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Abstract

Objective—Excessive alcohol consumption injures the liver resulting in various liver diseases 

including liver cirrhosis. Advanced liver disease continues to be a major challenge to human 

health. Liver stem/progenitor cells (LSPCs) are tissue specific precursors with a distinct capacity 

of multi-lineage differentiation. These precursor cells may play an important role in the process of 

tissue injury repair and pathological transition of liver structures. At the present time, knowledge 

about the effect of alcohol on LSPC function during the development of alcoholic liver disease 

remains absent. This study was conducted to investigate changes in LSPC activity of proliferation 

and differentiation following alcohol exposure. The disruption of cell signaling mechanisms 

underlying alcohol-induced alteration of LSPC activities was also examined.

Methods—Primary and immortalized human liver stem cells (HL1-1 cells and HL1-hT1 cells, 

respectively) were cultured in media optimized for cell proliferation and hepatocyte differentiation 

in the absence and presence of ethanol. Changes in cell morphology, proliferation and 

differentiation were determined. Functional disruption of cell signaling components following 

alcohol exposure was examined.

Results—Ethanol exposure suppressed HL1-1 cell growth [as measured by cell 5-bromo-2-

deoxyuridine (BrdU) incorporation] mediated by epidermal growth factor (EGF) or EGF plus 

interleukin-6 (IL-6) in an ethanol dose-dependent manner. Similarly, ethanol inhibited BrdU 

incorporation into HL1-hT1 cells. Cyclin D1 mRNA expression by HL1-hT1 cells was suppressed 

when cells were cultured with 50 and 100 mM ethanol. Ethanol exposure induced morphological 

change of HL1-1 cells toward a myofibroblast-like phenotype. Furthermore, ethanol down-

regulated E-cadherin expression while increasing collagen I expression by HL1-1 cells. Ethanol 
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also stimulated Snail transcriptional repressor (Snail) and α-smooth muscle actin (α-SMA) gene 

expression by HL1-1 cells.

Conclusion—These results demonstrate that the direct effect of alcohol on LSPCs is inhibiting 

their proliferation and promoting mesenchymal transition during their differentiation. Alcohol 

interrupts LSPC differentiation through interfering Snail signaling.
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Introduction

Alcohol is the most frequently abused substance worldwide. Excessive alcohol consumption 

severely injures the liver, causing hepatitis, liver steatosis, fibrosis, and cirrhosis. Advanced 

liver disease continues to be a leading cause of death in the United States [1] and alcohol is 

responsible for up to 50% of deaths from chronic liver disease in Western countries [2–4]. 

Despite the enormous health and economic burden of alcoholic liver disease, little progress 

has been made in the treatment of this disease during the past half century. Lack of 

knowledge about mechanisms underlying the impairment of tissue injury repair process is a 

major hurdle obstructing improvement of patient care. Since alcohol causes severe metabolic 

disorder and functional derangement in hepatocytes, the role of hepatocyte proliferation in 

repairing alcoholic liver injury is restricted [2,5]. Residing in the biliary tree, particularly 

around the Canal of Hering, liver stem cells (LSCs) are ancestors of hepatic progenitors 

(oval cells) which can give rise to both hepatocytes and biliary epithelial cells [6]. 

Pathological examinations have observed that proliferation of liver stem/progenitor cells 

(LSPCs) is activated (ductular reaction) in patients with chronic liver diseases including 

those caused by excessive alcohol consumption [6–9]. The proliferative activation of LSPCs 

suggests that these precursors may play a significant role in the process of injury repair and 

tissue reconstruction in the diseased liver. In the past century, mechanisms underlying 

alcohol-induced injury to mature hepatocytes have been studied extensively. However, 

information about the effect of alcohol on LSPC homeostasis and activity during the 

development of alcoholic liver disease remains scant.

LSPCs are a small number of undifferentiated cells in the normal adult liver. They differ 

from mature hepatocytes and biliary epithelial cells in their extensive capacity for self-

renewal and multi-lineage potential of differentiation. These undifferentiated ancestor cells 

typically do not share the same repertoire of surface receptor expression, signaling cascade 

organization, and metabolic pathway activity exhibited by fully differentiated parenchymal 

cells in the liver. The lineage commitment potential of liver precursor cells at various stages 

of differentiation can be distinctive. In addition, changes in the niche environment of LSPCs 

in the diseased liver may exert a profound influence on the fate of these precursors. 

Therefore, delineating the effects of alcohol on LSPC homeostasis and functional activity 

utilizing both the in vivo and in vitro model systems will be helpful for understanding the 

direct effect of alcohol and the indirect effect of alcohol-induced liver metabolic disorder 

and/or inflammation on LSPC function. Because most species of experimental animals are 

resistant to developing advanced alcoholic liver disease [2], no practical in vivo animal 

Shi et al. Page 2

J Stem Cell Res Ther. Author manuscript; available in PMC 2016 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



model is currently available for studying alcoholic liver disease. For the same reason, limited 

value exists for studying the effects of alcohol on LSPC function using in vitro cell culture 

models of liver precursor cells from animal origins. A few groups have tried to study 

precursor cell behavior in alcohol-related liver injury using human stem/progenitor cells of 

embryonic or hematopoietic origins [10,11]. Nevertheless, studies on extra-hepatic 

precursors may not provide definitive information. Our current study employed human LSC 

cell culture systems to characterize the alteration of liver precursor cell function following 

their exposure to alcohol. The focus of this investigation was to identify alcohol-induced 

defects of human LSPC proliferation and differentiation.

Materials and Methods

Culture of human LSPCs

Our current investigation was conducted on cell culture models of HL1-1 cells. HL1-1 cells 

are human liver stem cells identified and characterized by Dr. Chang’s group [12,13]. These 

precursor cells were derived from a liver stem cell colony (HL1-1) in the culture of normal 

adult human liver cells. HL1-1 cells exhibit highly proliferative potential, express stem cell 

transcription factor (Oct-4) [14] and LSPC markers [α-fetoprotein (AFP), vimentin, 

thymocyte differentiation antigen 1 (Thy-1), and cytokeratin 19] (Figure 1), and have the 

ability to differentiate into albumin-producing cells (marker of hepatocytes) (Figure 1). In 

addition to this primary human liver stem cell model, a human telomerase reverse 

transcriptase (hTERT)-immortalized HL1- 1 cell line (HL1-hT1) has been developed by the 

same group through transfection of HL1-1 cells with pBABE-hygro-hTERT plasmids (from 

laboratory of Dr. Robert Weinberg). These human cell culture models are uniquely useful for 

studying toxicology and cell biology of human liver precursor cells [13,14].

For determining the effect of alcohol on LSC proliferation, primary and immortalized HL1-1 

cells between 6 and 10 passages were cultured in proliferation medium [Keratinocyte-SFM 

medium (Life Technologies, Grand Island, NY) containing L-glutamine, recombinant 

human epidermal growth factor 1-53 (EGF 1–53) and bovine pituitary extract (BPE), 2 mM 

of N-acetyl-L-cysteine (Sigma- Aldrich Co. LLC. St. Louis, MO), 5 mM of nicotinamide 

(Sigma- Aldrich), 0.2 mM of ascorbic acid (Sigma-Aldrich), 10% fetal bovine serum (FBS, 

Life Technologies), and 1 μg/ml of gentamicin (Jackson Laboratories, Ltd., Amritsar)] 

without or with 50 ng/ml of recombinant human interleukin-6 (IL-6, Life Technologies) in 

12- or 6-well tissue culture plates at 5×105 cell or 3×106 cells/well, respectively. Ethanol 

(Koptec, King of Prussia, PA) was added into the culture medium to establish different 

alcohol concentrations at 25, 50, and 100 mM. This range of alcohol concentrations is 

relevant to those frequently observed in blood samples from alcohol abusers. Control cells 

were cultured in the proliferation medium without ethanol. Cells were cultured at 37°C in 

incubators maintaining 5% CO2 and the corresponding alcohol environment [15]. Culture 

medium was changed every 48 h. 5-bromo- 2-deoxyuridine (BrdU, 1 μg/well, BD 

Biosciences, San Diego, CA) was added to the culture at either 48 or 4 h prior to termination 

of experiment.

For examining the effect of alcohol on LSC differentiation, primary HL1-1 cells between 6 

and 10 passages were cultured in 6-well tissue culture plates precoated with collagen (50 
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μg/ml in PBS, calf skin type I collagen, Sigma-Aldrich) at 3×106 cells/well in the 

proliferation medium for 3 days to achieve confluence. The cultures were then shifted to a 

differentiation medium [(Keratinocyte-SFM medium containing L-glutamine, EGF1-53 and 

BPE, 2 mM of N-acetyl-Lcysteine, 5 mM of nicotinamide, 0.2 mM of ascorbic acid, 20 

ng/ml of recombinant human hepatocyte growth factor (HGF, R&D Systems, Inc., 

Minneapolis, MN), 1 mM sodium butyrate (Sigma-Aldrich), 20 ng/ml of dexamethasone 

(Sigma-Aldrich), 1% FBS, and 1 μg/ml of gentamicin]. Establishing different concentrations 

of ethanol in the cell culture system as well as culturing cells in incubators with 5% CO2 and 

the corresponding alcohol environment was the same as described above. Cell culture 

medium was changed every 72 h.

Morphological examination

Phase contrast morphological examination of cultured cells was performed using the 

Olympus IX81 Imaging System with the PCA5 Slidebook Digital Image Acquisition 

Software.

Flow cytometry—At the end of cell culture, the culture medium was removed from each 

well. Attached cells in each well were washed with cold phosphate buffered saline (PBS, 

Sigma-Aldrich) and then removed by trypsin (1 ml/well, Life Technologies) digestion for 5 

min. Cell suspension in each well was collected and mixed with 3 ml of cold culture media. 

After centrifugation at 500 g for 5 min at 4°C, the cell pellets were washed one time with 

cold PBS containing 1% bovine serum albumin (BSA, Sigma-Aldrich). For determination of 

E-cadherin expression, cells were fixed and permeabilized using a BD cytofix/ Cytoperm™ 

kit and the procedure provided by the manufacturer (BD Bioscience). Following fixation and 

permeabilization, cells were suspended in PBS containing 1% BSA and stained with FITC-

conjugated mouse anti-human E-cadherin monoclonal antibody (1 μg antibody per 106 cells, 

clone 36/E-Cadherin, recognizing the cytoplasmic domain of human E-Cadherin, BD 

Bioscience) or the isotype control antibody (clone eBM2a, BD Biosciences). After 

incubation for 15 min at room temperature in the dark, stained cells were washed with cold 

PBS containing 1% BSA. For determination of collagen I and albumin expression, cells 

were fixed and permeabilized using a BD cytofix/ Cytoperm™ kit and the procedure 

provided by the manufacturer (BD Bioscience). Following fixation and permeabilization, 

cells were suspended in PBS containing 1% BSA and stained with mouse anti-human 

collagen I monoclonal antibody (1 μg antibody per 106 cells, clone COL-1, Sigma-Aldrich) 

and mouse anti-human albumin monoclonal antibody (1 μg antibody per 106 cells, clone 

188835, R&D Systems), respectively. After incubation for 15 min at room temperature in 

the dark, Alexa Fluor 488 conjugated goat anti-mouse IgG antibody (1 μg antibody per 106 

cells, Life Technologies) was added to each sample. The cell mixtures were further 

incubated for 15 min at room temperature in the dark. Cells for background staining were 

stained with Alexa Fluor 488 conjugated goat anti-mouse IgG antibody only. Stained cells 

were washed with cold PBS containing 1% BSA. For measuring BrdU incorporation, the 

cells were processed using a BD BrdU Flow Kit with the procedure provided by the 

manufacturer (BD Biosciences). At the end of the staining procedure, cells were suspended 

in 0.5 ml of PBS containing 1% paraformaldehyde. Analysis of cell E-cadherin, collagen I, 

and albumin expression as well as BrdU incorporation was performed on a FACSAria II 
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cytometer with FACSDiva software (Becton Dickinson, San Jose, CA). A minimum of 5,000 

cells were acquired in each sample. Average cell volume of the gated cell population was 

calculated using the equation of , where D = mean channel of forward side 

scatter (MCFSC).

Preparation of total RNA sample and quantitative real-time RT-PCR determination

Total RNA from cultured cells was isolated using the RNeasy® Plus Mini Kit and 

procedures provided by the manufacturer (Qiagen, Valencia, CA). RNA (12 ng) was 

subjected to 2-step real-time reverse transcription and polymerase chain reaction (RT-PCR) 

using iScript™ Reverse Transcription Supermix kit and SsoFast™ EvaGreen® Supermix kit 

(Bio-Rad, Hercules, CA), respectively, on the CFX96™ Real-Time System (Bio-Rad). The 

amplification primers used for determinations are listed as follows:

Human cyclin D1

Forward primer 5’-CATCTACACCGACAACTCCATC-3’

Reverse primer 5’-TCTGGCATTTTGGAGAGGAAG-3’

Human Snail

Forward primer 5’-GGAAGCCTAACTACAGCGAG-3’

Reverse primer 5’-CAGAGTCCCAGATGAGCATTG-3’

Human α-smooth muscle actin (α-SMA)

Forward primer 5’-AAT GCA GAA GGA GAT CAC GG -3’

Reverse primer 5’-TCC TGT TTG CTG ATC CAC ATC -3’

Human fibroblast-specific protein 1 (FSP1 or S100A4)

Forward primer 5’-AGT CAG AAC TAA AGG AGC TGC -3’

Reverse primer 5’-GAC ACA GTA CTC TTG GAA GTC C -3’

18S rRNA

Forward primer 5’-ATTGAAGTGAATCCCCAGACC-3’

Reverse primer 5’-TGAGCTTGTGTAAAAGTTGAACC-3’

These sets of primers for human cyclin D1, Snail, α-SMA, FSP1, and 18S rRNA were 

designed using Primer Express software (Life Technologies). The expression of cyclin D1, 

Snail, α-SMA, and FSP1 mRNA was determined by normalizing the cycle threshold (CT) 

number of their individual mRNA with that of 18S rRNA in each sample. Alcohol exposure 

induced changes of cyclin D1, Snail, α-SMA, and FSP1 mRNA expression are expressed as 

fold alterations over baseline expression by cells cultured simultaneously without exposure 

to alcohol.

Statistical analysis

Data are presented as mean ± SEM. The sample size is indicated in each figure legend. 

Statistical analysis was conducted using one-way ANOVA followed by Student-Newman-
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Keuls test for comparisons among multiple groups. Mann-Whitney Rank Sum Test was 

performed for comparison between two groups. Statistical significance was accepted at 

p<0.05.

Results

HL1-1 cell growth and proliferation

EGF is a potent mitogen for liver precursor cells and hepatocytes [16,17]. During the 

development of alcoholic liver disease, inflammatory cytokine production in the liver is also 

significantly increased because of the inflammatory response [18]. Certain inflammatory 

cytokines, particularly IL-6, are potent stimuli for proliferation of liver precursor cells [19]. 

To evaluate the effect of alcohol on LSC growth and proliferation in response to EGF and 

IL-6, we initially employed the cell culture model of primary HL1-1 cells. These human 

LSCs grew steadily in proliferation medium containing EGF in our culture systems. BrdU is 

an analogue of thymidine that can be incorporated into DNA during DNA synthesis in 

proliferating cells. To quantify changes in primary HL1-1 cell self-renewal following alcohol 

exposure, we determined BrdU incorporation into primary HL1-1 cells during the last 48 h 

of a 3-day cell culture in the proliferation medium. As shown in Figure 2, primary HL1-1 

cells grew well in the proliferation medium that contained recombinant human EGF 1-53. 

Addition of recombinant human IL-6 to the culture system significantly enhanced 

proliferation of primary HL1-1 cells as reflected by a marked increase in BrdU incorporation 

into these cultured cells. Exposure to alcohol resulted in inhibition of primary HL1-1 growth 

in an alcohol dose-dependent manner when cells were cultured in proliferation media 

containing either EGF alone or EGF plus IL-6. h-TERT-immortalized HL1-1 cells grew 

more vigorously in proliferation medium containing EGF, which facilitated analysis of cell 

proliferation. We therefore further characterized the direct effect of alcohol on the growth of 

HL1- hT1 cells. As shown in Figure 3, the growth of these precursor cells formed large sized 

colonies in the absence of alcohol. This pattern of cell growth is typically seen in culture 

systems of stem and/or upstream progenitors. Exposure to alcohol caused an alcohol dose-

dependent inhibition of HL1-hT1 cell growth that was reflected by a reduction in cell colony 

size and a decrease in cell numbers in the culture system. Analysis of BrdU incorporation 

into HL1-hT1 cells during the last 4 h of a 4-day cell culture in the proliferation medium 

showed that approximately 1/3 (32.3 ± 0.5%) of HL1-hT1 cells incorporated with BrdU 

(BrdU+ cells) during this 4 h time window of cell culture in the absence of alcohol (Figure 

4). Exposure of cells to alcohol resulted in decreases in the number of BrdU+ cells in the 

culture system in an alcohol dose-dependent manner. In addition, alcohol at concentrations 

of 50 and 100 mM caused a significant reduction of BrdU mean channel fluorescence (MCF, 

an index of BrdU incorporation extent; 24.3% and 44.0%, respectively) in the entire cell 

population of the culture system as compared to the BrdU MCF value in cells cultured 

without alcohol. These data confirm that alcohol exposure directly impairs LSPC activity of 

proliferation.

Changes in cell volume and cyclin D1 mRNA expression

In flow cytometric dot plots of cell scatters, the values of the forward side scatter (FSC, 

representing cell size) in the gated population of HL1-hT1 cells cultured with alcohol at 50 
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and 100 mM were markedly increased (Figures 5A and 5B). This increase in the size (or 

volume) of HL1-hT1 cells occurred concomitantly with the reduction in cell activity of 

proliferation (as reflected by BrdU incorporation in these cells shown in Figure 4) during 

culture with alcohol.

EGF-stimulated liver precursor cell proliferation involves cell signaling through activation of 

p44/42 mitogen-activated protein kinase [p44/42 MAPK or extracellular-signal-regulated 

kinases (ERK)]-cyclin D cascade. Cyclin D1 is an important member of the D-type cyclin 

family, which is commonly regulated at the transcriptional level in this signaling system. 

Our results showed that alcohol exposure caused a rapid down-regulation of cyclin D1 

mRNA expression by HL1-hT1 cells cultured in proliferation medium (Figure 5C). The 

level of cyclin D1 mRNA expression by cells cultured with 100 mM alcohol decreased to 

61.7% of the value seen in cells cultured without alcohol.

Change in morphology during HL1-1 cell differentiation

Primary HL1-1 cells cultured in differentiation medium in type I collagen coated plates for 

10 days developed a typical hepatocyte-like epithelial morphology (Figure 6A). While 

increasing in cell size, they spread and formed flattened, nearly contiguous cell monolayers. 

Exposure to 50 mM alcohol caused a heterogeneous change of cell shapes. Many cells 

started forming projections from their cell bodies. This heterogeneous change of cell 

morphology became much more prominent in cells cultured with 100 mM alcohol. In 

comparison to cells cultured in differentiation medium without alcohol, primary HL1- 1 

cells in cultures with 100 mM alcohol failed to develop the normal morphology 

characteristic of hepatocyte-like epithelial differentiation. Instead, the majority of cells 

maintained the less differentiated spindle-like shape. A large number of cells formed long 

and thin projections resembling those typically seen in cultures of myofibroblasts.

Changes in E-cadherin and collagen I expression

E-cadherin, an important member of the cadherin superfamily, is expressed by cells of 

epithelial origin. E-cadherin plays a critical role in maintaining hepatocyte adherence and 

survival [20,21]. E-cadherin expression increases in association with LSPC differentiation 

[22]. Therefore, we examined E-cadherin expression by primary HL1- 1 cells cultured in 

differentiation medium. At the end of 2 weeks of culture, cells exposed to alcohol (50 and 

100 mM) during the culture showed a marked reduction of E-cadherin expression (Figure 

6B). The alcohol-induced inhibition of E-cadherin expression was consistent with the 

morphological change of primary HL1-1 cells cultured in differentiation medium containing 

alcohol. Furthermore, this reduction in E-cadherin expression was associated with a 

concomitant increase in collagen I expression by primary HL1-1 cells cultured in 

differentiation medium containing alcohol (Figure 6C). These contrasting alterations in E-

cadherin and collagen I expression further suggest that exposure to alcohol impairs cell 

differentiation toward a hepatocyte phenotype.

Changes in Snail, α-SMA, and FSP1 mRNA expression

The zinc finger protein Snail has been reported to repress E-cadherin expression [23]. We 

determined Snail mRNA expression by primary HL1-1 cells cultured in differentiation 
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medium. As shown in Figure 7A, alcohol exposure caused a significant increase in Snail 

mRNA expression by primary HL1-1 cells in the differentiation culture system. These data 

suggest that Snail signaling may be involved in mediating the inhibition of E-cadherin 

expression by cultured primary HL1-1 cells following exposure to alcohol and possibly 

epithelial to mesenchymal transition (EMT) during alcohol-induced disruption of LSPC 

differentiation. Alpha-SMA is a cardinal marker of myofibroblasts in the liver [24,25], while 

FSP1 is a maker for inflammatory macrophages from the extrahepatic origin [26]. Alcohol 

exposure also resulted in a significant up-regulation of α-SMA mRNA expression by 

primary HL1-1 cells in the differentiation culture system (Figure 7B). However, FSP1 

mRNA expression by these cells was not affected by alcohol in the differentiation culture 

system.

Discussion

Pathological examinations of patients with alcoholic liver disease have repeatedly shown the 

activation of LSPC proliferation [27–29]. In particular, the extent of LSPC proliferation or 

ductular reaction has been found to correlate with the severity of alcoholic liver disease 

[28,29]. Extensive proliferation of LSPCs predicts the increase in short-term mortality in 

patients with alcoholic hepatitis, an acute event in chronic alcoholic liver disease that 

develops in up to 20% of patients with heavy consumption of alcohol [29]. Experimental 

studies on a murine model of alcoholic liver injury have revealed that increased oxidative 

stress in the liver inhibits the proliferation of mature hepatocytes, which is associated with 

the ductular reaction in the liver [27]. In animals with the greatest oxidative stress, mature 

hepatocyte proliferation is inhibited most, and the greatest number of oval cells accumulates. 

At the present time, it remains unclear how in vivo alcohol exposure exerts contrasting 

effects on the growth of liver cells at different stages of differentiation, i.e., inhibiting 

proliferation of mature hepatocytes while promoting the expansion of immature LSPC 

population in the liver.

The influences of alcohol consumption on liver cell metabolism and function are complex, 

including the primary effect of toxicity caused by alcohol and its derived metabolites as well 

as the secondary effect of the inflammatory response. Cell types at a given stage of 

differentiation can be sensitive to injuries caused by certain factors while relatively resistant 

to those induced by the others. Furthermore, the final fate of a specific cell type in the liver 

of alcoholic hosts is ultimately determined by the combined effects of involved factors. 

Among factors contributing to LSPC proliferation, EGF, a low-molecular-weight 

polypeptide of approximately 6 kDa, is a potent mitogen for liver precursor cells and 

hepatocytes [16,17]. Studies have shown that EGF levels in the systemic circulation are 

stable or even increased in individuals consuming alcohol [30,31]. Both EGF mRNA and 

protein levels are highly elevated in cirrhotic liver tissues [32]. The increase in EGF 

expression is particularly localized to regenerative hepatic nodules and bile duct epithelia of 

the cirrhotic liver. During the development of alcoholic liver disease, hepatic production of 

proinflammatory cytokines including IL-6, tumor necrosis factor (TNF)-α, and TNF-like 

weak inducer of apoptosis (TWEAK) is significantly increased [18,33,34]. These mediators 

are also involved in promoting LSPC proliferation. In order to define the direct effect of 

alcohol on LSPC proliferation in response to these mitogenic stimuli, we monitored the 
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growth of primary HL1- 1 cells cultured in proliferation medium containing EGF or EGF 

plus IL-6. EGF maintained a stable proliferation of cultured primary HL1-1 cells. Addition 

of IL-6 to the culture system significantly augmented cell proliferation. An interesting 

observation is that alcohol exposure caused inhibition of primary HL1-1 cell proliferation in 

response to EGF or EGF plus IL-6 in an alcohol dose-dependent manner. We further 

characterized the inhibitory effect of alcohol on human LSC proliferation in the culture 

system of immortalized HL1-hT1 cells. Our results showed that alcohol exposure suppressed 

BrdU incorporation into these cells during their culture in proliferation medium containing 

EGF, which was associated with an increase in cell size and volume. These data indicate that 

the direct effect of alcohol on human LSPC proliferation in response to mitogen stimuli is 

inhibitory rather than stimulatory. The observed activation of LSPC proliferation or ductular 

reaction by pathological examinations of patients with alcoholic liver disease may be 

mediated through other associated factors instead of the direct effect of alcohol on LSPC 

growth. During the development of alcoholic liver disease, production of inflammatory 

mediators including growth factors and cytokines in the liver is significantly increased. It is 

most likely that the stimulatory effect of growth factors and cytokines produced in the liver 

during the inflammatory response may override the inhibitory effect of alcohol on LSPC 

proliferation, resulting in the overall increase in LSPC proliferation and ductular reaction in 

the liver. Therefore, extensive proliferation of LSPCs in alcohol liver disease may correlate 

with the severity of inflammation and tissue injury in the diseased liver.

EGF stimulates growth of the targeted cells through activation of cell surface EGF receptors 

(EGFR). Binding of EGF to EGFR activates p44/42 MAPK (or ERK1/2) through the Ras-

Raf- ERK kinase (MEK) 1/2 cascade [35,36]. Activation of p44/42 induces expression of 

cyclin D and therefore enhances cyclin D-cyclin-dependent kinase 4/6 (CDK4/6) activity, 

which promotes cell cycling [37]. Engagement of IL-6 and IL-6R also promote cyclin D-

mediated cell proliferation through activation of the signal transducer and activator of 

transcription 3 (STAT3) pathways [38–40]. Results of our current study demonstrated that 

alcohol exposure suppressed cyclin D1 expression by immortalized HL1-1 cells in the 

culture system. These data indicate that alcohol impairs EGFR signaling in mediating LSPC 

proliferation. Previous investigations from our group have shown that alcohol inhibits 

p44/42 activation in extra-hepatic stem/progenitor cells [41]. Studies by others have reported 

that alcohol impairs EGFR function in hepatocytes of rodent origin [42]. Further effort in 

delineating alcohol-induced disruption of EGFR and IL-6R signaling system will improve 

understanding mechanisms underlying the inhibitory effect of alcohol on EGF- and IL-6-

stimulated LSPC proliferation.

In order to effectively repair tissue injury, the liver needs to secure a sufficient pool of 

precursor cells through maintaining and/ or enhancing their proliferation. Furthermore, these 

precursors should be able to differentiate into fully functional parenchymal cells. However, 

pathological examinations have shown that the size of the entire liver typically decreases 

along with a significant reduction of parenchymal hepatocyte mass while increasing in 

fibrous septa during the development of alcoholic liver disease, particularly to the stage of 

alcoholic liver cirrhosis [4]. In patients with alcoholic liver disease, strong activation of 

LSPC proliferation is commonly associated with severe liver injury and worse outcomes 

[28,29].

Shi et al. Page 9

J Stem Cell Res Ther. Author manuscript; available in PMC 2016 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



These pathological and clinical features suggest that defects of liver precursor cell function 

exist in the process of repairing alcoholic liver injury. Extensive LSPC proliferation or 

ductular reaction associated with alcoholic liver disease appears not effectively contributing 

to the repair of liver parenchyma or the restoration of the lost hepatocyte population. Instead, 

these proliferating precursors may promote the development of fibrosis and cirrhosis. 

Studies have shown that in certain pathological circumstances, LSPC may trans-differentiate 

into mesenchymal cell types exhibiting fibroblastic features through epithelial-

mesenchyrmal transition (EMT) [43,44]. In our current study, primary HL1-1 cells cultured 

for 10 days in differentiation medium containing recombinant human HGF showed a 

morphological change toward typical hepatocyte-like epithelial differentiation. Exposure to 

alcohol disrupted this normal differentiation process. Most cultured HL1-1 cells maintained 

a spindle-like shape and started to form long and thin projections. These morphological 

changes are similar to those seen in myofibroblasts. Hepatic myofibroblasts are major source 

of fibrillar and nonfibrillar matrix components in the development of liver fibrosis and 

cirrhosis [45,46]. Although stellate cell activation/transformation serves as an important 

source for myofibroblasts [47–49], recent studies have revealed that EMT in liver cell types 

of epithelial origin contributes to the accumulation of hepatic myofibroblasts [45,50].

E-cadherin is a general marker of epithelial cells. In the liver, hepatocytes, biliary epithelial 

cells, and LSPCs express E-cadherin [51]. Cell expression of E-cadherin is down-regulated 

during EMT [23,52]. In parallel with the change of morphology, primary HL1-1 cells 

cultured in the differentiation medium containing alcohol showed a down-regulation of E-

cadherin expression. Concomitantly, collagen I expression by these cells was up-regulated. 

The Snail transcriptional repressor is a key EMT regulator [53]. Snail binds to the proximal 

promoter region of the CDH1 gene for the EMT induction through E-cadherin repression 

[23]. In association with the down-regulation of E-cadherin expression, alcohol exposure 

significantly up-regulated Snail mRNA expression by primary HL1-1 cells in our 

differentiation culture system. These data suggest that alcohol-induced disruption of LSPC 

differentiation and promotion of EMT most likely involve activation of Snail signaling. 

Along with the apparently switched track of cell differentiation, α-SMA {the cardinal 

marker of myofibroblasts in the liver [24,25]} mRNA expression by primary HL1-1 cells 

was also significantly up-regulated following their exposure to alcohol. Interestingly, gene 

expression of FSP1 {a maker for inflammatory cells from the extrahepatic orgin [26]} by 

primary HL1-1 cells was not affected by alcohol exposure during cell culture under the 

differentiation condition. These different patterns of change in cell marker gene expression 

are in consistent with the specific liver origin of HL1-1 cells. Notch signaling mediates Snail 

expression [54]. Alcohol exposure has been reported to activate Notch signaling in human 

endothelial cells [55]. In addition, studies have shown activation of Hedgehog signaling in 

the liver of alcoholic hosts [28]. Hedgehog signaling may also remotely promote expression 

of snail through inducing activation of Notch signaling [54].

Our in vitro models of HL1-1 and HL1-hT1 cells allow assessing the direct effect of alcohol 

on LSPC proliferation and differentiation in response to appropriate stimuli under the 

conventional culture condition. However, these culture models do have limits in representing 

the in vivo status of LSPCs residing in their natural niche environment. Particularly, the 

oxygen tension in human liver tissue is commonly lower than that in the ambient 
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atmosphere. Further characterization of precursor cell properties in the culture system with 

an appropriately low oxygen environment and comparison of their functional/metabolic 

alterations following exposure to alcohol will provide a deeper insight into the disruption of 

LSPC activity in alcohol abusers. Effort in this respect will also facilitate identifying critical 

targets for developing therapeutic intervention to treat liver injury caused by excessive 

alcohol consumption.
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Figure 1. 
A: Expression of AFP (I), vimentin (II), Thy-1 (III), and cytokeratin 19 (IV) by HL1-1 cells. 

The lower panels are the corresponding nuclear staining with DAPI. B: Expression of 

albumin by HL1-1 cells cultured in hepatocyte differentiation medium for 2 weeks.
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Figure 2. 
Alcohol exposure inhibited primary HL1-1 cell proliferation. HL1-1 cells were cultured in 

the proliferation medium with EGF or EGF+IL-6 for 72 h. BrdU was added into the culture 

medium during the last 48 h of cell culture. BrdU incorporation into cells was determined by 

flow cytometry. Values are mean ± SEM. N=4 sets of cell cultures. In each treatment, bars 

with different letters are statistically different (p<0.05); *: p<0.05 compared to cells cultured 

with EGF.
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Figure 3. 
Representative images of immortalized HL1-hT1 cells cultured in the proliferation medium 

without and with different concentrations of alcohol for 7 days. The images captured on the 

Olympus IX81 Imaging System with 10X phase objective lens represent 4 sets of cell 

cultures.
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Figure 4. 
Changes in BrdU incorporation into immortalized HL1-hT1 cells. Cells were cultured in the 

proliferation medium without and with different concentrations of alcohol for 4 days. BrdU 

was added into the cell culture system during the last 4 h of culture. Values are mean ± 

SEM. N = 4 sets of cell cultures. MCF=mean channel fluorescence. Bars with different 

letters in each panel are statistically different (p<0.05).
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Figure 5. 
A and B: Changes in cell size of immortalized HL1-hT1 cells. Cells were cultured in the 

proliferation medium without and with different concentrations of alcohol for 4 days. Values 

are mean ± SEM. N = 4 sets of cell cultures in each group. Bars with different letters in 

panel B are statistically different (p<0.05). C: Changes in cyclin D1 expression by 

immortalized HL1- hT1 cells. Cells were cultured in the proliferation medium without and 

with different concentrations of alcohol for 24 h. Values are mean ± SEM. N = 5 sets of cell 

cultures. FSC=forward side scatter. Bars with different letters are statistically different 

(p<0.05).
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Figure 6. 
A: Morphological changes of primary HL-1-1 cells. Cells were cultured in the 

differentiation medium without and with different concentrations of alcohol for 10 days. The 

images captured on the Olympus IX81 Imaging System with 10X phase objective lens 

represent 5 sets of cell cultures. B: Changes in E-cadherin expression by primary HL1-1 

cells. Cells were cultured in the differentiation medium without and with different 

concentrations of alcohol for 2 weeks. N=4 sets of cell cultures. C: Changes in collagen I 

expression by primary HL1-1 cells. Cells were cultured in the differentiation medium 

without and with different concentrations of alcohol for 2 weeks. N=4 sets of cell cultures. 

Values are mean±SEM. MCF=mean channel fluorescence. Bars with different letters in each 

panel are statistically different (p<0.05).
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Figure 7. 
A: Changes in Snail mRNA expression by primary HL1-1 cells. Cells were cultured in the 

differentiation medium without and with different concentrations of alcohol for 3 and 6 

days. N=5-6 sets of cell cultures. *: p<0.05 compared to other groups. B: Changes in α-

SMA and FSP1 mRNA expression by primary HL1-1 cells. Cells were cultured in the 

differentiation medium without and with different concentrations of alcohol for 6 days. N=6 

sets of cell cultures. *: p<0.05 compared to other groups.
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