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ABSTRACT: Ruthenium catalysts for olefin metathesis are widely viewed as
water-tolerant. Evidence is presented, however, that even low concentrations of
water cause catalyst decomposition, severely degrading yields. Of 11 catalysts
studied, fast-initiating examples (e.g., the Grela catalyst RuCl2(H2IMes)(
CHC6H4-2-O

iPr-5-NO2) were most affected. Maximum water tolerance was
exhibited by slowly initiating iodide and cyclic (alkyl)(amino)carbene (CAAC)
derivatives. Computational investigations indicated that hydrogen bonding of
water to substrate can also play a role, by retarding cyclization relative to
decomposition. These results have important implications for olefin metathesis in
organic media, where water is a ubiquitous contaminant, and for aqueous
metathesis, which currently requires superstoichiometric “catalyst” for demanding
reactions.
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Olefin metathesis has been widely embraced for its
versatility in the catalytic assembly of carbon−carbon

bonds.1,2 The demand for catalysts that integrate high activity
with robustness has intensified with a recent explosion in
applications in chemical biology,3,4,5a materials science,6 and
chemical manufacturing.7 Tolerance for water is critical in
many contexts, most prominently olefin metathesis in water-
rich environments. Successes in aqueous metathesis of model
substrates with ruthenium catalysts5 (see, e.g., Chart 1) have
been leveraged to advance metathetical modification of
proteins,3 peptides,8 and DNA,4b,9 and to develop water-
soluble materials for drug delivery and other application-
s.6a−e,10,11

These applications place extreme demands on the water-
tolerance of the catalysts. Decomposition by water is
increasingly identified as an obstacle to olefin metathesis in
chemical biology3,5a (where Isenegger and Davis describe
bioconjugation as a race between metathesis and decom-
position)3a and biomaterials applications.6a−e,10−12 The
catalyst loadings required are routinely orders of magnitude
above those in organic media: in highly demanding contexts
such as protein modification, the Ru reagent must be used in
significant stoichiometric excess.13 An anticipated, undesirable
consequence is accelerated bimolecular decomposition of the
active Ru species14 and associated side-reactions. The
decomposed catalyst is believed to trigger both DNA
degradation9,15 and CC migration.16

Given that the problems of water cosolvent are only
beginning to be widely recognized,3,5a,17,18 it is unsurprising

that challenges arising from low levels of water have not yet
been considered. Here we demonstrate that even 0.1−1% v/v
water19 can severely limit the productivity of leading N-
heterocyclic carbene (NHC) and CAAC ruthenium catalysts.
We also identify catalyst features that maximize water-
tolerance, a finding that offers new opportunities in organic
synthesis, and in broader contexts in which water is an essential
cosolvent.
RCM macrocyclization (mRCM) represents a methodology

of major current interest for the production of antiviral
therapeutics.7,20 The first indication that even low concen-
trations of water might impede mRCM emerged in reactions
involving the dianiline catalyst Ru-1 (Chart 1). In our hands,
Ru-1 was exceptionally efficient,21 outperforming even the
leading nitro-Grela catalyst Ru-2 in mRCM of challenging,
highly flexible substrates bearing multiple polar sites. Synthetic
collaborators, however, encountered variable performance. We
speculated that the discrepancy might arise from the
established21 hydrogen-bonding capacity of Ru-1. Sensitivity
to water would have gone unobserved in our original work
because rigorously dry22 solvents were used, a standard
protocol in organometallic chemistry. In broader synthetic
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practice, water is a ubiquitous, little-regarded contaminant. It
thus seemed plausible that water-induced decomposition might
contribute to the inconsistent performance of Ru-1.
To probe this point, we examined the impact of water on

mRCM of 1 (Figure 1a).23 This reaction affords the olfactory
lactone 2 via a concentration-dependent ring−chain equili-
brium.24 High dilutions are essential to favor the cyclic

product, as with any conformationally flexible diene.24,25 For 1,
in which the ester functionality confers the sole conformational
bias toward cyclization,26 a diene concentration of ≤5 mM is
required.24 At catalyst loadings of 0.05 mol %, this translates
into 2.5 μM Ru: even low concentrations of water are thus
stoichiometrically significant.
In dry toluene, mRCM of 1 reached 83% yield within 0.5 h

at RT (Figure 1a). Addition of 0.01% waterthat is, 100 ppm
by volumecaused a ca. 60% drop in yield. At higher
proportions of water (0.1 or 1% v/v), mRCM failed, signifying
near-complete catalyst decomposition.
As shown in Figure 1b, the Grela catalyst Ru-2 is

decomposed to a lesser extent, affording 30% mRCM in the
presence of 0.1% v/v water (vs 87% mRCM in dry toluene).27

More robust is the iodide analogue Ru-3. Watersomewhat
unexpectedlyis emerging as a much more aggressive agent
than O2 in Ru-catalyzed olefin metathesis,28 and this higher
water-tolerance is thus presumed to be key to the strong
performance of Ru-3 in aerobic metathesis.29 One probable
contributor to improved tolerance is the limited capacity of
Ru-3 to enter into hydrogen-bonding interactions with water.
ROH···Cl−Ru interactions have been reported for related
metathesis catalysts,30,31 and the higher water-sensitivity of Ru-
1 vs Ru-2 is consistent with stronger H-bonding to a dangling
NH2 functionality.
To assess the potential impact of water on E/Z selectivity,

two Z-selective catalysts (Ru-6, Ru-5) were also examined.
Their lower reactivity necessitated use of elevated temper-
atures (60 °C) and higher catalyst loadings. For Ru-5, only
17% mRCM was observed even with 5 mol % catalyst: added
water had no impact, probably because only a small proportion
of catalyst had initiated.32 Ru-6 afforded 64% mRCM in the
anhydrous reaction (0.5 mol % Ru), and 25% in the presence
of water. Of note, water had a negligible impact on Z-selectivity
(Ru-6, 85%; Ru-5, 70%). We infer that decomposed catalyst
does not promote E/Z isomerization, at least for Ru-6.
Strikingly, however, water significantly accelerated positional

isomerization in the self-metathesis of allylbenzene 3 (Figure
2a). Terminal phenylpropenes are notoriously susceptible to
isomerization to the conjugated β-methylstyrenes.16c For Ru-6,
8% isomerization was observed for the anhydrous reaction, vs
75% with 1% H2O present. In comparison, Ru-3 showed more
isomerization in the anhydrous reaction, but added water
affected primarily conversions.
A second, more demanding intermolecular metathesis

reaction was also examined. In the cross-metathesis of anethole
6 with methyl acrylate 7 (Figure 2b), a ca. 30% drop in
productivity was observed for Ru-3 in the presence of 1% H2O.
To assess whether the negative impact of water is limited to

relatively challenging reactions, we turned to RCM of diethyl
diallylmalonate 9 (Figure 3). Diene 9 sets a notoriously low
bar for olefin metathesis activity: the extreme facility with
which it undergoes RCM makes it a correspondingly aggressive
test for the impact of water. Here, in addition to the catalysts
examined above, we include benzylidene, indenylidene, NHC,
and CAAC catalysts.29,34−36 Initial experiments were con-
ducted at 0.005 mol % catalyst (50 ppm vs substrate), to
enable “anhydrous” TONs in the thousands even for less active
catalysts, without masking decomposition.37

Shown in Figure 3a are TONs at 2 h, at which point
conversions in the presence of water plateau (Figure S1) for all
but Ru-7 and Ru-10. Notwithstanding the ease of this RCM
reaction, yields decreased sharply in the presence of 1% H2O

Chart 1. Olefin Metathesis Catalysts Discussed

Figure 1. Impact of water on mRCM. (a) For Ru-1 at 0.5 h. (b) For
various catalysts at 2 h (except Ru-6: 24 h). *Ru-5, Ru-6: 60 °C, 0.01
atm.33 For tabulated data, see Table S1.
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for all catalysts surveyed. TONs of only 600 or 1 800,
respectively, were observed for Ru-1 and Ru-2 (vs ca. 18 000
in the anhydrous control reaction). Iodide complex Ru-3 gave
maximum TONs (9800). For CAAC-Grela catalyst Ru-4, a
top-performing catalyst under anhydrous conditions, TONs
dropped by 60% (from nearly 19 000 to 8000).
Given the high susceptibility of Ru-4 to bimolecular

decomposition,14b its performance relative to Ru-3 was re-
evaluated at a catalyst loading 5-fold lower (Figure 3b). TONs
in the anhydrous control reaction increased in both cases: by
nearly 4× for Ru-4 and 2.5× for Ru-3. Clearly, bimolecular
coupling occurs for both catalysts, even at 10 μM Ru. Higher
water-sensitivity is evident at the lower catalyst loading: that is,
decomposition by water competes more strongly with
bimolecular decomposition as catalyst concentrations decline.
Ru-3 remains most productive (TON 21 000 vs 14 000 for Ru-
4).
In Figure 3c, we assess catalyst water tolerance independent

of metathesis activity, by normalizing TONs in the presence of
water to those under anhydrous conditions. For added context,
water-tolerance is plotted against TONs in the presence of
water: best performance is thus high on both axes. Least
tolerant are the fast-initiating catalysts Ru-1 and Ru-2 (3% and
10%, respectively), suggesting that increased time in the active
cycle increases vulnerability. Consistent with this analysis is the
improved tolerance (27−44%) of the catalysts highlighted in
the blue band in Figure 3b, none of which are fast-
initating.38,39 Most robust is iodide catalyst Ru-3 (56%
tolerance). Slow initiation40 is again a plausible contributor,
in addition to the bulk and poor H-bonding capacity of the
iodide ligands.29,34,35

The discussion above focuses on the impact of water on the
catalyst. Given evidence for H-bonding of water to macro-
lactones, however,41 we queried whether H-bonding to the
substrate might alter preferred diene conformations and hence
the thermodynamics and/or kinetics of cyclization. To probe
this point, we undertook a computational study of the impact
of one H-bonded water molecule on the preferred con-
formations of prolactone 1 and diethyl diallylmalonate 9. The
1:1 ratio corresponds to 0.01% v/v H2O and 0.05 mol % Ru
(Figure 1a). The highly precise ANAKIN-ME neural-network
force field42,43 was used for extensive screening of possible
geometries; calculated electronic energies for the most relevant
conformers were refined using single-point energy calculations
at the DLPNO−CCSD(T)/CBS level of theory.
Reaction free energies for RCM of 1 and 9 (see SI), showed

no clear change arising from bound water, indicating that the
negative effect is not thermodynamic in origin. The impact of
water on preorganization was therefore examined. In the
absence of water, the most stable conformer for diene 1 is
essentially linear, with an end-to-end distance of >12 Å. In
comparison, a distance of 3.72 Å is calculated for the most
stable conformer of 9. Seen for the latter, but absent for 1, is a
stabilizing π-stacking interaction between the two CC
bonds, a previously overlooked contributor to the facile
RCM of 9. As expected, bringing the two CC bonds of 9
into proximity incurs no penalty (ΔG = 0.0 kcal/mol: Figure
4a). For 1, the cost is higher (5.8 kcal/mol), consistent with
the lower RCM reactivity of 1.
The impact of H-bonded water on cyclization is examined in

Figure 4b. For both 1 and 9, the diene conformation most
favorable to cyclization is predicted to be less accessible in the
presence of even one molecule of water, with a negative impact

Figure 2. Impact of H2O on: (a) self-metathesis of allylbenzene. (b)
Cross-metathesis of estragole and methyl acrylate.

Figure 3. (a) Impact of H2O on RCM of 9. (b) Plot of catalyst water-
tolerance, 100 − [(ΔTON/TONanhyd) × 100], vs TON (0.005 mol %
Ru). The blue band signifies intermediate tolerance. For rate curves
and tabulated data, see SI.
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on the cyclization kinetics. Macrocyclization of 1 is impeded by
location of the water molecule in the middle of the nascent
cycle. For 9, the water molecule is outside the forming ring but
nevertheless stabilizes the linear conformation. Indeed, water
destabilizes the precyclic conformation even more strongly for
9 than for 1 (by 5.6 or 2.7 kcal/mol, respectively: Figure 4b),44

in part by disrupting the CC π-stacking arrangement seen
for anhydrous 9.
The unexpectedly greater negative impact of H2O on

cyclization of 9 is supported by experiment. On repeating the
RCM of 9 at the 5 mM diene concentration employed in
mRCM, using the most robust catalyst Ru-3, we observe lower
catalyst water-tolerance for 9 than 1 (30% vs 73%; Figure S3).
Water thus has a greater negative impact on 9 than 1. By
retarding the rate of metathesis relative to catalyst decom-
position, H-bonded water can exacerbate catalyst decom-
position, further limiting RCM performance in the presence of
water.
The foregoing demonstrates that even low levels of water

severely degrade the productivity of leading ruthenium
catalysts in olefin metathesis. This is an important clue to
the pathways by which water triggers decomposition: it points
toward direct attack by water on the catalyst, independent of
any effects arising from water as a medium. Fast-initiating
catalysts prove particularly vulnerable. Maximum productivity
is seen for slower-initiating, bulkier iodide and CAAC catalysts,
which emerge as the systems of choice where drying is
impractical, or where water is an essential cosolvent. These
findings represent the first insights into structure−decom-
position relationships for olefin metathesis in the presence of
water. They are expected to aid in deconvoluting the
mechanisms by which water causes decomposition and
ultimately design of truly water-tolerant olefin metathesis
catalysts.
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Destabilization of precyclic conformations by H-bonded water. C···
C distances: 3.72 Å (1); 4.21 Å (9).
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