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SUMMARY

We describe how to predict population-level allele frequency change at loci asso-
ciated with locally adapted traits under future climate conditions. Our method
can identify populations that are at higher risk of local extinction and those
that might be prime targets for conservation intervention. We draw on previ-
ously developed community ecology statistical methods and apply them in novel
ways to plant genomes. While a powerful diagnostic tool, our method requires a
wealth of genomic data for use.
For complete details on the use and execution of this protocol, please refer to
Blumstein et al. (2020).

BEFORE YOU BEGIN

Gather Data Resources

Note: Example data can be found at https://github.com/blumsteinm/Projecting_MAF_

ClimateChange/tree/master/Example_Data

1. Climate Data

a. Past Climate Normal information for population locations (.csv file format)
i. Normals data are three-decade averages of climate variables and are produced every 10

years. They are essential to use instead of daily or annual climate data as we are interested

in questions of local adaptation to climate, not weather.

ii. We used 1 km resolution climate monthly Normals data from 1961–1990 from Climate

WNA (http://www.climatewna.com/) (Hamann et al., 2013, Blumstein et al., 2020, Wang

et al., 2012). These data were interpolated from the original 4x4 km WNA data using

demography information, then point values were extracted using each genotype’s lati-

tude and longitude of origin.

iii. Example Dataset is Climate_Normals_1961_1990.csv

b. Projected Climate Change information for population locations (.csv file format)

i. Climate projections should come from a Global Climate Model (GCM) or ensemble of

several GCMs.
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CRITICAL: ensure that the projected climate variable names match the normals climate

variables for use in the statistical model in step 2 and all geographic data are in the

same projection.

ii. We used 1 km resolution ensemble projections for the 2080 decade from ClimateWNA

(Hamann et al., 2013, Blumstein et al., 2020, Wang et al., 2012).

iii. Example Dataset is Climate_Projections_Ensemble2080s.csv

2. Sequence Samples (.bed file format)

a. You will need genomic sequences for the genotypes in your study. These can be full genome

sequences or subsets of sequences gathered by reduced sampling representation techniques

(eg. RADSeq)

b. We used genomes resequenced by the Joint Genome Institute and made publicly available

(Joint Genome Institute, D. O. E, 2019) for the genotypes in our study

c. All loci with MAF <3% should be excluded from analysis.

d. Example Dataset is POTR_SNPs_Subset [.fam/.bed/.bim]

3. Loci of Interest

a. A list of the genes or loci of interest in your study. These should be loci that contribute to or are

associated with local adaptation. They can be pulled from the literature, previous work, or

Quantitative Trait Loci (QTL)/Genome Wide Association Sudies (GWAS). Ideally these loci

will show signatures of local adaptation in your own populations (Qst > Fst). If performing

QTL or GWAS studies, it is important to correct for genetic relatedness/population structure

in your model. See ‘‘Resources Availability’’ section for data resources such as Phytozome for

plant genomic and genetic information.

b. We measured an adaptive trait in common gardens (Nonstructural Carbohydrate Storage

(NSC)) and used this data to perform a Genome Wide Association Study (GWAS) with our

genomic resequenced data, control for genetic relatedness in the model (Blumstein et al.,

2020). This analysis identified loci that were significantly associated with our trait of interest.

c. Example Dataset is Example_SNPs.csv
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Example Datasets and code https://github.com/blumsteinm/
Projecting_MAF_ClimateChange

n/a

Software and Algorithms

R v.3.6.0 R Core Team (2019). R: A language and
environment for statistical computing. R
Foundation for Statistical Computing,
Vienna, Austria. URL https://www.R-project.
org/

n/a

BiocManager v.1.30.10 Martin Morgan (2019). BiocManager: Access
the Bioconductor Project Package
Repository. R package version 1.30.10.
https://CRAN.R-project.org/
package=BiocManager

n/a

snpStats v.1.34.0 David Clayton (2019). snpStats: SnpMatrix
and XSnpMatrix classes and methods. R
package version 1.34.0.

n/a

data.table v.1.12.8 Matt Dowle and Arun Srinivasan (2019).
data.table: Extension of ‘‘data.frame’’. R
package version 1.12.8. https://CRAN.
R-project.org/package=data.table

n/a

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

vegan v.2.5-6 Jari Oksanen, F. Guillaume Blanchet,
Michael Friendly, Roeland Kindt, Pierre
Legendre, DanMcGlinn, Peter R. Minchin, R.
B. O’Hara, Gavin L. Simpson, Peter Solymos,
M. Henry H. Stevens, Eduard Szoecs and
Helene Wagner (2019). vegan: Community
Ecology Package. R package version 2.5-6.
https://CRAN.R-project.org/
package=vegan

n/a
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STEP-BY-STEP METHOD DETAILS

Note: all steps are performed in the statistical computing environment ‘‘R’’. Example code for

each step can be found at https://github.com/blumsteinm/Projecting_MAF_ClimateChange/

STAR_Protocol_Example_Code.R
Calculate Minor Allele Frequencies by Population for Loci of Interest

Timing: 10–30 min depending on file sizes

This step uses R to pull information on the loci of interest from the genomic data files and uses it to

calculate the minor allele frequency (MAF) by population.

1. Pull the allele information from the .bed files for each loci of interest using the ‘‘read.plink’’ func-

tion from the package snpStats in R.

a. If the allele information is in a large file, we recommend using ‘‘fread’’ from data.table instead

of ‘‘read.csv’’ for faster loading.

b. Instead of reading the whole .bed file into R, use the ‘‘select.snps’’ parameter within ‘‘read.-

plink’’ to feed a list of loci of interest names or locations.

2. Calculate the MAF by population.

a. Merge the sample allele information with your population information so that you have a data-

frame indicating the sample name, sample population, and what the samples’ alleles at each

loci are.
i. Our species, Populus trichocarpa, is diploid. Thus our .bed files indicate any individual is

either homozygous with 01 (AA) or 03 (BB) as the alleles value, or heterozygous with 02 (AB)

as the alleles value. In our data, the minor allele is always 1/A.

b. Create a function for calculating the minor allele frequency by population.

i. freq <- function(alleles = NULL){

converted_alleles <- sapply(as.numeric( alleles ), function(x) ifelse(x == 1, 1, ifelse(x == 2,

0.5, ifelse(x == 3, 0, NA))))

allele_frequency <- sum(converted_alleles)/length(converted_alleles)

return(allele_frequency)

}

c. Use ‘‘aggregate’’ from base R and the ‘‘freq’’ function from above to calculate the MAF (allele

A) by population
Define the Major Axes of Climate Variation Using a Principal Component Analysis

Timing: 10–20 min

This step takes the climatic data from the past Normals data and future GCM projections and puts

them into principal components (PC) space. PCs pull out major axes of explanatory variation, which is
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Figure 1. Visualizing Current and Future Climate in Principle Components Space

A visualization of (A) climate variable correlations and (B) climate principal components space. The (A) correlations

plot shows positive (blue) and negative (red) correlations between climate variables, with circle size and depth of color

indicating the strength of the correlation. The (B) PCA plot depicts climate variables (blue arrows) in the first two axes

of pc space. Where populations fall in PC space are shown with the colored dots, with the closed dots representing the

past 30-years of climate data and their open counterparts representing where populations are expected to fall in the

PC space in 2080.
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particularly useful when many climate variables are highly correlated and thus difficult to use in a sta-

tistical model.

3. Order rows in both climate files by population to ensure they match. This is essential for the prin-

cipal component analysis (PCA) predictions.

4. Use ‘‘prcomp’’ from the vegan package to run a PCA of the past climate Normals data, inputting a

matrix of all climate variables as the object.

a. Ensure that both ‘‘scale’’ and ‘‘center’’ are equal to TRUE. If not, climate variables with large

values will disproportionately drive axis variation.

5. Use ‘‘predict’’ and the future climate data as ‘‘newdata’’ to project the future climate variables into

PC space.

6. Check results using ‘‘biplot’’ from the vegan package (Figure 1).

Fit a Canonical Correspondence Analysis to Current Allele Frequencies versus Climate

Timing: 15–30 min

This step uses the climate PCs and the MAFs by population that we have tabulated to fit a canonical

correspondence analysis (CCA) model. This model is the relationship between past climate and cur-

rent MAFs. This CCA will be used to project MAFs into the future under climate change.

7. Merge the past climate dataframe and MAFs dataframe using ‘‘merge’’ in base R. We merged

based on ‘‘population name’’, so that when data is put into models in subsequent steps, all col-

umns are in the same order by population.

a. Record the index of the climate and MAF columns so that you can distinguish between the

two when running the CCA.

8. Run a Null Model CCA with no predictors using ‘‘cca’’ from package vegan.

a. This will be used for model comparisons in a future step. In this case, no explanatory predic-

tors are put into the model, just allele data.
4 STAR Protocols 1, 100061, September 18, 2020
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b. We ran ours with 4,000 permutations.

9. Run a CCA with all climate predictors included using ‘‘cca’’ from package vegan.

a. Again, we ran this with 4,000 permutations.

10. Drop environmental predictors that are collinear/non-significant via a step-wise model compar-

ison using ‘‘ordistep’’ in the vegan package.

a. We inputted the null CCA as the object, with the scope set to the full CCA predictor model.

b. We ran ours in both directions, forward and backward, then used the optimal model returned

as our CCA model. Using ‘‘$anova’’ with the model object will return the significance of vari-

ables remaining in the model.
Further Assess CCA Model Fit and Accuracy

Timing: 20 min

This step delves further into how much variation the CCA model explains and how well it does reca-

pitulating our current data.

11. Calculate the percent of variation in the MAF data that the model explains as the constrained

inertial value divided by the total inertia value.

Note: The ‘‘total inertia’’ is the total variance in allele frequency distributions. The ‘‘con-

strained inertia’’ is the variance explained by the environmental variables.

12. Test whether the model explains more variation in MAF than expected by chance (p = 0.05) us-

ing ‘‘anova.cca’’ from the vegan package. If model is not significant, you should reevaluate the

climate predictors that you are including.

13. Finally, visually compare to what degree predicted MAF values match actual MAF values, given

the past climate Normals data (Figure 2).

a. We performed linear regressions by population to assess which populations weremore poorly

predicted than others.

b. In our example data, there are a few populations with non-significant p-values and low R2’s

because we do not use the full dataset. These populations may need to be dropped in a

real analysis should you find similar results in your data as the model is to replicating the

pattern better than chance.
Project Future Minor Allele Frequencies Given Predicted Climate Change

Timing: 10 min

This step uses the projected climate PCs and the CCA model formed in step 3 to predict MAF

change in 60 years and calculate summary statistics.

14. Use the ‘‘predict’’ function with CCA model created in step 3 and the future climate PC data-

frame in the ‘‘newdata’’ parameter to predict MAF under future climate conditions.

15. Calculate the average predicted MAF change across all loci between the climate of the past 30

years and projected climate in 2080 (Figure 3).

a. Start by subtracting current MAFs from projected MAFs. This should result in a matrix of

differences for each population (rows) at each loci (columns).

b. Sum the absolute value of each row to get average change by population.
STAR Protocols 1, 100061, September 18, 2020 5



Figure 2. Predicted Minor Allele Frequencies under Past Climate Normals Plotted by Actual Current Minor Allele

Frequencies

Text shows the R2 of each population’s linear regression results. The black line indicates a 1:1 line, while gray lines are

population-level fits.
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Note: we chose to look at the absolute value of change as we were interested in capturing

both large increases and decreases in allele frequency.

16. Calculate the number of loci currently missing the minor allele by population (Figure 3).

a. We did this by setting all values in the current MAF matrix below 0.01 to 0 and all else to 1,

then summing by populations (rows).

EXPECTED OUTCOMES

At the end of the process, you will have two dataframes; (1) the proportion of loci in each population

that do not have the minor allele present and (2) average absolute change predicted in MAF be-

tween current and future climate (Data plotted by latitude in Figure 3). You will also generate a prin-

cipal components model of past and projected climate (Figure 1 B) and a model of how Minor Allele

Frequencies are associated with climate (Figure 2).

LIMITATIONS

Data Requirements

The greatest limitation of this approach are the substantial data requirements. A set of locally adapt-

ed loci are a starting requirement but are not easy to come by. For well documented model species,

like Arabidopsis thaliana, there may be sets of genes or loci in the literature that have been exper-

imentally validated and proven in trials to confer local adaptation in plants. For non-model
6 STAR Protocols 1, 100061, September 18, 2020



Figure 3. The Proportion of Loci Missing the Minor Allele and the Average Predicted MAF Change by Latitude

Plots of (A) the proportion of loci that have only one allele by population and (B) the average project MAF change by

population. Both are plotted against population latitude.

ll
OPEN ACCESSProtocol
organisms, QTL mapping or GWAS approaches must be taken to identify loci that are significantly

associated with the adaptive phenotype and appear to be under selection (Qst > Fst). In this case,

phenotypes must be measured on hundreds of genotypes grown in a common environment in order

to pass significance thresholds (see our linked paper Blumstein et al., 2020).

In both model and non-model cases, extensive genomic information must be available for many in-

dividuals from different populations of the species, the number of which depends on the size of the

genome. In the case of Populus, our GWAS set has 8.1 million SNPs, so we generally must sample at

least 200–300 genotypes to have enough power to identify SNPs significantly associated with any

given trait.

This method is ideally performed with full genome sequences, however reduced sampling represen-

tation data is also usable. In the latter case, it should be acknowledged that whenmissing portions of

the genome, you may also be missing loci that are locally adapted. We have have provided some

links below in ‘‘Resource Availability’’ to genomic information that may be useful in conducting

such a project.
Assumptions

This approach makes several key assumptions: 1) Individuals are diploid, ie. two allele options at any

given loci. 2) MAFs are assumed to be distributed unimodally across environments (thus it would not

be appropriate if the trait in question is under disruptive selection). 3) Relationships between MAF

and environment are linear, no interactions between variables. 4) Allelic effects are independent and

additive, no epistasis or dominance.
STAR Protocols 1, 100061, September 18, 2020 7
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TROUBLESHOOTING

If any of the model assumptions are violated, here are some alternative analysis options.
Problem

MAFs are not unimodally distributed or relationships to environment are non-linear.
Potential Solution

Utilize a different model other than a CCA that allows for non-linear relationships, such as a gener-

alized dissimilarity models (GDM) or gradient forest (GF) as outlined in Fitzpatrick and Keller (2015).
Problem

Loci interact epistatically.
Potential Solution

Alter model to allow for multivariate responses of groups of genes (rather than individuals) to envi-

ronment via an environmental co-association network analysis (Lotterhos et al., 2018).
Problem

Loci of interest are not corrected for population structure.
Potential Solution

If you do not account for population structure during your GWAS or QTL analyses, there are addi-

tional tools available to further refine your loci of interest and account for false positives. A number

methods are available in R, such as the packages LFMM and LEA (both with the Bayesian bootstrap

approach implemented), to account for the latent population structure of your data (Frichot and

Francois, 2014, Caye and François, 2017).
RESOURCE AVAILABILITY

Lead Contact

Further information and requests for resources should be directed to and will be fulfilled by the Lead

Contact, Meghan Blumstein, blumsteinm@gmail.com.
Materials Availability

Here are some suggested places to get started looking for the various datasets you will need.

Climate data with past and project climate

North American Climate – Climate WNA (http://www.climatewna.com/)

Global – WorldClim (https://www.worldclim.org/data/index.html)

Genomic Resources (Reference Genomes and Mapping Populations)

JGI’s Phytozome (https://phytozome.jgi.doe.gov/pz/portal.html)

Hardwood Genomics (https://www.hardwoodgenomics.org/)
Data and Code Availability

This protocol includes all example datasets and code needed to regenerate the figures and analyses

outlined. The sample data and code are house at (https://github.com/blumsteinm/

Projecting_MAF_ClimateChange).
8 STAR Protocols 1, 100061, September 18, 2020

mailto:blumsteinm@gmail.com
http://www.climatewna.com/
https://www.worldclim.org/data/index.html
https://phytozome.jgi.doe.gov/pz/portal.html
https://www.hardwoodgenomics.org/
https://github.com/blumsteinm/Projecting_MAF_ClimateChange
https://github.com/blumsteinm/Projecting_MAF_ClimateChange


ll
OPEN ACCESSProtocol
ACKNOWLEDGMENTS

This material is based on work supported by the U.S. Department of Energy, Office of Science, Office

of Workforce Development for Teachers and Scientists, Office of Science Graduate Student

Research (SCGSR) program, and by the National Science Foundation Graduate Research Fellowship

under grant no. DGE1745303. The SCGSR program is administered by the Oak Ridge Institute for

Science and Education (ORISE) for the DOE. ORISE is managed by ORAU under contract number

DE-SC0014664.

AUTHOR CONTRIBUTIONS

M.B. and R.H. developed statistical protocols. D.W., J.Z., and W.M. provided genomic information

and loci of interest GWAS results. A.R. helped design trait sampling, used to produce actual and

example data.

DECLARATION OF INTERESTS

The authors declare no competing interests.
REFERENCES
Blumstein, M., Richardson, A.D., Weston, D.J.,
Zhang, J., Wellington, M., and Hopkins, R. (2020).
A new perspective on ecological prediction
reveals limits to climate adaptation in a
temperate tree species. Curr. Biol. 30, 1447–
1453.

Caye, K., and François, O. (2017). http://
membres-timc.imag.fr/Olivier.Francois/lfmm/
index.htm.

Fitzpatrick, M.C., and Keller, S.R. (2015). Ecological
genomics meets community-level modelling of
biodiversity: mapping the genomic landscape of
current and future environmental adaptation. Ecol.
Lett. 18, 1–16.

Frichot, E. & Francois, O. (2014). LEA: an R package
for Landscape and Ecological Association studies.
R package version 1.0. http://membres-timc.imag.
fr/Olivier.Francois/lfmm/index.htm.

Hamann, A., Wang, T., Spittlehouse, D.L., and
Murdock, T.Q. (2013). A comprehensive,
high-resolution database of historical and
projected climate surfaces for western
North America. Bull. Am. Meteorol. Soc. 94, 1307–
1309.
STA
Joint Genome Institute, D. O. E (2019). Phytozome
12 [Online]. https://phytozome.jgi.doe.gov/pz/
portal.html.

Lotterhos, K.E., Yeaman, S., Degner, J., Aitken, S.,
and Hodgins, K.A. (2018). Modularity of genes
involved in local adaptation to climate despite
physical linkage. Genome Biol. 19, 1–24.

Wang, T., Hamann, A., Spittlehouse, D.L., and
Murdock, T.Q. (2012). ClimateWNA—high-
resolution spatial climate data for Western North
America. J. Appl. Meteorol. Climatol. 51, 16–29.
R Protocols 1, 100061, September 18, 2020 9

http://refhub.elsevier.com/S2666-1667(20)30048-4/sref1
http://refhub.elsevier.com/S2666-1667(20)30048-4/sref1
http://refhub.elsevier.com/S2666-1667(20)30048-4/sref1
http://refhub.elsevier.com/S2666-1667(20)30048-4/sref1
http://refhub.elsevier.com/S2666-1667(20)30048-4/sref1
http://refhub.elsevier.com/S2666-1667(20)30048-4/sref1
http://membres-timc.imag.fr/Olivier.Francois/lfmm/index.htm
http://membres-timc.imag.fr/Olivier.Francois/lfmm/index.htm
http://membres-timc.imag.fr/Olivier.Francois/lfmm/index.htm
http://refhub.elsevier.com/S2666-1667(20)30048-4/sref3
http://refhub.elsevier.com/S2666-1667(20)30048-4/sref3
http://refhub.elsevier.com/S2666-1667(20)30048-4/sref3
http://refhub.elsevier.com/S2666-1667(20)30048-4/sref3
http://refhub.elsevier.com/S2666-1667(20)30048-4/sref3
http://membres-timc.imag.fr/Olivier.Francois/lfmm/index.htm
http://membres-timc.imag.fr/Olivier.Francois/lfmm/index.htm
http://refhub.elsevier.com/S2666-1667(20)30048-4/sref5
http://refhub.elsevier.com/S2666-1667(20)30048-4/sref5
http://refhub.elsevier.com/S2666-1667(20)30048-4/sref5
http://refhub.elsevier.com/S2666-1667(20)30048-4/sref5
http://refhub.elsevier.com/S2666-1667(20)30048-4/sref5
http://refhub.elsevier.com/S2666-1667(20)30048-4/sref5
https://phytozome.jgi.doe.gov/pz/portal.html
https://phytozome.jgi.doe.gov/pz/portal.html
http://refhub.elsevier.com/S2666-1667(20)30048-4/sref7
http://refhub.elsevier.com/S2666-1667(20)30048-4/sref7
http://refhub.elsevier.com/S2666-1667(20)30048-4/sref7
http://refhub.elsevier.com/S2666-1667(20)30048-4/sref7
http://refhub.elsevier.com/S2666-1667(20)30048-4/sref8
http://refhub.elsevier.com/S2666-1667(20)30048-4/sref8
http://refhub.elsevier.com/S2666-1667(20)30048-4/sref8
http://refhub.elsevier.com/S2666-1667(20)30048-4/sref8

	Protocol for Projecting Allele Frequency Change under Future Climate Change at Adaptive-Associated Loci
	Before You Begin
	Gather Data Resources

	Key Resources Table
	Step-By-Step Method Details
	Calculate Minor Allele Frequencies by Population for Loci of Interest
	Define the Major Axes of Climate Variation Using a Principal Component Analysis
	Fit a Canonical Correspondence Analysis to Current Allele Frequencies versus Climate
	Further Assess CCA Model Fit and Accuracy
	Project Future Minor Allele Frequencies Given Predicted Climate Change

	Expected Outcomes
	Limitations
	Data Requirements
	Assumptions

	Troubleshooting
	Problem
	Potential Solution
	Problem
	Potential Solution
	Problem
	Potential Solution

	Resource Availability
	Lead Contact
	Materials Availability
	Data and Code Availability

	Acknowledgments
	Author Contributions
	Declaration of Interests
	References


