than a randomly sampled and ordered survey that draws

from the traditional (overall high risk) surveillance and protection

zones. Whilst such a scenario is unlikely it means that the risk-

targeted sampling and ordering approach should be used

cautiously, especially with models that are potentially over-fitted,

unstable or otherwise suspect.

Assumption of 95% farm sensitivity
For the comparisons of performance we have assumed that all

farms’ livestock are sampled and tested to give a farm level

diagnostic sensitivity of 95% in accordance with previous OIE

codes. Depending on the size of the farm and the available

diagnostic tests the cost of reaching this performance will vary

from farm to farm and may even be unobtainable when the

individual animal diagnostic test sensitivity is lower than the farm

level performance target and the farm size is small [25]. If this

constraint were removed then a survey design would have freedom

to choose not only which farms in the region to sample but rather

which animals in the region to sample and indeed which

diagnostic test to use and how to interpret the results for each

sample. Although the removal of these constraints would give a

potentially lower cost method of achieving a required regional

performance it is a high dimension optimisation problem that is

computationally difficult. Furthermore, the resulting varying farm-

by-farm performance and sampling requirements may be

politically harder to justify to both farmers and decision makers.

Discovery probability model
To estimate the probability that a farm is infected but has not

been detected we have used a model that estimated probability of

infection and detection and a simple model of discovery

probability. The discovery model used a distance greater than

3 Km to an infected farm and presence of cattle as farm risk

factors. The calculation of probability of undiscovered infection

using the simple product of this non-discovery probability and the

infection risk assumes that these two probabilities are independent,

conditional, on the risk factors included in both models. It is possible,

though, that other predictors such as location, farm size, farm

area, other stocking factors and husbandry factors will have a joint

influence on infection risk and discovery probability. These factors

may increase or decrease the variation in undiscovered infection

Figure 2. Performance of random and risk-targeted sampling.
Comparison of system sensitivity (SSe) of random sampling from the
protection (PZ) and surveillance zones (SZ), a 10 Km buffer around
designated infected premises (blue line) and risk-targeted sampling
(red line). Horizontal dashed line is at 95% system sensitivity (SSe), the
conventional target for region level post-epidemic surveillance. The
vertical lines dotted lines show corresponding sample sizes required to
achieve 95% SSe for the two approaches.
doi:10.1371/journal.pone.0020064.g002
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risk and hence mean that the estimated benefits of risk-targeted

selection are incorrect. Whilst it is impossible to estimate this effect

without more data, it is unlikely given the large numerical range of

infection risk probabilities that the conditional effects would be

unlikely to significantly alter the order of estimated benefits and

hence the risk-targeted selection method is still likely to be

beneficial in comparison to random sampling.

We used a logistic regression framework for the discovery

model. In some scenarios such as an epidemic that is controlled

early with possibility of large numbers of undiscovered infection

other approaches may be valuable such as the inclusion of non-

discovery within the transmission modelling framework as

explored by Chis Ster et al. [26].

Probability of historical infection and risk of onwards
transmission

This analysis has used the classical approach to the declaration

of disease freedom where by all evidence of infection or circulation

of infection is treated equally. Recent sero-conversion is more

likely to be associated with infection that may result in onwards

transmission. Weighting for this has not been included in the

analysis but could be incorporated into risk targeted designs by

using a time increasing weighting factor on risk and hence

prioritising selection of potentially more recently infected farms.

Concluding remarks
Current, random sample based surveillance is likely to be

inefficient requiring more farms to be visited and more animals

to be sampled than necessary to achieve a given performance

target. Risk-targeted selection of farms for post epidemic

surveillance is more efficient and will also expedite the process

of declaration of disease freedom. Prompt detection of

undiscovered infected farms may also reduce the risk of onwards

transmission and recrudescence of the outbreak. The technique

of risk-targeted surveillance may be applied to different post

epidemic setting, such as after FMD controlled by vaccination

or for the elimination of other diseases such as Blue Tongue

Virus however such applications would require evaluation and

application with different models of transmission and discovery

probability. Whilst risk-targeted selection is robust, to give the

best and most reliable gains, risk models also need to be robust

and precise hence continued research will be required to model

the disease and surveillance processes to best inform such

surveillance strategies.

Figure 3. Risk-targeted sampling and traditional surveillance zones. Source zone of farms when the farms are allocated in decreasing
probability of undiscovered infection. Vertical dotted lines showing points at which first and first 1% of farms outside the surveillance zone (SZ – a 3–
10 Km buffer around designated infected premises) and the protection zone (PZ – a 3 Km buffer around designated infected premises) will be
selected. The red line shows the estimated system sensitivity (SSe) using risk-targeted selection for the range of sample sizes.
doi:10.1371/journal.pone.0020064.g003

Risk-Targeted Post-Epidemic Surveillance

PLoS ONE | www.plosone.org 8 May 2011 | Volume 6 | Issue 5 | e20064



Acknowledgments

The authors are grateful to Dr. Paul Bessell who provided extracts of

agricultural census. IH would like to thank Prof. Peter Diggle for his helpful

advice and comments.

Author Contributions

Conceived and designed the experiments: IH MW. Performed the

experiments: IH. Analyzed the data: IH. Wrote the paper: IH MW MB JF.

References

1. OIE (2010) Terrestrial Animal Health Code. OIE Standards Commission,

Office International des Epizooties, Paris, France: (Section 8.5.9).

2. Anonymous (2003) Council Directive 2003/85/EC of 29 September 2003 on
Community measures for the control of foot-and-mouth disease repealing

Directive 85/511/EEC and Decisions 89/531/EEC and 91/665/EEC and

amending Directive 92/46/EEC. Official journal of the European Union 46.

3. Cameron AR, Baldock FC (1998) A new probability formula for surveys to
substantiate freedom from disease. Preventive Veterinary Medicine 34: 1–17.

4. Cannon RM (2002) Demonstrating disease freedom–combining confidence

levels. Preventive Veterinary Medicine 52: 227–249.

5. Branscum AJ, Johnson WO, Gardner IA (2006) Sample size calculations for

disease freedom and prevalence estimation surveys. Statistics in Medicine 25:
2658–2674.

6. Cameron AR, Baldock FC (1998) Two-stage sampling in surveys to substantiate

freedom from disease. Preventive Veterinary Medicine 34: 19–30.

7. Humphry RW, Cameron A, Gunn GJ (2004) A practical approach to calculate

sample size for herd prevalence surveys. Preventive Veterinary Medicine 65:
173–188.

8. Johnson WO, Su C-L, Gardner IA, Christensen R (2004) Sample Size

Calculations for Surveys to Substantiate Freedom of Populations from Infectious

Agents. Biometrics 60: 165–171.

9. Paton DJ, de Clercq K, Greiner M, Dekker A, Brocchi E, et al. (2006)
Application of non-structural protein antibody tests in substantiating freedom

from foot-and-mouth disease virus infection after emergency vaccination of

cattle. Vaccine 24: 6503–6512.

10. Arnold ME, Paton DJ, Ryan E, Cox SJ, Wilesmith JW (2007) Modelling studies

to estimate the prevalence of foot-and-mouth disease carriers after reactive
vaccination. Proceedings of Biological Sciences.

11. Schuppers ME, Frey CF, Gottstein B, Stark KDC, Kihm U, et al.

Comparing the demonstration of freedom from Trichinella infection of

domestic pigs by traditional and risk-based surveillance. Epidemiol Infect
138: 1242–1251.

12. Williams MS, Ebel ED, Wells SJ (2009) Poisson sampling: A sampling strategy

for concurrently establishing freedom from disease and estimating population
characteristics. Preventive Veterinary Medicine 89: 34–42.

13. Martin PAJ, Cameron AR, Greiner M (2007) Demonstrating freedom from
disease using multiple complex data sources 1: a new methodology based on

scenario trees. Preventive Veterinary Medicine 79: 71–97.

14. Martin SW, Shoukri M, Thorburn MA (1992) Evaluating the Health-Status of

Herds Based on Tests Applied to Individuals. Preventive Veterinary Medicine
14: 33–43.

15. Diggle PJ (2006) Spatio-temporal point processes, partial likelihood, foot and

mouth disease. Statistical Methods in Medical Research 15: 325–336.

16. DEFRA (2002) Foot and Mouth Disease in the United Kingdom; report to the

OIE. Part I: Great Britain.

17. Gibbens JC, Sharpe CE, Wilesmith JW, Mansley LM, Michalopoulou E, et al.
(2001) Descriptive epidemiology of the 2001 foot-and-mouth disease epidemic in

Great Britain: the first five months. Veterinary Record 149: 729–743.

18. Diggle PJ (2006) Spatio-temporal point processes, partial likelihood, foot and

mouth disease. Statistical Methods in Medical Research 15: 325–336.

Figure 4. Timing benefits of risk-targeted and ordered sampling. Expected time to last positive farm for randomly selected/ordered (blue)
and risk-targeted and ordered sampling (black) shown plotted against system sensitivity (SSe). This analysis assumes that 50 farms are sampled and
tested per day.
doi:10.1371/journal.pone.0020064.g004

Risk-Targeted Post-Epidemic Surveillance

PLoS ONE | www.plosone.org 9 May 2011 | Volume 6 | Issue 5 | e20064



19. Keeling MJ, Woolhouse ME, Shaw DJ, Matthews L, Chase-Topping M, et al.

(2001) Dynamics of the 2001 UK foot and mouth epidemic: stochastic dispersal
in a heterogeneous landscape. Science 294: 813–817.

20. OIE (2010) Manual of Diagnostic Tests and Vaccines for Terrestrial Animals.

(Section 2.1.5).
21. Plummer M (2003) JAGS: A program for analysis of Bayesian graphical models

using Gibbs sampling. Proceedings of the 3rd International Workshop on
Distributed Statistical Computing.

22. R Development Core Team (2009) R: A Language and Environment for

Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.

23. Spiegelhalter DJ, Best NG, Carlin BR, van der Linde A (2002) Bayesian

measures of model complexity and fit. Journal of the Royal Statistical Society
Series B-Statistical Methodology 64: 583–616.

24. Brooks SP, Gelman A (1998) General Methods for Monitoring Convergence of

Iterative Simulations. Journal of Computational and Graphical Statistics 7:
434–455.

25. Greiner M, Dekker A (2005) On the surveillance for animal diseases in small
herds. Preventive Veterinary Medicine 70: 223–234.

26. Ster IC, Ferguson NM (2007) Transmission Parameters of the 2001 Foot and

Mouth Epidemic in Great Britain. PLoS ONE 2(6): e502.

Risk-Targeted Post-Epidemic Surveillance

PLoS ONE | www.plosone.org 10 May 2011 | Volume 6 | Issue 5 | e20064


