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Human activity and mobility data 
reveal disparities in exposure risk 
reduction indicators among socially 
vulnerable populations 
during COVID‑19 for five U.S. 
metropolitan cities
Natalie Coleman1*, Xinyu Gao2, Jared DeLeon2 & Ali Mostafavi1

Non-pharmacologic interventions (NPIs) promote protective actions to lessen exposure risk to 
COVID-19 by reducing mobility patterns. However, there is a limited understanding of the underlying 
mechanisms associated with reducing mobility patterns especially for socially vulnerable populations. 
The research examines two datasets at a granular scale for five urban locations. Through exploratory 
analysis of networks, statistics, and spatial clustering, the research extensively investigates the 
exposure risk reduction after the implementation of NPIs to socially vulnerable populations, 
specifically lower income and non-white populations. The mobility dataset tracks population 
movement across ZIP codes for an origin–destination (O–D) network analysis. The population activity 
dataset uses the visits from census block groups (cbg) to points-of-interest (POIs) for network analysis 
of population-facilities interactions. The mobility dataset originates from a collaboration with 
StreetLight Data, a company focusing on transportation analytics, whereas the population activity 
dataset originates from a collaboration with SafeGraph, a company focusing on POI data. Both 
datasets indicated that low-income and non-white populations faced higher exposure risk. These 
findings can assist emergency planners and public health officials in comprehending how different 
populations are able to implement protective actions and it can inform more equitable and data-
driven NPI policies for future epidemics.

Since the first COVID-19 case in the United States (US) was reported on January 21, 2020 in Snohomish County, 
Washington1, the SARS-CoV-2 virus has rapidly spread across the country. As of January 23, 2022, there have 
been more than 70.7 million confirmed cases and approximately 866,000 deaths are attributed to the disease 
in the United States2. To decrease the contact and transmission rate of COVID-19, many states implemented 
state or local level stay-at-home policies as well as the closure of non-essential services starting in mid-March 
2020. Non-pharmacologic interventions (NPIs), which encourage protective actions via social distancing and 
sheltering-in-place, are effective measures to slow down the spread of COVID-193–5.

Life and daily movement patterns were greatly altered by this pandemic. According to guidelines associated 
with NPIs, places regarded as non-essential such as schools, gyms, bars, and other commercial complexes, were 
temporally closed, and mass gatherings and celebratory events were cancelled or postponed6. People also tried 
to curtail their daily essential activities (e.g., refueling cars, purchasing goods) to decrease the risk of infection7–9. 
Such changes in movement could be a proxy measurement for the protective actions taken to reduce exposure 
risk10. To understand the influence and effectiveness of such social distancing practices, many studies have ana-
lyzed real-time movement data at the country level11,12, county level13–16, and city level17–19. These studies show 
that the implementation of NPIs significantly reduced human activities, and by extension, they also reduced 
possible transmission of the virus. Mobility data and population activity has shown to be an advantageous data 
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source in collecting pattern movements and relating those to potential COVID-19 exposure20. However, it is 
difficult to ignore the varying effectiveness that COVID-19 and NPIs could have on different populations. For 
example, research on co-location reduction10, heterogenous features21, and urban hotspots19,22 shows evidence 
of mobility segregation patterns. However, studies of highly-aggregated human movement and mobility data 
may have missed critical disparity among different demographic groups, particularly those that are classified as 
socially vulnerable populations23.

Historically, socially vulnerable populations have been connected to various societal issues such as disaster 
recovery, educational resources, and health inequalities24–29. According to Centers for Disease Control (CDC), 
social vulnerability refers to “residents with socioeconomic and demographic factors that affect the resilience 
of communities”30. This established social vulnerability framework includes households of lower income and 
of racial-ethnic minority status, who are typically vulnerable for their lack of resources and exclusion from 
governmental planning. Disaster literature supports that socially vulnerable populations are disproportionately 
impacted by disasters30. In the ever-evolving research literature of the COVID-19 pandemic, earlier studies and 
reports have also captured the disparate impacts associated with different socially vulnerable groups at both 
the community and individual level. For example, Benitez and Yelowitz31 found that predominately Black and 
Hispanic neighborhoods had higher COVID-19 cases per capita and higher observed fatalities. Similarly, Abedi 
et al.32 concluded that counties with more diverse demographics, such as those with larger population, larger 
percentage of minority households, lower educational attainment, lower income, or higher disability rates were 
at a higher risk of COVID-19 infection. In particular, African Americans were more vulnerable to COVID-19 
than other racial-ethnic groups. At the county level, Ossimetha33 found that counties with socioeconomic dis-
advantages and less reduced mobility had greater growth in COVID-19 cases and deaths. Similarly, Li et al.21 
showed that demographic features such as population density, gross domestic product, and minority status, were 
of high-importance features in case predictions. Borgonovi and Andrieu34 found that counties whose residents 
present pre-existing medical conditions and low levels of community social capital were more susceptible to 
experiencing increased rate of infection of COVID-19, even suggesting that social distancing practices were 
related to behavioral changes in mobility. These studies emphasized the exposure and inherent risk disparity of 
socially vulnerable groups; however, only a limited number of studies have thoroughly investigated the extent to 
which exposure risk reduction conferred by NPIs varied across different populations. Evaluating the exposure 
risk reduction indicators through the exploratory analysis of granular human mobility and population activity 
datasets may hold the key to understanding exposure disparities among low-income and racial-ethnic minority 
populations.

Part of the limitation in studying the effects of NPIs is that current published research focuses on human 
movement and COVID-19 outcomes at highly aggregated levels (i.e., state- or county level). Coarse-level dis-
parity analysis may ignore an important part of the variation as residential segregation by socially vulnerable 
populations can be significant in finer spatial scales. Studies of social vulnerability warn that coarse-scale analysis 
may fail to detect critical instances of disparities, such as those prominent in inner cities35. In fact, finer-scale 
analysis may yield different results compared to coarser-scale analysis as observed by the law of averages23,36. 
Studies focusing on fine-scale analysis of disparities in movements and activity reduction of different popula-
tions in the context of COVID-19 are rather limited. After analyzing census block groups (cbgs), Fan et al.37 
suggested that localized area-specific policies could be effective measures of containing infections. In addition, 
Benitez and Yelowitz31 conducted racial-ethnic disparity analysis in COVID-19 cases per capita at the ZIP-code 
level for six cities, and the findings support that Black and Hispanic populations are correlated with higher rates 
of COVID-19 cases. The study acknowledges a knowledge gap related to the underlying mechanisms leading 
to such risk disparities and emphasizes a need to understand such disparities at a granular level. Even among 
the limited existing studies, the majority have analyzed single mobility and/or population activity datasets. This 
limits the ability to holistically understand different indicators of exposure risk to the COVID-19 virus. Since 
each dataset might have limitations regarding aspects of mobility movements and population activities captured, 
it is essential to conduct studies with different datasets with intentionality to dissect, interpret, and integrate 
multiple indicators of exposure risk.

Thus, this research study addresses the knowledge gap by examining the disparities associated with the 
protective actions to reduce the risk of transmission and by differentiating the mobility and population activ-
ity patterns of socially vulnerable groups. Through the exploratory analysis of networks, statistics, and spatial 
clusters, this study measures the extent of exposure risk reduction of different income groups and different 
racial-ethnic groups. Using three indicators of exposure risk, the study incorporates two datasets at a granular 
level to capture insights which otherwise would have been overrun by coarser scale analysis. The first indicator 
captures the number of trips based on a ZIP code-to-ZIP code origin–destination (O–D) network analysis. This 
indicator provides insights regarding cross-ZIP code transmission risk of the virus by measuring the number 
of trips to nodes in the network, which corresponds to the center point of each ZIP code. The greater the inflow 
measure of the number of trips to nodes within ZIP codes, referred in this paper as the in-degree flow of a ZIP 
code, the higher the exposure risk of residents in that ZIP code to virus transmission from other ZIP codes. The 
second indicator examines the exposure risk of population activity fluctuations which refers to contact at POIs. 
The third indicator captures the exposure risk from the points-of-interest to census block groups (POI-CBG) 
network which refers to previous transmission at POIs to home cbgs. These three indicators provide distinct 
measures as proxies for evaluating exposure risk reductions afforded by NPIs and enable us to examine the dis-
parities among vulnerable populations. The spatiotemporal context of the study comprises of five US locations: 
(1) Cook County (Chicago), Illinois, (2) Harris County (Houston), Texas, (3) New York City, New York, (4) Los 
Angeles County (Los Angeles), California, (5) King County (Seattle), Washington, recorded between January 
1, 2020 through July 31, 2020.
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Methods
Description of mobility data and population activity.  The research uses two datasets for mobility pat-
terns and population activity. First, the research had a partnership with the StreetLight Data Company to obtain 
mobility data. StreetLight harnesses smartphones as sensors to measure vehicle, transit, bike, and foot traffic that 
show travel patterns in selected geographic areas38. Several case studies in North America have used StreetLight 
mobility data for transportation analytics39. Per month, the company processes and aggregates approximately 
40 billion anonymized records that includes more than 5 million miles of roadway, sidewalk, and bike lanes38. 
On average, it captures 65 M devices in the United States and Canada which samples approximately 23% of the 
population and 18% of trips40,41. StreetLight has a distribution of the demographic characteristics of each trip 
using the most updated American Community Survey (ACS) data. Demographic data has been shown to be rep-
resentative demographic information of the selected geographic areas42. This feature of the data divided income 
into six groups of median income and six groups of racial-ethnic populations (Supplementary Information B). 
The research study aggregated the mobility data to a ZIP code-to ZIP-code O–D network to analyze the number 
of inflow trips across ZIP-codes. After filtering the StreetLight data, 83,460,324 total datapoints were used in the 
final analysis which consisted of the following: Chicago had 11,638,220 points; Houston had 29,789,279 points; 
New York City had 15,485,617 points; Los Angeles had 22,712,811 points; and Seattle had 3,834,397. In this case, 
unique points refers to the O–D trip paths in the mobility network at a weekly scale.

Second, the research had a partnership with the SafeGraph Company to obtain population activity data. Saf-
eGraph provides the most accurate points-of-interest (POIs) and store location geofences for the US. It contains 
more than 3.6 MM commercial points and 45 MM mobile devices, which samples approximately 10% of US 
devices. Aggregated demographics of the sampled devices accurately represents the demographics of the selected 
geographic areas43,44. POIs include physical locations in the community such as restaurants, retail stores, and 
grocery stores. The boundary of each POI is made up of polygons or single points depending on the data resolu-
tion. The dataset is connected to the physical locations of POIs to the North American Industry Classification 
System (NAICS) which categorize business and industry codes45. SafeGraph uses a thorough methodology of 
DBSCAN clustering and machine learning to detect visits to POIs, where visits are registered at a threshold of 
four minutes at a POI46. Population activity dataset was manually merged with downloaded 2019 ACS survey 
data at the cbg level. Using the cbg identification, cbgs of POIs and the home cbgs of residents were connected to 
their median income levels and the percentage of white-only and non-white households which total to 100%47. 
The median income were divided into six percentile groups based on the selected geographic area. A sensitivity 
analysis, found in Supplementary Information D, was performed on the number of bins. It showed no difference 
in the rankings of income groups. Using this dataset, a network was created to examine the number of visits to 
POIs as well as the number of visits from home cbg. After filtering SafeGraph data, the researchers used a total 
of 354,034 total data points which consisted of the following: Chicago had 55,292 points; Houston had 52,776 
points; New York City had 72,304 points; Los Angeles had 146,037 points; and Seattle had 27,625 points. In this 
case, unique points refers to the number of POIs in the population activity data at a weekly scale.

Both the mobility dataset and the population activity dataset covered five US cities: (1) Cook County (Chi-
cago), Illinois, (2) Harris County (Houston), Texas, (3) New York City (comprising five counties) (4) Los Angeles 
County (Los Angeles), California, (5) King County (Seattle), Washington. The first four locations include the four 
most populated cities in the US; Seattle was also included because the city was first recorded instance of an indi-
vidual diagnosed with the COVID-19 virus in the US. The selected locations are also widespread across regions 
of the US to contrast differences in impact. The analysis time period was January 1, 2020 through July 31, 2020, 
which is generally considered to be the first wave of the pandemic. The majority of NPIs such as shelter-in-place 
orders took place during mid-March and were mostly released by late May and early June 2020 (Supplementary 
Information A). To normalize the data, a baseline level for mobility movement and average POI unique visits 
was established between January 13, 2020 and February 4, 2020. The baseline was selected after the early weeks 
of the year to give a more stable comparison that was not biased towards the heavy tourism and movement of the 
typical holidays. This baseline period has also been previously used by published literature studying the mobility 
changes during the COVID-19 pandemic48,49.

Description of exposure risks.  The first exposure risk indicator measures the increased transmission 
across ZIP codes from trips. It is represented as the inflow measure of trips, or in-degree values, of ZIP codes. 
Greater in-degree of a ZIP code signals a higher exposure risk of residents in that ZIP code due to the possibility 
of virus transmission from other ZIP codes. In Fig. 1a, the research would examine the first exposure risk of ZIP 
code A from the surrounding ZIP codes. The second exposure risk indicator is the population activity fluctua-
tions which refers to the possibility of contact at POIs. It is measured as the number of visits to POIs within 
different cbgs. Greater percent change of visits being received by POIs within a particular cbg signal a higher 
exposure risk to the residents residing in that cbg. In Fig. 1b, the research would examine the second exposure 
risk of the POIs in CBG A from the surrounding cbgs. The third exposure risk is the POI-CBG network which 
refers to the transmission to home cbgs due to previous contact in outside POIs. It is measured as the number 
of visits to POIs from different home cbgs. Greater percent change of visits to outside POIs coming from the 
residents of a home cbg signal a higher exposure risk to the residents residing in the same home cbg. In Fig. 1c, 
the research would examine the third exposure risk of the home CBG from the surrounding CBGs.

ZIP code‑level mobility network.  The mobility data describes the hourly number of trips for each pair of O–D 
links across all ZIP-codes. The O–D network is constructed where the centroid points of all ZIP-code areas are 
considered as nodes. At time t  , if there exist trips from ZIP code i to ZIP code j , a link between these two points 
will be constructed, and the number of trips, Ni,j(t) , is assigned as the weight of this link. For each node i , the 
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weighted degree Di can be calculated by summing all the weights of links connected to node i using Eq. (1). This 
allowed us to calculate the movement inflows referred to as in-degree values.

where, Di(t) is the in-degree/out-degree, and Ni,j (t) is the number of trips of starting node (i) and ending node (j).

Population activity fluctuations.  The percent change of visits to POIs from the baseline was calculated as shown 
in Eq. (2)

where, PCi is the percent change of visits, Visitsi is the number of visits at week i, and Baseline is average visits 
between January 13, 2020 and February 3, 2020.

POI‑CBG network of home cbgs.  When possible, SafeGraph provides the number of visits from home cbgs. 
Since the scope of this exposure risk was to measure the home cbgs in the selected county; captured home cbgs 
from a different county were not used in the analysis. This kept the exposure risk indicator as a measure within 
the residents of the county. A network analysis is created from the link between home cbg to POI. Equation (2) 
calculated the percent change of mobility.

Exploratory analysis of exposure risks.  Figure 2 summarizes the exploratory analysis of the exposure 
risks. First, in-degree values were analyzed on a weekly basis for the income groups and racial-ethnic groups. 
Trips were normalized based on the volume of trips divided by the baseline number of trips for each social 
group to account for uneven distributions. An example of the O–D Network, which shows the percent change 
from inflow measures and outflow measures from the established baseline, can be found in Supplementary 
Information C. Second, spearman correlations measure the statistical significance of the median income levels 
and percentage of non-white populations to changes in human mobility from the baseline levels regarding the 
population activity fluctuations and POI-CBG network. It examines whether there is statistically significant 
(p < 0.05) difference between values of different income levels and different percentage of non-white populations 
in their ability to reduce movement compared to baseline levels. These correlations and statistical significance 
were calculated for each week since the relationship between demographics and mobility may vary over time. 
The research wanted to determine whether the potential disparity in mobility was consistent or specific to a time 
period. Regarding the population activity fluctuations, negative correlations indicated that lower-income cbgs 
or cbgs of greater percentage of non-white populations had lower percent change from the baseline and more 
exposure risk comparatively. Regarding the POI-CBG network, negative correlations indicate that that residents 
from lower-income cbgs or those with a greater percentage of non-white populations were less able to reduce 
their exposure risk and were traveling to more POIs. Third, bivariate Moran’s I statistic was calculated to examine 
the spatial autocorrelation of the population activity fluctuations and POI-CBG network. The global Moran’s I 
statistic was first calculated between the percentage change to the baseline at population activity fluctuations and 
the POI-CBG network which is represented by the correlation coefficient to determine the potential of spatial 
clustering. The correlation coefficient is measured from a scale of − 1 to 1, where a correlation coefficient further 
away from 0 represents that there is less randomness in the spatial clustering. Statistical significance was based 
on 999 permutations as computed through the GeoDa software. Next, the local Moran’s I bivariate revealed spe-
cific clusters of cbgs that were statistically significant (p < 0.05) shown through the LISA clusters. This revealed 
areas of high vulnerability and low vulnerability which is otherwise not shown through correlations. As shown 
in Eq. (3), clusters are generated from two variables: the percent change to the baseline and median income level 

(1)Di(t) =
∑

j
Ni,j(t)

(2)PCi =
Visitsi − Baseline

Baseline
∗ 100%

Figure 1.   Mobility patterns and population activity yield exposure risk indicators. Exposure risk indicators are 
measured through (a) inflow measures from ZIP codes B, C, D, E to ZIP code A, (b) percent change of visits 
to POIs in CBG A with from CBG B and CBG C, (c) previous transmission at POIs in CBG D, E, F, G to home 
CBG.
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or percentage of non-white population. Clusters can either be high–high (H–H), high–low (H–L), low–high 
(L–H), or low–low (L–L). H–H clusters represent areas of high socially vulnerable populations (low income or 
non-white population) and high exposure risk (less percent change from baseline). The L–L clusters represent 
areas of low socially vulnerable populations (high-income or white-only) and low exposure risk (greater percent 
change from baseline). Please see more information in Supplementary E.

where, It is the Moran’s I statistic, R represents the number of regions (cbgs) in the dataset; w is the weight of 
the socially vulnerable population (income group or racial-ethnic group); x is the percent change at cbg (i) and 
cbg (j).

Results
First exposure risk indicator.  The first exposure risk indicator accounts for the transmission across ZIP 
codes based on O–D mobility network (Fig. 3). Following the implementation of NPIs, there is a notable diver-
gence of in-degree values, or the inflow measure of trips, among the different groups. In-degree values dropped 
after March 16th but returned to baseline values for all urban cities and for all demographic groups by the end 
of July. However, the drop of in-degree values was comparatively less for ZIP codes with lower-income residents 
which indicates a higher exposure risk for lower income populations. Table 1 displays an example of comparing 
the percent difference of different income groups to the lowest income group. After the implementation of NPIs, 
there was a greater percent difference between lower and higher income groups. In the week of March 30th to 
April 5th, the < $20,000 income group had a 13–18% difference to the $150–$200 k group and a 20–22% to the 
> $200,000 income group for the five urban locations.

Regarding racial-ethnic groups, there is a notable divergence of in-degree values during the implementation 
of NPIs. Across five urban locations (Fig. 3), White-only populations had the greatest drop of in-degree values, 
meaning these populations had the lowest comparative exposure risk. Native Hawaiian/Other Pacific Islander 
and American Indian or Alaska Native populations showed virtually no change in their in-degree values, and 
thus, the highest comparative exposure risk. By comparison, Black or African American and Asian populations 
had a lower drop of in-degree values than White-only populations, but a higher drop of in-degree values than 
Native Hawaiian/Other Pacific Islander and American Indian or Alaska Native populations. Results for Hispanic 

(3)It =
R ∗

∑R
i=1

∑R
j=1wijxi∗xj

Rb
∑R

i=1 x
2
i

Figure 2.   Method process of mobility data population activity from data collection to data analysis.
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populations were mixed. The group initially had the third lowest decrease of in-degree values. The ranking of 
this initial drop stayed consistent for a certain timeframe but the group concluded with the greatest drop of 
inflow measures at the end of the analysis period. This indicates that although the initial exposure risk level of 
the Hispanic population decreased over time when compared to the other populations. Table 1 shows an example 
of the percent difference tabulation by comparing white population to other racial-ethnic groups. The percent 
differences support the visualizations of the racial-ethnic groups.

Second exposure risk indicator.  The second exposure risk indicator accounts for the percentage change 
of population activity fluctuations based on contact at POIs (Fig. 4). Greater percentage change of POI visits 
indicates higher comparative exposure risk. Generally, POI percent change did not return to baseline levels and 
stayed at − 40% from the baseline, which differs from the mobility dataset. Though mobility within a community, 
or number of trips, may have returned to a steady state, this does not mean that people are physically entering 
the businesses and organizations as some offered curbside pickup, delivery, and virtual services. Following the 
implementation of NPIs, lower income cbgs had a less drop in population activity fluctuations when compared 
to higher income cbgs. This result indicates that lower-income cbgs had higher comparative exposure risk.

Correlations were conducted between the median income levels and the percentage of nonwhite populations 
(Fig. 5) to determine the potential disparity in the ability of lower income and nonwhite populations to reduce 
their mobility over time. After the implementation of NPIs, the correlations for the median income levels flipped 

Figure 3.   Variation of inflow of trips in ZIP codes for different income groups (top) and variation of inflow 
of trips in ZIP codes for different racial-ethnic groups (bottom). In-degree values, or inflow measure of trips, 
are normalized for each group to account for uneven distribution. The vertical black line is the week that NPI 
shelter-in-place was implemented in each county, and, if applicable, the vertical gray line is the week that NPI 
shelter-in-place was lifted. The percentage of each racial-ethnic group, except Hispanic which overlaps, totals to 
100% population.
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from positive to negative which indicates a shift in population activity for all five urban locations. This statistical 
significance over time did not remain consistent for all cities as the time periods varied. Between March 16th and 
June 1st, Chicago, New York City, and Houston had correlation values between − 0.15 and − 0.30 at statistically 
significant p-values. After June 1st, only New York City retained statistically significant negative correlations 
to the end of the analysis period. This indicates that lower income cbgs had higher comparative exposure risk 
in population activity. After the implementation of NPIs, Chicago and New York City had correlation values 
between − 0.10 and − 0.25 at statistically significant p-values. In those cities, cbgs with greater percentage of 
nonwhite populations were less able to reduce their mobility and thus had higher comparative exposure risk.

Third exposure risk indicator.  The third exposure risk indicator accounts for the POI-CBG network 
based on previous transmission from POIs to home cbgs (Fig. 4). Greater percentage change of outside POIs 
visits signals a higher exposure risk of residents in a home cbg. Similar to the population activity analysis, per-
cent change stayed below − 40% from the baseline. There were also indications of exposure risk disparity across 
all urban locations. After the implementation of NPIs, residents from lower-income home cbgs had less percent 
change compared to those from higher-income home cbgs. This suggests that lower-income households were 
less able to reduce their exposure risk. The release of NPIs were mixed. As time continued, the results gener-
ally showed similar levels of percent change, which suggests that residents from lower-income home cbgs were 
approaching a similar exposure risk to those of higher-income home cbgs. The percent change of home cbgs in 
Los Angeles also appeared to converge despite not having a release of NPIs. In contrast, New York City, which 
did not have a release of NPIs, still had the greatest difference of percent change in the POI network from lower-
income cbgs and higher-income cbgs, and this difference even increased by the end of the analysis period.

Figure 3.   (continued)
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The correlations further support the findings that home cbgs of lower income and greater percentage of 
non-white populations had higher comparative exposure risk based on a lesser ability to reduce movement in 
the POI-CBG network (Fig. 5). Approximately after the implementation of NPIs in Chicago, Houston, and Los 
Angeles, there is a flip from positive to negative correlations. This signals a shift in the POI-CBG network as 
lower income households and higher percentage of non-white populations were less able to reduce mobility. For 
those three cities, correlations were between − 0.15 and − 0.45 for median income levels and between − 0.05 and 
− 0.45 for non-white populations at a statistically significant p-values. Before NPIs, New York City and Seattle 
had no significant correlations, but after the NPIs, these cities had correlations between − 0.15 and − 0.30 for 
median income levels and between − 0.20 and − 0.45 for the non-white populations. The time period of statisti-
cally significant correlations varied depending on the city. The disparity in lower-income households remained 
consistent for Chicago, Houston, and Los Angeles until the beginning of June 2020. In particular, New York 
City maintained the highest negative correlations at statistically significant p-values until the end of the analysis 
period which may suggest a great disparity in exposure risk to the CBG-POI network for low income and higher 
percentage of nonwhite populations.

Spatial mapping of high exposure risk areas.  To visualize the changing spatial clusters of percent 
change, Moran’s I statistic and spatial maps were calculated for before the implementation of NPIs (January 
27th to February 2nd), after the implementation of NPIs (April 6th to April 12th), and, if applicable, after the 
release of NPIs (June 15th to June 21st). The spatial maps clustered the percentage change of population activity 
fluctuations and change of visits in POI-CBG network to the median income levels and percentage of nonwhite 
populations. Table 2 shows the changing Moran’s I correlation coefficients which are statistically significant at 
p < 0.05 along with the number of H–H and L–L clusters in the POI-CBG network for all urban locations (full 
information in Supplementary Information E). Figure 6 provides an example of the spatial maps by showing 
the significant clusters of the five metropolitan cities in the POI-CBG network according to the median income 
levels.

The results indicated that there were few significant clusters for the second exposure risk of population activ-
ity fluctuations, which suggests that the demographic characteristics had little influence on the percent change 
to POIs from a spatial perspective. However, the results support that there may be a spatial component in the 
third exposure risk for home cbgs which could be further explored. There is an association with the percentage 
change in POI-CBG network to the median income levels and non-white populations which varies depending 
on the urban location. Following the implementation of NPIs, Chicago, Houston, Los Angeles, New York City 
and Seattle had higher correlation values and an increase of H–H clusters and L–L clusters related to income 
groups whereas Chicago, Los Angles, New York City, and Seattle had higher correlation values and an increase 
of H–H clusters and L–L clusters related to white and non-white groups. The number of H–L and L–H slightly 
increased but not to the same extent (Supplementary Information E).

Discussion
The COVID-19 pandemic has exacerbated systematic inequalities embedded in the health care system includ-
ing poor access to medical services, costly medical treatments, inattention to underlying medical conditions, 
and misinformation and misunderstanding of safety policies51–53. The ever-growing body of research literature 
continues to uncover risk disparities associated with the pandemic, specifically the ability for different popula-
tions to follow protective actions which reduce mobility around the community and limit exposure to the virus. 

Table 1.   Percent difference of in degree values for March 30th to April 5th. The percent difference of the 
in-degree values were calculated between the different income groups and racial-ethnic groups. In-degree 
values indicates the inflow measure of trips to the ZIP codes. This table shows an example of the different 
income groups comparing to the lowest income group (< $20,000) and an example to the different racial-ethnic 
groups to the white population. All the values can be found in Supplementary Information F.

Percent difference to < $20,000

$20,000–$49,999 $50,000–$99,999 $100,000–$150,000 $150,000–$200,000 > $200,000

Chicago 2.69 5.86 11.14 15.66 21.85

Houston 2.19 6.01 11.03 15.40 20.63

Los Angeles 0.47 4.26 8.91 13.21 20.82

New York 3.57 6.96 10.42 13.53 20.55

Seattle 3.51 7.35 13.56 18.06 22.31

Percent difference to white

Black or African 
American

American Indian or 
Alaska Native Asian

Native Hawaiian/ 
Other Pacific Islander Hispanic or Latino

Chicago − 11.01 − 24.43 − 5.71 − 29.59 − 14.04

Houston − 9.05 − 27.66 − 11.93 − 30.50 − 13.24

Los Angeles − 11.60 − 21.90 − 3.88 − 25.07 − 7.82

New York − 12.09 − 5.41 − 5.01 − 3.59 10.83

Seattle − 16.57 − 20.65 − 4.84 − 21.62 − 11.32
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Figure 4.   Percent change in POI visits between cbgs for different income groups (top) and POI percent change 
of total visits of POIs from home cbgs for different income groups (bottom). The percent change values of 
points-of-interest (POIs) are normalized for the median income levels and non-white percentage populations. 
The vertical black line is the week that NPI shelter-in-place was implemented in each county, and, if applicable, 
the vertical gray line is the week that NPI shelter-in-place was lifted. The bright red line represents the bottom 
16th percentile of income (low income) while the bright blue line represents the top 83rd percentile of income 
(high income).
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Figure 5.   (Top) Spearman correlations of population activity fluctuations against median income levels and 
nonwhite populations of POI cbgs. (Bottom) Spearman correlations of POI-CBG network against median 
income levels and nonwhite populations of home cbgs. The two vertical black lines indicate the weeks when 
NPIs implemented since this varied for the five urban locations. p-values are statistically significant at p < 0.05.

Table 2.   Bivariate Moran’s I statistic for POI-CBG network for income groups. The Bivariate Moran’s I statistic 
was calculated for the five urban locations for the median income groups and the percentage of white and 
non-white groups. Jan 27–Feb 2 represents a time period before the stay-at-home policy; Apr 6–12 represents 
a time period after stay-at-home policy and Jun 15–21 represents a time period following weeks after the stay-
at-home policy. H–H represents the number of high–high clusters and L–L represents the number of low–low 
clusters; both of the number of observed clusters were statistically significant of at least p-values < 0.05.

City

Jan 27–Feb 2 Apr 6–12 Jun 15–21

Moran’s I H–H L–L Moran’s I H–H L–L Moran’s I H–H L–L

Income groups

Chicago 0.091 176 109 0.343 478 469 0.132 234 347

Houston 0.212 167 124 0.283 173 198 0.035 108 143

Los Angeles 0.046 213 172 0.235 476 589 0.003 262 316

New York City 0.039 192 154 0.238 414 541 0.289 375 698

Seattle 0.076 47 41 0.285 171 172 0.099 141 88

White and non-white groups

Chicago 0.126 150 156 0.341 445 547 0.125 186 428

Houston 0.141 116 124 0.077 93 199 − 0.087 59 169

Los Angeles 0.018 179 189 0.118 365 619 − 0.200 180 399

New York City 0.033 158 178 0.225 422 584 0.178 286 758

Seattle 0.021 27 45 0.156 138 160 0.078 105 130
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Therefore, human mobility data is a valuable resource to understand the potential exposure to COVID-1954,55. 
Several studies have investigated different mobility metrics, such as the ability to stay at home20,56,57, the inten-
sity and duration of social distancing58, exposure density of different neighborhoods59, and the spatiotemporal 
contact density in particular industries60, all of which reveal insights on the increased risk for socially vulnerable 
populations. However, there remains a knowledge gap of the underlying mechanisms which contribute to such 
disparities as well as a lack of granular analysis across multiple cities using different indicators of exposure risk.

Thus, in this study, we examined anonymized mobility data and population activity data from two datasets, to 
measure three indicators of exposure risk indicators to the COVID-19 virus: (1) transmission across ZIP codes, 
(2) population activity fluctuations for contact at POIs, and (3) the POI-CBG network for previous transmission 
at POIs back to home cbgs. First, the mobility data was used to create a ZIP code-to-ZIP code origin–destination 
network to record the inflow measures, or number of trips, to different nodes. Second, the population activity 

Figure 6.   Visualization of exposure risk of the median income levels of cbgs on the POI-CBG network. Spatial 
clusters are statistically significant for p < 0.05 with the median income levels percentage change from the 
baseline at week 14. H–H (High–High) clusters are represented by the darkest shade of red and L–L (Low–Low) 
are represented by the darkest shade of blue. The authors used open-source GeoDa Software (https://​geoda​
center.​github.​io/, 1.20.0.0) for calculations and maps50.

https://geodacenter.github.io/
https://geodacenter.github.io/
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data recorded the fluctuations to POI visits. Third, the population activity data was used to establish a CBG-POI 
network to record POI visits from different home cbgs. The frequency of inflow measures of the mobility dataset, 
percent change to POI visits of population activity fluctuations, and percent change of total visits to POIs from 
different home cbgs through a POI-CBG network all indicate notable separations of mobility and visits patterns.

The significant finding of the research is that there exist disparities in human mobility regarding different 
income and percentage of nonwhite populations which were measured through three exposure risk reduction. 
Such disparity in mobility could be a contributing factor to the increased exposure risk to COVID-19 by vulner-
able populations51,53,61. The findings also suggest an association between the implementation of stay-at-home 
practices and the disproportionate impacts on different demographic populations. While the research study 
acknowledges the importance of non-pharmacological interventions, such as stay-at-home policies, which are 
effective in reducing the contact and transmission of the COVID-19 virus62,63, the findings also support literature 
which has found that staying-at-home may be a privilege primarily held by higher-income demographics57. For 
the first exposure risk, lower-income residents and nonwhite populations were less able to reduce their exposure 
risk across ZIP codes. For the second and third risk exposures, correlations supported that lower income and 
greater percentage non-white populations had greater exposure risks for contact at POIs and from home cbgs. 
The significance of the results also varied across time and location. The implementation of NPIs was associated 
with differences in exposure risk reduction; however, the release of NPIs did not greatly influence the level 
of disparity. Indeed, although all urban locations showed instances of exposure risk disparity, New York City 
maintained the highest negative correlations to low-income and nonwhite populations being less able to reduce 
their mobility to the end of the analysis period. In addition, the potential spatial connection must be further 
explored to understand the underlying mechanisms between exposure risk disparity of mobility and population 
activity. This was shown through the moderate spatial correlations in New York City, Chicago, and Los Angeles 
for the POI-CBG network.

It is important to also note the potential limitations in the datasets to put the significant findings in context. 
For one, the resolution and nature of the datasets means that the results do not account for whether people were 
following all the safety guidelines of CDC, such as maintaining at the recommended six-foot distances and wear-
ing approved masks, but the three exposure risk indicators can be used as proxies for measuring the protective 
actions of limiting movements around the community and around physical locations. It is also important to note, 
as with the majority of studies using mobility and location-intelligence, the data imbalance towards individuals 
and demographics owning smartphones. Given the quantity distribution of the mobility dataset and population 
activity dataset, the researchers feel that an accurate demographic was captured to measure the different patterns 
and behaviors of the five urban communities.

In the conversation of social health disparities surrounding the pandemic, Chowkwanyun and Reed64 dis-
cuss the importance of gathering data and information to develop a “precise picture of how vulnerability is 
distributed” while also emphasizing the importance of “[contextualizing] such data with adequate analysis”. 
Though the findings highlight certain individuals and areas with high exposure risk to the virus because of an 
inability to reduce mobility and population activities, it is critical that researchers, policymakers, and the general 
public avoid stereotypes and stigmatization associated with socially vulnerable populations, which could delay 
resources, hinder participation, and limit voices in the recovery process. It is the responsibility for research stud-
ies to contextualize the possible factors influencing mobility disparity and exposure risk. While the results do 
capture and bring awareness to the vulnerability of different populations, they also encapsulate the additional 
social disparities exacerbated by stay-at-home policies. Such policies, as previously implemented, do not consider 
that low-income groups and racial-ethnic minorities are more likely to work as essential and frontline workers 
in addition to having minimal pay, no sick leave, and being uninsured or underinsured65. Higher paying jobs 
may also be more flexible and accommodating to external shocks, such as the COVID-19 pandemic, and thus, 
they are able to offer work-from-home protocols66. On the other hand, those individuals with lower paying jobs 
would be more restricted in their work options, which could lead to many choosing between income and health.

Various studies have highlighted that socially vulnerable populations have been disproportionately impacted 
by the COVID-19 pandemic; however, the conversation of how to move forward from these significant impacts 
and, most importantly, prevent future ones must be centered on the notion that the ability to protect oneself is 
often a luxury perpetuated by external factors. Proper use of anonymized mobility data and population activ-
ity data can shed light on the effectiveness and equitability of closing and reopening policies. Although NPIs 
demonstrate to be effective in reducing mobility, there may be unintended consequences that must be addressed 
through careful governmental policies and protections which not only focus on direct connections to viruses 
but also the underlying mechanisms contributing to such exposure risk disparities.

Data availability
The data that support the findings of this study are available from SafeGraph and StreetLight Data, but restric-
tions apply to the availability of these data, which were used under license for the current study. The data can 
be accessed upon request submitted on StreetLight Data and SafeGraph. Other data we use in this study are all 
publicly available.

Code availability
The code that supports the findings of this study is available from the corresponding author upon request.
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