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Extravillous trophoblasts (EVTs) play a central role in educating maternal leukocytes,
endometrial stromal and endothelial cells to generate a receptive decidual microenvi-
ronment tailored to accept the semi-allogeneic fetus. HLA-G, a non-classical HLA class
I molecule endowed with immune-regulatory functions, is primarily expressed on EVTs
lining the placenta and on the naturally occurring tolerogenic dendritic cells, named DC-
10, which are enriched in the human first trimester decidua. Decidual DC-10 are involved
in HLA-G-mediated tolerance at the maternal–fetal interface. EVTs not only establish a
tolerogenic microenvironment through the interaction with maternal innate and adaptive
cells but also orchestrate placenta vascular and tissue remodeling, leading to a successful
pregnancy. Here, we discuss the potential implications of the HLA-G-mediated cross-talk
among the cells present at the maternal–fetal interface, and its role in maintaining a positive
relationship between the mother and the fetus.
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INTRODUCTION
The maternal–fetal interface is composed of fetal trophoblasts
intermingled with maternal leukocytes, stromal, and endothe-
lial cells that comprise the decidua. During implantation, tro-
phoblasts, derived from the trophoectoderm surrounding the
blastocyst, differentiate into the syncytiotrophoblasts that infil-
trates the endometrium, and the cytotrophoblasts at the embryo
side. The layer of syncytiotrophoblasts in contact with the decidua
represents the extravillous trophoblasts (EVTs) (Figure 1). EVTs
orchestrate bi-directional cross-talk between the mother and the
fetus by providing structural and biochemical barriers, serving as
an endocrine organ that support and regulate placental and fetal
development and growth, and modulating maternal innate and
adaptive immune responses (1).

The evidence that, after embryo implantation, defective devel-
opment and function of EVTs can lead to fetal loss and pregnancy-
associated pathological conditions, including pre-eclampsia and
intrauterine growth restriction (2–4), sustains the important role
of EVTs in orchestrating the decidual modification for successful
pregnancy. The expression of HLA-G, a non-classical HLA class I
molecule, on EVTs contributes to trophoblast invasiveness, decid-
ual cell differentiation, vascular remodeling, and maintenance of a
local immunosuppressive state. A proper understanding of regula-
tory mechanisms that control EVTs interaction with the maternal
niche is a critical issue in reproduction.

STATE OF THE ART
HORMONAL REGULATION AT THE MATERNAL–FETAL INTERFACE
The endometrial microenvironment, constituted by luminal and
glandular epithelial cells, stromal cells,fibroblasts, vascular smooth
muscle cells, endothelial cells, leukocytes, endometrial stem cells,
and dynamic leukocyte populations, undergoes cyclical changes
regulated by sex hormones. In the absence of pregnancy, the
endometrium is sloughed off at menstruation. In the post-
menstrual proliferative phase, under estradiol stimulation, it
undergoes rapid regeneration into a fertile soil capable to accept
the embryo (5). During the secretory phase, the blood flow
increases, the arteries branches, and the glands enlarge and start
to secrete fluids rich in glycogen used by the embryo as an energy
source in its early stages of growth. These processes are driven
by the post-ovulatory rise of progesterone that inhibits the pro-
proliferative effect of estradiol and, in mammals, induces a radical
transformation of the endometrium (pre-decidualization) that
heralds the limited period of endometrial receptivity, (“implan-
tation window”) during which embryo attachment can take place
(6). Pre-decidualization is primarily defined by the transforma-
tion of endometrial stromal cells into secretory epithelioid-like
decidua cells and is characterized by massive influx of maternal
innate immune cells and vascular remodeling (7).

In the presence of the embryo, the human chorionic
gonadotropin (hCG) sustains the full decidualization of the
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FIGURE 1 | Proposed model for cross-talk among embryo
trophoblasts, decidual leukocytes, and stromal cells at the
maternal–fetal interface in human first trimester pregnancy. EVTs
express and secrete HLA-G, and release IL-10 (and TSLP), which instruct
dAPCs to become tolerogenic DC (i.e., dDC-10 or TSLP-modulated dDC)
secreting IL-10 and promoting the induction of a variety of Tregs (i.e., Tr1
cells, CD4+CD25+FOXP3+ Tregs, and CD4+HLA-G+ Tregs). Induced Tregs
inhibit effector T cells, and, via IL-10 secretion, promote HLA-G expression

on EVTs. EVTs via HLA-G directly promote dNK cell activation and the
release of angiogenic factors. dDC-10 is HLA-G+ and can interact with
either dNKs or dMΦ via ILT2, and promote their activation and
pro-angiogenic effects. dDC-10 themselves secrete also pro-angiogenic
factors supporting neo-vascularization. HSPs secreted by the maternal
cells and trophoblasts contribute to the regulation of HLA-G expression on
dAPCs and EVTs. Finally, IL-10 modulates the UPR pathway and regulates
vascular uterine remodeling by HLA-G+ EVTs.

endometrium via stimulation of progesterone production. hCG
is the most specific embryo-derived signal observed in humans
and the hCG gene is transcribed as early as the two-cell stage (8,
9). Being released before embryo implantation, hCG also acts on
endometrial cells in a paracrine way by inducing their differenti-
ation characterized by secretion of prolactin, leukemia inhibitory
factor (LIF), and IL-6 (10, 11). Furthermore, hCG promotes angio-
genesis by increasing vessel sprouting of endothelial cells and secre-
tion of vascular endothelial growth factor (VEGF) (12, 13). The
immunomodulatory properties of hCG are multiple (13): it regu-
lates decidual natural killer (dNK) cell proliferation, contributing
to the remodeling of decidual spiral arterioles (14, 15); it induces
CXCL8 production by monocytes (16); it influences tolerogenic
dendritic cells (DCs) proliferation and differentiation (17); and it
contributes to recruitment of T regulatory cells (Tregs) (18).

The pre-ovulatory peak of estrogen is important for prolifer-
ation of the uterine epithelium in preparation for implantation,
while rising progesterone after ovulation is required for implan-
tation of the embryo and decidual differentiation. Together with
hCG, progesterone and estradiol are also essential for the program-
ing of a local tolerogenic environment (19). Progesterone polarizes
T-cell responses toward an anti-inflammatory phenotype, favoring
T(helper)h2 while dampening Th1 and Th17 cells, and induc-
ing Tregs via thymic stromal lymphopoietin (TSLP) (20–22). The
increased concentration of progesterone at the maternal–fetal
interface may play a role in regulating HLA-G gene expression
(23). Progesterone induces up-regulation of HLA-G in primary
cultures of first trimester cytotrophoblasts through the binding
to an alternative progesterone response element in the HLA-G
promoter (24).
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Estradiol regulates the immune system by affecting T and B
cells, and down regulating NK cell cytotoxicity (25). Interestingly,
estradiol helps to regulate fetal tolerance during pregnancy by
expanding Tregs and their suppressive function (26, 27).

Dendritic cells, by expressing specific receptors, are susceptible
to stimulation with hCG, progesterone, and estradiol. Pregnancy
hormones can either activate or reduce the stimulatory activity of
monocyte-derived DCs. Consistent up-regulation of IL-10 pro-
duction by human DCs has been observed upon stimulation with
pregnancy hormones [as reviewed in Ref. (28)].

HLA-G-EXPRESSING TROPHOBLAST AT THE MATERNAL-FETAL
INTERFACE
HLA-G has well-recognized immunomodulatory activities, is low
polymorphic [reviewed in Ref. (29)], and has limited tissue dis-
tribution [reviewed in Ref. (30)]. HLA-G was the first HLA class
I molecule identified on EVTs (31). EVTs, forming the placental
interface with the maternal systemic circulation, do not express
HLA class I, but as they differentiate to invade the decidua and
contact maternal decidual leukocytes, they begin to express HLA-G
(32). All EVTs, syncytiotrophoblasts (33), interstitial and endovas-
cular trophoblasts, and placental bed giant cells are HLA-G positive
[reviewed in Ref. (34)].

By alternative splicing of the primary transcript, four
membrane-bound (HLA-G1 to -G4) and three soluble (HLA-
G5 to -G7) isoforms can be generated [reviewed in Ref. (35)].
In addition, a soluble isoform, named shed HLA-G1, is released
after proteolytic cleavage of the membrane-bound HLA-G1 by
metalloproteinases (36, 37). Through the interaction with the

inhibitory receptors immunoglobulin-like transcript (ILT)2 and
ILT4, and the killer immunoglobulin-like receptor (KIR)2DL4,
HLA-G regulates innate and adaptive immune responses and
participates in promoting tolerance [reviewed in Ref. (38)].

During the last decade, it has become evident that the expres-
sion of HLA-G on EVTs is not primarily involved in protecting
the fetus from the attack by maternal cells, but it plays an impor-
tant role in tissue remodeling. HLA-G expressed or secreted by
EVTs controls their decidual and endovascular invasion. EVTs can
express membrane-bound or shed HLA-G1, and soluble HLA-
G2, -G5, and -G6 (39–43) (Table 1). Studies in placental sections
demonstrated that β2m-bound HLA-G is expressed by all EVTs,
whereas more distal EVTs at the invasion front express the free
heavy chain (FHC) HLA-G (40). It has been proposed that the
selective expression of FHC–HLA-G, which is not recognized
by ILT2 (44), may limit the inhibition of dNKs while allowing
these cells to secrete factors required for successful pregnancy.
In vitro studies showed that treatment of primary trophoblasts
with HLA-G5 stimulates cell invasion and increases the produc-
tion of metalloproteinases and urokinase, known to remodel the
endometrial extracellular matrix (45, 46). Moreover, the inter-
action between HLA-G on EVTs and dNKs leads to CXCL8
and CXCL10 secretion that in turn, via stimulation of CXCR1
and CXCR3, promote EVTs invasiveness (14). Thereby, HLA-G-
expressing EVTs regulate decidual invasion in both autocrine and
paracrine manner.

The presence of soluble HLA-G in embryo culture super-
natants positively associates with embryo implantation (58–60).
The interaction of HLA-G with ILT2 on endometrial stromal cells

Table 1 | Expression pattern of HLA-G-related molecules on cells at the maternal–fetal interface.

Cell types HLA-G isoforms (reference) HLA-G receptors (reference)

ILT2 ILT4 KIR2DL4

EVTs HLA-G1 (39, 40) Neg (47) Neg (47) n.t.

shed HLA-G1 (40, 42)

HLA-G2 (42)

HLA-G5 (41)

HLA-G6 (43)

Syncytiotrophoblasts HLA-G5 (33) Neg (47) Neg (47) n.t.

Endothelial cells Maternal endothelium n.t. Neg (47) Neg (47) n.t.

Fetal vessels n.t. Neg (47) n.t. n.t.

Endometrial stromal cells n.t. Pos (47) Neg (47) n.t.

dNK Total CD56+ Neg (48) Poslow (49) Neg (49) Pos (49–51)

CD4+ Total CD4+ n.t. Pos (52) n.t. Pos (52)

CD4+HLA-G+ HLA-G1 (53, 54) n.t. n.t. n.t.

CD8+ Total CD8+ n.t. n.t. n.t. n.t.

CD8+HLA-G+ HLA-G1 (53) n.t. n.t. n.t.

Macrophages CD14+CD163+ Neg (55) Pos (50, 56) Pos (50, 56) n.t.

DCs DC-SIGN+ HLA-G1 (57) n.t. Pos (57) n.t.

DC-10 HLA-G1 (53) Pos (53) Pos (53) n.t.

The indicated markers have been tested on cells at the maternal–fetal interface and demonstrated to be expressed (Pos) or not (Neg).

The indicated markers have not been tested yet (n.t.).
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(47) might contribute to the remodeling of uterine vascularization,
and EVT migration and invasion (61, 62). Moreover, the interac-
tion between EVTs and resident dNKs that express both ILT2,
although at low levels, and KIR2DL4 (49, 50) guarantees the cor-
rect arterial remodeling (Table 1). In contrast to peripheral NK,
dNKs are poorly cytotoxic and secrete, in addition to IFN-γ, the
pro-angiogenic factors VEGF, placental growth factor (PLGF),
angiopoietin 1 and 2, and transforming growth factor (TGF)-
β1 (14, 63–66). These molecules promote the uterine vascular
changes necessary for maximizing maternal blood flow through
the placenta. Moreover, the perivascular localization of dNKs
in a microenvironment enriched in EVT-derived soluble HLA-G
enables the formation of uterine spiral arteries (67). In vitro stud-
ies show that the interaction between HLA-G5 and shed HLA-G1,
with KIR2DL4 in the early endosome of activated NKs promotes
phenotypical and physiological changes leading to cellular senes-
cence, which sustains the secretion of pro-angiogenic mediators
(49, 51). Exposure of macrophages (MΦ) isolated from the first
trimester decidua to HLA-G-expressing cell lines induces secre-
tion of IL-6, CXCL8, and TNF-α that activate dNK-mediated
vascular remodeling (50). Hence, the cross-talk between HLA-
G-expressing/secreting EVTs and decidual innate cells coordinate
the tissue remodeling necessary for a successful pregnancy.

It cannot be overlooked that EVTs-derived HLA-G also induces
tolerogenic immune responses leading to semi-allogeneic fetus
acceptance. In addition to dNKs, MΦ, DCs, effector and regulatory
T cells, and B cells infiltrate the decidua (52, 68, 69), which are likely
to be important determinants in tolerance induction. dMΦ are
characterized by low levels of CD86 coupled with the expression
of the immunomodulatory molecule indoleamine 2,3-dioxigenase
(IDO) (70), and by IL-10 production (50, 71, 72). Gene expres-
sion profiling demonstrated that dMΦ from the first trimester of
pregnancy express genes functionally related to immunomodu-
lation and tissue remodeling (73). In vitro studies showed that
exposure of U937 cells to HLA-G5 or HLA-G6 modulates IL-
10 and TGF-β secretion (74). Based on these data, and on the
fact that dMΦ express ILT2 and ILT4 (50, 56) (Table 1), it was
postulated that, in the presence of dNK-derived IFN-γ, dMΦ in
contact with HLA-G+EVTs and exposed to soluble HLA-G are
induced to secrete IL-10 and TGF-β, which limit T-cell responses
and promotes tolerance (74).

Plasmacytoid (BDCA-2+) and myeloid (BDCA-1+ and BDCA-
3+) DCs have been also identified at the maternal–fetal interface
(53, 75, 76). In early human pregnancy, DC-SIGN+ dDCs, charac-
terized by low expression of CD86 and DEC-205, were described
(77). DC-SIGN+ dDCs might be involved in re-programing the
local immune response since they are associated with GM-CSF-
and IL-10-secreting large granular lymphocytes that inhibit their
maturation, and possibly favor tolerogenic responses (78). It has
been shown that a population resembling DC-SIGN+ dDCs that
express ILT4 can be differentiated in vitro (57, 76), suggesting that
these cells can be also modulated by HLA-G+ decidual resident
cells (Table 1). Our group identified a peculiar subset of tolero-
genic DCs at the maternal–fetal interface in the first trimester of
pregnancy. These DCs, termed DC-10, express HLA-G and ILT4
and secrete IL-10, thus are potentially involved in promoting tol-
erance (53) (Table 1). Future investigation is warranted to define

whether dDC-10 and DC-SIGN+ dDCs are distinct populations
of tolerogenic APCs, or cells at different stages of differentiation.

It is not surprising that Tregs are present in the decidua during
pregnancy. An increased frequency of CD4+FOXP3+ Tregs in the
peripheral blood of pregnant women has been shown (79) and the
accrual of these cells has been described in human decidua with
controversial results (53, 76, 80, 81). Recent evidence indicated that
CD4+FOXP3+ Tregs might be generated in situ (57). A popula-
tion of CD4+ T cells expressing HLA-G, termed CD4+HLA-G+

T cells, representing up to 20% of the decidua-infiltrating CD4+

cells, have been recently reported (53, 54) (Table 1).

OPEN ISSUES
TROPHOBLAST-MATERNAL APCs CROSS-TALK: ROLE OF
HLA-G-MEDIATED SIGNALS
For the acceptance of the semi-allogeneic fetus, a crucial
role is played by the trophoblasts themselves. In addition to
express/secrete HLA-G, EVTs release immune-modulatory medi-
ators (i.e., IL-10 and TSLP), which are involved in promoting a
pro-tolerogenic microenvironment. Our group characterized the
tolerogenic DC-10 that are present in vivo and are inducible in vitro
in the presence of IL-10. DC-10 are mature myeloid cells that
spontaneously secrete IL-10 in the absence of IL-12, and express
HLA-G, ILT2, ILT3, and ILT4. Importantly, DC-10 promote the
induction of adaptive T regulatory type 1 (Tr1) cells via the IL-10-
induced HLA-G/ILT4 pathway (82). Later, we demonstrated that
DC-10 accumulate in human decidua during the first trimester of
pregnancy (53). Based on this observation, we postulate that dDC-
10 may represent the naturally occurring HLA-G-expressing DCs
involved in re-programing the immune response toward tolerance.
The recent observation that the frequency of dDC-10 in women
with spontaneous abortion is lower compared to that observed in
pregnant women sustains this hypothesis (our unpublished data).
One of the important questions regarding dDC-10 is whether they
are recruited in decidua during pregnancy or are induced in situ.
Recently, it was demonstrated that the secretion of TSLP by EVTs
induces CD11c+ dDCs to express co-stimulatory molecules and
HLA-DR and to secrete IL-10 and TGF-β (83). TSLP-instructed
DCs via TFG-β secretion induce CD4+CD25+FOXP3+ Tregs that
inhibit effector T cells, and promote HLA-G expression on EVTs
(83). Thus, the decidual microenvironment, enriched in TSLP
and IL-10, produced by both EVTs and immune cells, sustains
the expression of HLA-G on EVTs. In this scenario, the cross-
talk between HLA-G-expressing EVTs and decidual myeloid cells
might favor the generation of a set of tolerogenic DCs, including
dDC-10 and TSLP-modulated CD11c+ dDCs, which co-operate
in promoting tolerance via the generation of different subsets of
Tregs: Tr1, CD4+CD25+FOXP3+, or CD4+HLA-G+ cells. As dis-
cussed above, EVT-derived HLA-G directs dMΦ toward a tolero-
genic path, which contributes to the inhibition of effector T cells
and to the induction of Tregs. The hypothesis that decidual tolero-
genic APCs drive the differentiation of Tregs is supported by the
higher frequency of peripherally induced Tregs (defined as Helios−

iTreg) compared to the thymic-derived Tregs in decidua (57).
Our group recently demonstrated that co-expression of CD49b
and LAG-3 identified Tr1 cells in vivo (84); thus, the use of
these biomarkers in conjunction with the expression of FOXP3,
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Helios, and HLA-G will better define Treg cell composition at the
maternal–fetal interface and define their relationship and relative
contribution in tolerance induction.

Tolerogenic DCs can also contribute to sustain the pro-
angiogenic milieu in the decidua. dDC-10 through the HLA-G
can interact with dNKs or dMΦ via ILT2 and promote their acti-
vation and the release of the angiogenic factors. Moreover, dDC-10
themselves secrete IL-8 and VEGF (our unpublished data), sup-
porting their pro-angiogenic functions. Since dMΦ, dDC-10, and
TSLP-modulated CD11c+ dDCs are characterized by the ability to
secrete IL-10, they can also support the up-regulation of HLA-G
on EVTs and on other decidual infiltrating cells (85), hence facil-
itating the establishment of an appropriate vascular bed at the
maternal–fetal interface.

TROPHOBLAST-DECIDUA CROSS-TALK: ROLE OF HLA-G-MEDIATED
SIGNALS
The pre-decidualization program entails the production of a
plethora of transcription factors, cell cycle regulators, cytokines,
and the activation of diverse signaling pathways (86). Full decid-
ualization is then achieved upon embryo arrival. In view of
the increased requirements for protein secretion during embryo
implantation, cytoplasmic and endoplasmic reticulum (ER) stress
responses are activated at the maternal–fetal interface. Cytoplas-
mic stress responses are characterized by the rapid stress-induced
synthesis of heat shock proteins (HSPs) that allow cells to restore
protein homeostasis and to be protected against molecular damage
(87). Stress-induced HSPs are not only essential for regulating the
state of intracellular folding, assembly, and translocation of pro-
teins but are also potent modulators of the immune responses.
Moreover, HSPs are necessary for placental development. Tar-
geted deletion of HSP90 results in embryonic lethality (88). In
primary decidualizing, endometrial stromal cells treated with
embryo supernatants, genome wide expression profiling revealed
that HSP70 was strongly increased (89).

The range of functions attributed to HSPs has expanded to
encompass functions outside the cell (90). Extracellular HSPs may
be able to play a role as danger signals (91). In this context,
HSPs may interact with pattern recognition receptors, and acti-
vate pro-inflammatory signaling and transcription. Specifically,
extracellular HSP60 was shown to allow communication between
immune cells and other cells in the body (92), and HSP70 can be
released from cells after acute stress in different cells, including
cultured rat embryo cells (93), and peripheral blood mononu-
clear cells (94). Notably, HSPs can activate NKs and Tregs (95,
96). Evidence for regulation of HLA-G by HSPs is still scanty.
HLA-G transcription was found to be induced upon heat shock
in tumor cell lines, by heat shock transcription factor 1 (HSF1)
binding to a heat shock element (HSE) present in HLA-G but not
in other HLA class I genes (97). Moreover, mice mutant for Hsf1
have a thin spongiotrophoblast layer and die in utero (98). Fur-
ther investigation is warranted to define if maternal/fetal-derived
HSPs might contribute to the regulation of HLA-G expression on
dDC-10 and EVTs.

Protein folding in the ER is essential to ensure normal cell
function. Disruption of ER homeostasis causes accumulation of
misfolded proteins in the ER, a condition referred to as ER stress.

ER stress activates the unfolded protein response (UPR) to restore
protein homeostasis within the ER. However, if ER stress is per-
sistent and excessive, the ER homeostasis cannot be re-established
and the UPR will induce apoptosis. Intriguingly, IL-10 is emerging
as a novel modulator of the ER stress (99). Intestinal epithelial cells
isolated from IL-10−/− mice exhibit increased expression levels of
BiP,a prototypic marker for ER stress, suggestive of an increased ER
stress in the absence of IL-10. Further observations revealed that
IL-10 attenuates tunicamycin-induced ER stress through suppres-
sion of BiP (100). These studies consistently suggest a novel role for
IL-10 in modulating ER stress (101). Under ER stress, which occurs
during normal development of labyrinthine trophoblasts in the
mouse placenta, transcriptional regulation of VEGF is mediated
by the three master regulators of the UPR: IRE1a, PERK, and ATF6
(102). The modulation of the UPR pathway by IL-10, produced
by dMΦ, dDC-10, and TSLP-modulated CD11c+ dDCs, might
represent an additional mechanism to regulate vascular uterine
remodeling and placentation.

PERSPECTIVES
The existence of mechanisms by which fetal and maternal cells
simultaneously attract and modulate each other is intriguing.
Upon blastocyst implantation into the uterine wall, trophoblasts
differentiate into EVTs that possess the ability to coordinate the
cross-talk at the interface via the expression of HLA-G. Accumu-
lating evidence indicate that EVTs play a key role in orchestrating
a number of molecular and cellular decidual modifications by
(i) regulating cell-migration in the decidua, (ii) supporting the
induction of the pro-angiogenic decidual microenvironment nec-
essary for effective vascular remodeling, (iii) inhibiting effector
innate and adaptive immune responses, and (iv) promoting a
tolerogenic loop in which resident cells are instructed to become
tolerogenic. These functions are regulated through the finely tuned
specific interactions of HLA-G-expressing EVTs with maternal
innate immune cells, adaptive immune cells, and non-immune
cells (Figure 1). The interplay among these cells supports the
development of an appropriate maternal–fetal niche. Pregnancy
hormones are essential to fully support the niche, although their
role in regulating HLA-G expression has not been investigated
yet (29).

We suggest that the integration and exchange between fetal and
maternal blood vessels at the interface is likely to be contributed
by multiple mechanisms, including trophoblast interaction with
dNKs and resident/recruited APCs, as well as by the IL-10-driven
tolerance and regulation of the UPR pathway in decidual and
trophoblast cells.
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