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Abstract: In the next few years, the new Copernicus Hyperspectral Imaging Mission (CHIME)
is foreseen to be launched by the European Space Agency (ESA). This missions will provide an
unprecedented amount of hyperspectral data, enabling new research possibilities within several
fields of natural resources, including the “agriculture and food security” domain. In order to
efficiently exploit this upcoming hyperspectral data stream, new processing methods and techniques
need to be studied and implemented. In this work, the hybrid approach (HYB) and its variant,
featuring sampling dimensionality reduction through active learning heuristics (HAL), were applied
to CHIME-like data to evaluate the retrieval of crop traits, such as chlorophyll and nitrogen content
at both leaf (LCC and LNC) and canopy level (CCC and CNC). The results showed that HYB was
able to provide reliable estimations at canopy level (R2 = 0.79, RMSE = 0.38 g m−2 for CCC and
R2 = 0.84, RMSE = 1.10 g m−2 for CNC) but failed at leaf level. The HAL approach improved retrieval
accuracy at canopy level (best metric: R2 = 0.88 and RMSE = 0.21 g m−2 for CCC; R2 = 0.93 and
RMSE = 0.71 g m−2 for CNC), providing good results also at leaf level (best metrics: R2 = 0.72
and RMSE = 3.31 µg cm−2 for LCC; R2 = 0.56 and RMSE = 0.02 mg cm−2 for LNC). The promising
results obtained through the hybrid approach support the feasibility of an operational retrieval of
chlorophyll and nitrogen content, e.g., in the framework of the future CHIME mission. However,
further efforts are required to investigate the approach across different years, sites and crop types in
order to improve its transferability to other contexts.

Keywords: spaceborne imaging spectroscopy; radiative transfer modeling; machine learning regres-
sion algorithm; Gaussian process regression; active learning; chlorophyll content; nitrogen content

1. Introduction

The Hyperspectral Precursor of the Application Mission (PRISMA) satellite [1,2],
successfully launched in 2019 by the Italian Space Agency (ASI), opened a new era of
imaging spectroscopy from space. In the next few years, several other hyperspectral
missions will join PRISMA. The list includes the Hyperspectral Imager Suite (HISUI) [3]
from the Japanese ministry of Economy, Trade, and Industry (METI), operational from
2021, the Environmental Mapping and Analysis Program (EnMap) [4] from the German
Space Agency (GFZ-DLR), planned to be launched in 2022, the Spaceborne Hyperspectral
Applicative Land and Ocean Mission (SHALOM) [5] from the Italy-Israel Space agencies
(ASI-ISA), expected to be launched in 2022, the HypXIM satellite [6] from the French Space
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Agency (CNES), the Surface Biology and Geology (SBG) mission [7] from the National
Aeronautics and Space Administration (NASA) and the Copernicus Hyperspectral Imaging
Mission (CHIME) [8] from the European Space Agency (ESA), scheduled for the late-2020s.

All these spaceborne imaging spectrometers will acquire radiometric data within the
visible-to-shortwave infrared spectral domain (between 400 nm and 2500 nm, approx-
imately) and with a spatial resolution ranging from 20 m to 30 m. These missions will
provide an unprecedented amount of spaceborne hyperspectral data, enabling new research
possibilities within several fields of natural resources studies, including atmosphere, ocean
and land applications. In particular, CHIME will provide hyperspectral observations with
high radiometric accuracy in the range of 400–2500 nm, at a spatial resolution of 20–30 m
and with a revisit time of 10–12.5 days, using a sun synchronous orbit with an overpass time
between 10:30–11:30 LTDN (Local Time on Descending Node) [9]. The main objective of the
CHIME mission is to provide routine hyperspectral observations through the Copernicus
Program, with the purpose to develop new and improved Copernicus services with a focus
on the precise management of natural resources to support the monitoring, implementa-
tion and improvement of a range of related policies and decisions [9]. Within the natural
resources pillar, “agriculture and food security” is the primary application domain selected
to meet user requirements in agricultural services and sustainable agricultural manage-
ment and to support EU-related policies, such as the EU Common Agricultural Policy [10].
Regarding this aspect, the choice of 20–30 m as CHIME spatial resolution was based on
a previous user requirement study founded by ESA [9]. From the results of this study,
the CHIME Mission Advisory Group considered 20–30 m a good compromise between
technical constraints and user needs and a suitable spatial resolution to provide useful
information related to the “agriculture and food security” domain. In order to efficiently
exploit this upcoming hyperspectral data stream, new processing methods and techniques
need to be studied and implemented.

For the sustainable use of nutrients, the CHIME mission requirement document selects
chlorophyll content (Cab) as an essential eco-physiological variable for photosynthetic func-
tioning and a major parameter for the monitoring of plant nitrogen uptake (PNU) during
crop development. Temporal and spatial estimation of PNU is an essential information to
assess crop nutritional status, in order to support a more efficient fertilization by supplying
the plants with the requested amount of nitrogen (N): this will sustain high-quality yields
as well as minimize nitrate leaching to the groundwater [9]. Many studies in the literature
estimated PNU exploiting the relation between N and Cab, measured from either remotely
sensed Cab [11,12] or measured in field by chlorophyll meter sensors [13–16]. In a previous
review paper, Homolova et al. [17] showed that the existing Cab-N relation is moderately
strong across different species (average Pearson correlation coefficient equal to 0.65 ± 0.15),
highlighting that this positive relation is species specific across different types of plants.
In a recent review paper, Berger et al. [18] discussed some limitations of commonly used
Cab-N relation, suggesting the exploration of potentially more robust alternatives for PNU
monitoring. Taking into account that (i) the largest amount of leaf N is contained in proteins
and (ii) a non-linear relation exits between Cab and N throughout the growing season, the
authors proposed the use of protein content (Cp) as a direct way to estimate N in plants,
using 4.43 as the nitrogen-to-protein conversion factor [19].

Traditionally, the estimation of Cab and N (and vegetation traits in general) from
remotely sensed data was mainly performed through parametric and non-parametric
regression methods. In the first approach, an arithmetic combination of reflectance bands
(e.g., a vegetation index) is usually linked to the trait of interest through a fitting model.
In the second approach, the fitting model between reflectance bands and the trait is non-
explicit and it is directly defined by the method itself (e.g., machine learning (ML) regression
algorithms). See Verrelst et al. [20,21] for a detailed overview of these methods as well
as Berger et al. [18] for N retrieval methods, specifically. Despite the good results and
the computational efficiency provided by these methods, the identified fitting models
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are typically valid only for their respective case studies, lacking transferability to other
contexts.

Conversely, physically based methods represent an interesting alternative to pro-
vide robustness and transferability [18]. These methods exploit radiative transfer models
(RTMs), mathematical equations based on physical laws which describe light absorption
and multiple scatterings in order to simulate vegetation reflectance spectra, starting from
leaf biophysical variables and canopy structure. In order to estimate crop traits (e.g., N),
RTM-simulated spectra need to be inverted. However, this inversion can be challeng-
ing due to a number of unknowns larger than the number of independent observations,
which makes the inversion an undetermined problem. To overcome these issues, the RTMs
inversion can be performed through either iterative numerical optimization methods or
inversion based on lookup tables (LUTs) [21]. Although these approaches have been already
successfully exploited [22–26], both methods remain computationally expensive.

In the last few years, the scientific community proposed the hybrid approach as a
possible solution to the drawbacks of regression algorithms and physically based meth-
ods [27–30]. This approach includes elements of both non-parametric and physically based
methods: RTMs are exploited to simulate an LUT of thousands of vegetation reflectance
spectra; the generated LUT together with the corresponding crop traits represent the input–
output pairs used to train the ML regression algorithms. Therefore, the hybrid approach
features the generic properties of physically based methods as well as the flexibility and
computational efficiency of the non-parametric non-linear ML methods.

When dealing with hyperspectral datasets to train a model, the high dimensionality
can lead to both collinearity and long computational time issues, even in the case of a hybrid
approach. In the spectral domain, feature reduction methods (e.g., principal component
analysis) can be used to reduce noisy and redundant bands. In the sampling domain,
intelligent sampling schemes based on the Active Learning (AL) technique, as proposed
in Verrelst et al. [31,32], can be used to optimize the spectra cardinality of the LUT. The
heuristics used in AL select only the most informative samples based on either diversity
or uncertainty metrics [33], avoiding possible unrealistic conditions due to the random
selction of RTM input parameters. AL techniques within the hybrid framework were
recently applied to PRISMA data, providing excellent results for the mapping of canopy
nitrogen content [34] and other crop traits [35] on rural regions.

The goal of this study, performed within the framework of the CHIME Mission Re-
quirements Consolidation Study (CHIME-RCS), is the evaluation of the hybrid approach
for the retrieval of Cab and N content from hyperspectral data, comparing several com-
binations of spectral and sample dimensionality reductions. The hybrid approach was
selected due to its potential for operational products generation. Cab and N were selected
as important parameters for the user community due to their wide use in agricultural
monitoring studies devoted to assess actual crop nutritional status in precision farming
applications. Cab and N content was estimated applying the hybrid method to a synthetic
CHIME datasets, simulated from two images acquired by the airborne hyperspectral sensor
Hyplant-DUAL, during the 2018 ESA FLEXSENSE campaign held in Grosseto, Italy.

2. Materials and Methods
2.1. Study Area and Field Campaigns

The study area (Figure 1) is located in Tuscany (Central Italy), North of Grosseto
(42°49′47.02′′N 11°04′10.27′′E; elev. 2 m a.s.l.). The site consists of a large flat area with an
annual average temperature around 15 °C and annual average rainfall around 640 mm.
Within the study area, two maize fields covering a total extension of more than 100 ha, from
two different farms (Le Rogaie and Ceccarelli), were selected as test sites. At the time of
aerial and ground surveys, these fields featured different conditions in terms of crop traits,
due to different irrigation systems (Pivot system for Le Rogaie and micro drip for Ceccarelli)
and different sowing dates. In particular, due to its large extension, Le Rogaie field was
divided into six sectors, each sown at different dates. Ceccarelli fields were planted in early
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May whereas Le Rogaie fields were sown from mid to end of June, after the harvest of
winter ryegrass. For this reason, in the following sections, the two fields are referred to as
low and high vegetation fractional cover fields (LFC and HFC for Le Rogaie and Ceccarelli,
respectively).

Figure 1. Study area (left) and EO data acquired by HyPlant-DUAL on 7 July (center) and 30 July
(right) 2018. The yellow and red dots overlaid on the study area represent Elementary Sampling
Units (ESU) measured during the two field campaigns.

Two field campaigns (from 2 to 7 July and from 31 July to 1 August 2018) were carried
out in order to measure crop traits, such as Leaf Area Index (LAI), leaf chlorophyll content
(LCC) and leaf nitrogen content (LNC). The sampling strategy was performed following
international protocols and guidelines, as proposed by the CEOS LPV group [36] and the
VALERI project [37]. Crop trait measurements and leaf samples were acquired within
87 Elementary Sampling Units (ESU), each one covering an area of 10 × 10 m2.

Leaf biochemical variables were measured by sampling the last fully developed leaf
from 3 plants with a subset of 31 ESUs, for a total of 93 independent samples at leaf level.
Additional leaf samples in chlorosis condition (11), not corresponding to any specific ESU,
were collected to broaden the range of variability, increasing the total number of analyzed
leaves to 104. Table 1 provides, for each crop trait exploited in this study, a summary of
acquired data, their units and measurement methods.

Table 1. List of crop traits used in this study, units, number of available samples, average, standard
deviation and the method used to derive them.

Trait Unit Samples Mean St.Dev. Method

LCC µg cm−2 87 43.31 6.29 SPAD-LCC regression
LNC mg cm−2 31 0.15 0.03 Lab. measurements
CCC g m−2 87 0.75 0.61 Derived from LCC and LAI
CNC g m−2 31 3.87 2.82 Derived from LNC and LAI

LCC laboratory extractions were performed on a set of three disks with 2.2 cm diameter
(total area 11.40 cm2) sampled from each leaf. Each sample leaf material (3.8 cm2) was
homogenized (Ultra-Turrax, IKA-Werk, Staufen, Germany) in 5 mL of ice-cold methanol
for one minute. The homogenized samples were kept at −20 ◦C for twenty minutes. After
centrifugation (4500 rpm for 10 min at 4 ◦C), the supernatant was recovered and kept
at −20 ◦C. The pellet was re-extracted in 5 mL ice-cold methanol, kept for ten minutes
at −20 ◦C and then centrifuged. This operation was repeated twice. Finally, the three
supernatants were merged, and 2 mL were filtered (0.45 µm PTFE syringe filter) and
immediately analyzed for chlorophyll content. All preparations and analyzes were carried
out at low temperature and dim light. Moreover, for all the 87 ESUs, indirect measurements
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of leaf chlorophyll were acquired using a SPAD-502 chlorophyll meter (Konica Minolta,
Tokyo, Japan). LCC values from laboratory extractions and the corresponding SPAD
measurements were used to identify the SPAD-LCC relation (R2 = 0.93):

LCC = 8.24e(0.0324·SPAD)
[
µg cm−2

]
(1)

The relation in Equation (1) was then applied to SPAD data to estimate LCC on all the
87 ESUs.

A second set of disks, sampled from the same leaves, was used for the estimation
of leaf nitrogen concentration (Nmass [%]), leaf mass per area (LMA [g cm−2]) and other
crop traits not used in this study (e.g., equivalent water content [cm]). The leaf disks were
oven-dried at 80 ◦C for 24 h, then weighted using an analytical scale (sensitivity: 0.0001 g)
to measure the dry biomass. Vegetation material was then prepared for nitrogen estimation,
using an electric mini chopper to homogenize the sample. Nmass was determined by dry
combustion with a CN elemental analyzer (Flash EA 1112 NC-Soil, Thermo Fisher Scientific,
Pittsburg, PA, USA). Leaf Nitrogen Content (LNC) was calculated from Nmass and LMA
according to the following equation:

LNC = 10 ·Nmass · LMA
[
mg cm−2

]
(2)

In order to derive Canopy Chlorophyll Content (CCC) and Canopy Nitrogen Content
(CNC), LAI was measured in 87 ESUs using either LAI2200 plant analyzer (LI-COR Inc.,
Lincoln, NE, USA) or digital hemispherical photography [38,39], according to plant devel-
opment stage. LAI2200 data were acquired along 10 m transects following the ABBBBA
sequence of above (A) and below (B) canopy measurements. LAI data were then post-
processed using the software FV2200. Hemispherical photography was performed using
a CoolPix 990 4 Megapixel digital camera (Nikon, Tokyo, Japan ), equipped with a FE-E8
8 mm fish-eye lens (Nikon, Tokyo, Japan) and mounted on a tripod. The pictures were
acquired at the center and at the four corners of each ESU. During the first campaign,
downward pictures were taken in ESUs with small maize plants (development stage V2–4),
whereas upward modality was used in the second campaign. The hemispherical pictures
were post-processed through Can-Eye v6.4.91 [39] to estimate LAI values which were
averaged for each ESU.

Finally, CCC and CNC were calculated multiplying the corresponding LCC and LNC
by LAI:

CCC =
1

100
· LCC · LAI

[
g m−2

]
(3)

CNC = 10 · LNC · LAI
[
g m−2

]
(4)

2.2. Earth Observation Dataset

The Earth Observation (EO) dataset is represented by two hyperspectral images
acquired by the HyPlant-DUAL instrument [40–42] on 7 and 30 July. HyPlant is a novel
airborne imaging spectrometer, developed by the Jülich Forschungszentrum in cooperation
with SPECIM Spectral Imaging Ltd (Oulu, Finland). The spectrometer consists of two
hyperspectral modules able to measure reflectance (DUAL) and sun-induced chlorophyll
fluorescence, operating in a push-broom modality. The DUAL imager includes two sensors,
integrated in a single housing and with the same fore optics, providing contiguous spectral
information from 370 to 2500 nm with 3–10 nm spectral resolution in the VIS/NIR spectral
range and 10 nm spectral resolution in the SWIR spectral range. The technical features of
the acquired images are summarized in Table 2. The study area was covered by six different
flight lines on 7 July and by four flight lines on 30 July, with a ground sampling distance
(GSD) of 1 m and 4.5 m, respectively. HyPlant-DUAL images were provided georectified
and atmospherically corrected to top-of-canopy reflectance [43]. In order to evaluate the
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potential of CHIME to assess crop traits, these images were spectrally resampled to CHIME-
like bands, according to theoretical Gaussian spectral response functions (i.e., 210 bands
with 10 nm bandwith). The bands influenced by atmospheric water vapor absorption were
removed, leading to a final CHIME-like spectral configuration of 157 bands. CHIME-like
reflectance spectra, used in the validation step of retrieval models, were collected from the
images with the original GSD (1 m and 4.5 m), at the same locations of field measurements.
Every ESU location was visually checked and repositioned, if necessary, to match the right
location of field measurements. For each ESU, the relative reflectance was calculated as
the average reflectance of all pixels falling within the ESU extent (10 m). Moreover, for
mapping demonstration, the images were spatially resampled to the expected CHIME
spatial resolution of 30 m, through a cubic convolution algorithm, to provide realistic
CHIME maps of estimated crop traits.

Table 2. Technical features of HyPlant-DUAL acquisitions over the study area, during the 2018 ESA
FLEXSENSE campaign held in Grosseto.

Date Lines Tot. Length Tot. Area Swath GSD

7 July 2018 6 ∼7 km ∼18 km2 400 m 1 m
30 July 2018 4 ∼8 km ∼20 km2 1800 m 4.5 m

2.3. Crop Trait Retrieval

Crop trait retrieval was performed following a hybrid approach (HYB). According to
this scheme, a radiative transfer model is used to simulate canopy reflectance, considering
leaf and canopy vegetation parameters as well as background, illumination and viewing
conditions (Sun–target–sensor geometry). Then, the RTM is run in forward mode to
generate a database (LUT), which includes input-output pairs corresponding to crop traits
of interest (i.e., LCC, LNC, CCC and CNC) and the related simulations of reflectance
spectra. The generated LUT is then analyzed using ML regression algorithms to define a
predictive relation between reflectance spectra and crop traits. The ML regression algorithm
used in this work is the Gaussian process regression (GPR), which has been successfully
exploited in several previous studies [26,44–46]. Moreover, the hybrid approach optimized
through the active learning technique (HAL), recently introduced for the retrieval of above-
ground nitrogen content [31,32], was evaluated and compared to the results obtained by
the standard HYB approach. For both HYB and HAL, also several spectral dimensionality
reduction strategies were tested, using the Principal Component Analysis with different
numbers of components (PCA5, PCA10, PCA15, PCA20). The following sections provide
further details on the RTM used in this study, the GPR algorithm and the AL heuristics.

2.3.1. PROSAIL-PRO Radiative Transfer Model

The RTM, used to test the performance of hybrid approaches to retrieve crop traits,
is the latest release of PROSPECT, the PROSPECT-PRO model [47]. The novelty of this
model is the introduction of nitrogen-based constituents (proteins–Cp) and carbon-based
compounds (CBC), which replace the traditional dry matter content (Cm). Proteins are the
base parameter used for the retrieval of nitrogen content at both leaf (LNC) and canopy
(CNC) level. Since PROSPECT-PRO simulates reflectance and transmittance spectra at leaf
level, a MATLAB script was specifically developed to couple PROSPECT-PRO with the
4SAIL canopy model [48,49]. The 4SAIL model describes the canopy as a homogeneous
medium where leaves are randomly distributed, using a limited number of structural
variables in addition to leaf reflectance and transmittance and background (BG) reflectance
(e.g., soil). The resulting model (PROSAIL-PRO) is able to simulate reflectance spectra at
canopy level.

The generation of the LUT used to train ML algorithms represents a critical step as
it should be representative of vegetation reflectance spectra, including a priori informa-
tion on the distribution of the input variables [50]. To avoid unrealistic combinations of
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PROSAIL-PRO input variables, a MATLAB script was designed to exploit covariances
between some of the maize parameters measured during the Grosseto 2018 campaign
(Figure 2). Moreover, for each crop parameter, the script allows the user to choose between
several two-parameter families of Probabilities Density Functions (PDFs), such as Uniform
distribution and Gaussian distributions. Most of the PDFs and the related ranges were
selected according to actual values observed during the field campaign; the remaining
values were selected according to literature or authors experience. The full PROSAIL-PRO
parameterization is summarized in Table 3.

Table 3. List of PROSAIL-PRO input variables used to generate the LUT. Inputs variables were
randomly sampled according to the reported distributions and ranges.

Param. Description Unit PDF Range 1

PR
O

SP
EC

T-
PR

O

N Structural parameter - Normal 1.4 0.14
Cab Chlorophyll content 2 µg cm−2 Normal 41.5 8.8
Ccx Carotenoid content 2 µg cm−2 Normal 7.32 1.5
Canth Anthocyanin content µg cm−2 Normal 0.0 0.0
Cbp Brown pigment content µg cm−2 Normal 0.0 0.0
Cw Water content 2 mg cm−2 Normal 12.92 1.91
Cp Protein content 2 g cm−2 Uniform 0.0 0.001
CBC Carbon-Based Constituents g cm−2 Uniform 0.003 0.006

4S
A

IL

ALA Average Leaf Angle 2 ° Normal 49.0 4.9
LAI Leaf Area Index 2 m2 m−2 Normal 1.77 1.4
HOT Hot spot parameter m m−1 Normal 0.01 0.001
SZA Solar Zenith Angle 2 ° Uniform 26 30
OZA Observer Zenith Angle ° Uniform 0 0
RAA Relative Azimuth Angle ° Uniform 0 0
BG Soil Spectra 2 - Uniform 2 4

1 min and max values in case of Uniform PDF; µ and σ values in case of Normal PDF. 2 Ranges set according to
values measured in this study.

To test HYB and HAL approaches, random values were sampled from the selected
PDFs and passed as input to the PROSAIL-PRO model. The generated LUT included
2000 reflectance spectra and the corresponding crop traits. This LUT size, which may seem
small compared to other ML algorithms such as Neural Networks, was considered a good
trade-off between representation of vegetation traits’ variability and computation time
during the training phase. This is justified considering that for kernel-based algorithms—
such as GPR—a relatively small training dataset is sufficient to identify the non-linear
relations between spectral observations and the variables of interest [34]. This has been
also confirmed by other studies using similar sampling sizes for GPR training datasets.
In [46], the impact of the training database size was analyzed by building retrieval models
based on LUT sizes of 1000, 2000, 3000, 5000 and 10,000 simulations. A training database
of 3000 samples was chosen as a fair compromise between accuracy and processing time.
A similar analysis was performed in [51], where the influence of the LUT size (ranging from
1000 to 10,000 with a step size of 1000 samples), on retrieval accuracy and training time,
was investigated. In this case, an LUT of 2000 samples was considered a good trade-off
between accuracy and time.
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Figure 2. Example of PROSAIL-PRO random inputs generated from a multivariate normal PDF,
considering covariance values among plant traits. Red dots in the scatter plots represent values
measured during the Grosseto 2018 campaign; the blue dots are randomly sampled values used as
input for the PROSAIL-PRO simulations.

2.3.2. Gaussian Process Regression

Gaussian process regression is a non-linear non-parametric regression algorithm
which falls under the kernel-based function category. GPR, based on Gaussian processes
(GPs), generalizes Gaussian probability distributions in a function space [52]. Differ-
ently from the majority of machine learning algorithms, the training phase in GPR is
based on a Bayesian framework, leading to probabilistic outputs [21]. Introduced in
Rasmussen [53], GPR was first applied in the field of hyperspectral data to map vegeta-
tion traits by Verrelst et al. [44,54]. According to Caicedo et al. [55], the recent successful
exploitation of GPR in the vegetation traits mapping is related to two main features: (i) the
algorithm is able to provide both a predictive mean and a predictive variance (uncertainty)
and (ii) the algorithm is able to use very sophisticated kernel functions to model covariance.

Basically, GPR models the relation between input samples x ∈ RD (i.e., CHIME-like
spectra) and output observations y ∈ R (i.e., a specific vegetation trait) as y = f (x) + ε,
where ε is an additive Gaussian noise with zero mean and variance σ2

n , and f (x) is a
Gaussian-distributed random vector with zero-mean and covariance matrix K(x, x), i.e.,
f (x) ∼ N (0, K). The covariance matrix takes into account the main statistical properties of
the variable to be modeled through a user-defined kernel function matrix k(xi, xj), encoding
the similarity between each combination of the input samples xi and xj. In this study, the
asymmetric Square Exponential (SE) was used as a kernel function due to its capability to
(1) approximate smoothly varying functions and (2) deal with asymmetries in the feature
space [56]:

k(xi, xj) = σ2
s exp

(
− 1

2

D

∑
b=1

[xi(b)− xj(b)
σb

]2)
, (5)

where σ2
s > 0 represents the output variance, while σb is related to the spread of the training

information along the input dimension b. The covariance matrix is completely defined once
θ = {σ2

s , σ2, σ2
n} is set. The Bayesian framework of GPR allows estimating the distribution

of f at any test point x∗ (i.e., a new pixel) conditioned on the information carried by the
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training data. According to its formulation, f (x∗) is normally distributed with a mean and
variance given by:

f (x∗) = kT
∗ (K + σ2

n IN)
−1y

σ2
f (x∗) = c∗ − kT

∗ (K + σ2
n IN)

−1k∗
(6)

where N is the number of available training samples, y = [y1, . . . , yN ]
T is the training

output, c∗ = k(x∗, x∗) + σ2
n and k∗ = [k(x∗, x1), . . . , k(x∗, xN)]

T is an N × 1 vector con-
taining the similarity between x∗ and the training input information. The probability of
the observations given the model hyperparameters p(y|x, θ) is provided by the marginal
likelihood over the function values f , whose maximization during GPR training directly
provides the optimum value of θ [57]. Finally, once optimized θ is known, the prediction of
y for any input x∗, along with its uncertainty, is given by Equation (6).

The GPR algorithm used in the training phase of this study is the MATLAB version
implemented in the MLRA toolbox of the Automated Radiative Transfer Models Operator
(ARTMO, https://artmotoolbox.com/, (accessed on 1 September 2021); [55,58]). Several
options and kernel functions implemented in the Matlab version help optimizing and
speeding up the training process, which becomes a relevant factor when GPR is imple-
mented in an iterative process such as AL [34]. For this study, the GPR was set up using
the default ARTMO settings, which include exact fit methods, constant basis functions
and a qr computation method. In the case of LNC, the default parameters were not suited
to identify a proper model; therefore, they were set through an optimization procedure
implemented in ARTMO. In addition, the model was trained using a cross-validation
method with 10 k-folds and 5% Gaussian noise was added to both parameters (crop traits)
and simulated spectra, in order to generalize the retrieval model.

2.3.3. Active Learning Approach

The active learning technique was applied within the hybrid framework (HAL) to
evaluate its performance in the retrieval of selected maize traits and to compare its results
to those obtained using the standard HYB approach. The AL technique is a dimensionality
reduction (DR) approach which optimizes the number of samples in the LUT through an
intelligent sampling strategy. In the first step, a small pool of reflectance spectra, randomly
selected from the original LUT (e.g., 20 samples), is used to train a GPR model and to
evaluate its performance against the validation data. Then, iteratively, a new sample is
added to the reduced LUT—according to an AL heuristic—and a new GPR model is trained:
if the new sample improves the model validation statistics, it is kept in the training pool,
otherwise it is rejected. This procedure is performed for all the simulated reflectance spectra
available in the original LUT. The final result is a reduced LUT including only the spectra
that increased the model performance. The AL heuristics tested in this work belong to
two different groups: criteria based on uncertainty, which include samples with greater
disagreements between the different explanatory variables, and criteria based on diversity,
which include samples distant from the selected training LUT. The first group includes
variance-based pool of regressors (PAL) [59] and residual regression AL (RSAL) [60]; the
second group includes Euclidean distance-based diversity (EBD) [61], angle-based diversity
(ABD) [62], and cluster-based diversity (CBD) [63]. All the tests were performed using the
AL module implemented in the ARTMO toolbox.

3. Results

Validation results, obtained from the comparison of estimated crop traits (for both HYB
and HAL) with field measurements, are summarized in Table 4: accuracy and goodness-of-
fit metrics are expressed in terms of coefficient of determination (R2), Root Mean Square
Error (RMSE) and RMSE normalized respect to range (defined as the maximum value
minus the minimum value) of measured data (nRMSE). In case of HAL, results are reported
only for the best performing AL algorithm for each trait and spectral DR combination.

https://artmotoolbox.com/
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Table 4. Goodness-of-fit metrics for crop trait retrieval using standard hybrid approach (HYB) or
hybrid with AL approach (HAL). Statistics are expressed as coefficient of determination (R2), Root
Mean Square Error (RMSE) and normalized RMSE (nRMSE).

HYB HAL
DR R2 RMSE nRMSE R2 RMSE nRMSE AL

LC
C

PCA05 0.00 18.39 62.99% 0.27 5.58 19.11% CBD
PCA10 0.00 16.91 57.91% 0.69 3.51 12.00% CBD
PCA15 0.00 16.98 58.16% 0.41 4.80 16.44% EBD
PCA20 0.00 15.98 54.74% 0.72 3.31 11.32% CBD

LN
C

PCA05 0.00 0.07 54.43% 0.02 0.03 24.28% EBD
PCA10 0.06 0.38 302.7% 0.56 0.02 16.36% RSAL
PCA15 0.24 0.18 125.9% 0.55 0.02 16.69% RSAL
PCA20 0.00 0.16 125.6% 0.06 0.03 24.11% PAL

C
C

C

PCA05 0.79 0.38 13.40% 0.87 0.22 7.68% ABD
PCA10 0.79 0.50 17.70% 0.88 0.21 7.54% CBD
PCA15 0.80 0.54 18.99% 0.87 0.22 7.89% PAL
PCA20 0.81 0.54 19.01% 0.86 0.23 8.05% CBD

C
N

C

PCA05 0.83 1.31 14.21% 0.92 0.77 8.35% EBD
PCA10 0.84 1.10 11.93% 0.93 0.71 7.69% CBD
PCA15 0.83 1.17 12.66% 0.93 0.72 7.77% EBD
PCA20 0.84 1.12 12.18% 0.93 0.74 8.06% RSAL

HYB showed good results at canopy level, where both CCC and CNC traits were
assessed with high accuracy for all DR. The best performances were represented by
R2 = 0.79, RMSE = 0.38 g m−2 and nRMSE = 13.40% for CCC with PCA05 and R2 = 0.84,
RMSE = 1.10 g m−2 and nRMSE = 11.93% for CNC with PCA10. Conversely, very poor
results were observed at leaf level: in this case, the GPR was not able to identify a suitable
model to assess LCC and LNC traits.

The addition of active learning step into the hybrid approach represented a major
improvement for crop trait retrieval, increasing goodness-of-fit metrics, especially at leaf
level. As in the case of HYB, canopy level traits were assessed with better accuracy than
the corresponding leaf level traits. The results at canopy level are comparable among all
tested PCA configurations (best metrics: R2 = 0.88, RMSE = 0.21 g m−2 and nRMSE = 7.54%
for CCC with PCA10; R2 = 0.93, RMSE = 0.71 g m−2 and nRMSE = 7.69% for CNC with
PCA10). At leaf level, only some DR configurations provided good results. Regarding LCC,
the best performance was achieved for 10 and 20 PCA components (best metrics: R2 = 0.72,
RMSE = 3.31 µg cm−2 and nRMSE = 11.32%). In case of LNC, 10 and 15 components pro-
vided the best results (R2 = 0.55–0.56, RMSE = 0.02 mg cm−2 and nRMSE = 16.36–16.69%).

Focusing the analysis on HAL, Figure 3 shows the impact of different DR combinations
of AL heuristics and PCA configurations, in terms of R2 and nRMSE. The figure well depicts
how crop traits are better retrieved at canopy level respect to the leaf level. More in details,
the figure shows that HAL is able to provide very good results for all DR combinations at
canopy level. Conversely, only few DR combinations provided good results at leaf level: for
LCC, the best estimates were achieved using CBD and EBD with either 10 or 20 components;
in case of LNC, only PAL with 15 components and RSAL with either 10 or 15 components
provided satisfactory results.

Based on the results shown above, the scatter plots of the best HAL models are
reported in Figure 4, where the colors of the points represent the coefficient of variation (CV)
estimated by the GPR algorithm. In case of CCC, the algorithm trained with 15 components
was preferred among others because it provided estimates with comparable validation
metrics but lower CV values. In general, it is possible to observe a trend between values of
crop trait estimates and their retrieval accuracy: higher estimates are retrieved with higher
accuracy (lower CV values). This trend is more significant for nitrogen than chlorophyll,
however. The best performing HAL models for LCC, LNC, CCC and CNC were then
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applied to CHIME-like images acquired on 7 and 30 July 2018, to generate the maps of
corresponding crop traits.

Figure 3. Metrics of crop traits estimation through HAL for different combinations of AL heuristics
and spectral DR configurations, in terms of R2 and nRMSE.

(a) (b)

(c) (d)
Figure 4. Scatter plots of the best HAL models: leaf chlorophyll content (a), leaf nitrogen content (b),
canopy chlorophyll content (c), canopy nitrogen content (d). The colors of points represent the
coefficient of variation (CV) estimated by the GPR algorithm.
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The crop trait maps for LCC, LNC, CCC and CNC are reported in Figures 5–8, as
well as their corresponding CV maps. The fields with an NDVI value lower than 0.3
were excluded from the maps as they were considered bare soil. All the maps show
retrieved values within the range observed during the field campaigns. In general, the
trend highlighted in the validation scatter plots is confirmed by the maps, where low trait
values are estimated with lower accuracy than higher values.

The LCC maps are reported in Figure 5. Both LFC and HFC fields show an increase in
the average chlorophyll content from 7 to 30 July. On 7 July, the HFC field shows retrieved
values comparable to the estimates obtained on the only LFC sector with sufficiently grown
maize plants (central sector on west side of LFC field). The lower values in the middle part
of HFC field were probably underestimated, presenting a lower accuracy estimation (i.e.,
CV > 30–35%) than the rest of the field. On 30 July, LCC was accurately estimated in both
fields (i.e., CV < 20%).

(a) (b)

(c) (d)
Figure 5. Maps of estimated LCC (a,b) and related CV (c,d) generated from synthetic CHIME-like
images, simulated from the Hyplant-DUAL dataset acquired on 7 and 30 July 2018.

The LNC maps, displayed in Figure 6, show a trend similar to the LCC maps. LNC
values increase between the two acquisition dates, for both maize fields. Similarly to LCC,
LNC was estimated more accurately during the second date in the two test fields. It is
interesting to notice that even though LFC field still presented small maize plants during
the second overpass date, the retrievals were generally accurate. However, as shown in the
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validation scatter plots (Figure 4), LNC was generally estimated less accurately than LCC
(i.e., CV ≈ 25–30% and CV < 20% for LNC and LCC, respectively).

(a) (b)

(c) (d)
Figure 6. Maps of estimated LNC (a,b) and related CV (c,d) generated from synthetic CHIME-like
images, simulated from the Hyplant-DUAL dataset acquired on 7 and 30 July 2018.

The CCC maps are shown in Figure 7. As expected, on the first date, the HFC field
shows higher CCC values than the LFC field. On the second date, the CCC maps of the
two fields tend to have more similar values. Differently from LCC, the average CCC value
in the HFC field decreases between the two acquisitions, suggesting a decrease of the LAI
values, in agreement with the phenological phase of maize already in the reproductive
growth stage.
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(a) (b)

(c) (d)
Figure 7. Maps of estimated CCC (a,b) and related CV (c,d) generated from synthetic CHIME-like
images, simulated from the Hyplant-DUAL dataset acquired on 7 and 30 July 2018.

The CNC maps, displayed in Figure 8, show a similar trend to their leaf counterpart.
On the first acquisition date, the HFC field average value is higher than the LFC average
value and these values increase from first to the second acquisition. Compared to CCC,
the CNC values were estimated with lower accuracy as shown by CV maps, highlighting
possible model flaws, especially for low CNC values.
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(a) (b)

(c) (d)
Figure 8. Maps of estimated CNC (a,b) and related CV (c,d) generated from synthetic CHIME-like
images, simulated from the Hyplant-DUAL dataset acquired on 7 and 30 July 2018.

4. Discussion
4.1. Crop Trait Retrieval

The results achieved in this study revealed that both hybrid approaches, with and
without active learning, are able to estimate chlorophyll and nitrogen with high accuracy at
canopy level. Conversely, only HAL was able to accurately retrieve LCC and LNC. The HYB
approach provided very poor results, confirming the complexity of trait retrieval at leaf
level from canopy reflectance, as highlighted by previous studies [25,64–67]. This can be
due to a number of confounding factors, including canopy structure, illumination/viewing
geometry and background [25,68–70]. This especially holds true in conditions of sparse
canopy cover and/or row crops, where the turbid medium assumptions of 4SAIL are
violated, as in the case of LFC field.

At leaf level, the HYB approach using GPR for LCC retrieval provided extremely
poor results (R2 = 0.00, RMSE = 13.02–18.39 µg cm−2) for all tested dimensionality reduc-
tions. Nonetheless, previous studies on LCC showed moderately good results applying
the HYB approach to Sentinel-2 using either variational heteroscedastic GPR (R2 = 0.47,
RMSE = 6.48 µg cm−2; [71]) or random forest (R2 = 0.26, RMSE = 8.88 µg cm−2; [45]).
On the other hand, the HAL approach, using CBD as the best AL algorithm, provided
accurate estimations (R2 = 0.72, RMSE = 3.31 µg cm−2). Other studies showed lower per-
formance applying HAL and GPR for the retrieval of LCC in winter wheat with Landsat-8
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(RMSE = 12.43 µg cm−2 [26]), or multi-crops with PRISMA data (R2 = 0.67,
RMSE = 5.88 µg cm−2 [35]). Moreover, excellent accuracy was obtained applying HAL and
kernel ridge regression to synthetic Sentinel-3 data, simulated from PROSAIL (R2 = 0.98; [31]).

In case of LNC, HYB with GPR was unable to identify a good model for this trait. One
possible reason could be the limited sensitivity of reflectance spectra to leaf protein content,
especially in fresh leaves ([24,72]). Nonetheless, HAL using PCA with 10 components and
RSAL as AL method provided good results (R2 = 0.56, RMSE = 0.02 mg cm−2), compa-
rable to other studies using either physically based or HAL approaches. Wang et al. [23]
indirectly estimated LNC applying multi-regression models to LCC, leaf mass per area
(LMA) and equivalent water content (EWT) predicted from the inversion of PROSPECT-
4 model, obtaining good accuracy (R2 = 0.58, RMSE = 0.04 mg cm−2). An LUT-based
inversion approach, exploiting PROSPECT-5 coupled to INFORM model, was used in
Wang et al. [25] to estimate LNC (R2 = 0.46, RMSE = 0.04 mg cm−2) in a forest environment
from HySpex airborne sensor. More recently, HAL provided very good LNC estimates
(R2 = 0.87, RMSE = 0.01 mg cm−2 [35]) from PRISMA data, in a multi-crops farming area.

At canopy level, HYB estimations of CCC (R2 = 0.79, RMSE = 0.38 g m−2) are compa-
rable to previous studies (all based on Sentinel-2) or slightly better in terms of RMSE. Both
Upreti et al. [45] and Estévez et al. [71] used PROSAIL as RTM but different ML algorithms:
PLSR (R2 = 0.74, RMSE = 0.40 g m−2) and VHGPR (R2 = 0.85, RMSE = 0.39 g m−2), respec-
tively. Brown et al. [73] coupled PROSAIL and INFORM to train an artificial neural network
model optimized for forestry environments achieving R2 = 0.69 and RMSE = 0.52 g m−2.
HAL provided better CCC estimates (R2 = 0.88, RMSE = 0.21 g m−2) than HYB and also
better than Tagliabue et al. [35] (R2 = 0.82, RMSE = 0.36 g m−2).

Considering CNC, HYB results obtained in this study (R2 = 0.84, RMSE = 1.10 g m−2)
are comparable to those achieved in Berger et al. [74] using VHGPR for the estimation of
aboveground nitrogen content in winter wheat and maize (R2 = 0.86, RMSE = 2.15 g m−2).
It is worth noting that in Berger et al. [74], the CNC was better correlated with leaves plus
stalks than only to leaves as in this work. Similarly to other traits, HAL improved the
retrieval accuracy (with respect to HYB) for CNC (R2 = 0.93, RMSE = 0.71 g m−2), achieving
slightly superior results than previous studies. In Verrelst et al. [32], a training database
generated from PROSAIL-PRO was optimized through AL and the reduced LUT was used
to train the VHGPR model for CNC estimation in winter wheat, maize and grass (R2 = 0.92,
RMSE = 1.84 g m−2). Finally, both Verrelst et al. [34] and Tagliabue et al. [35] applied a
similar HAL approach to actual PRISMA data for CNC estimations in winter wheat and
maize (R2 = 0.72, RMSE = 3.26 g m−2) and multi-crops (R2 = 0.92, RMSE = 0.96 g m−2),
respectively.

4.2. Impact of Dimensionality Reduction

Regarding the dimensionality reduction, the results reported in Table 4 and Figure 3 show
different trends at leaf and canopy level. In particular, HYB approach provided accurate
CCC estimations for all tested DR configurations (R2 = 0.79–0.81, RMSE = 0.38–0.54 g m−2).
CNC showed a similar trend, achieving good results for all PCA components (R2 = 0.83–0.84,
RMSE = 1.10–1.31 g m−2). Regarding HAL approach, very good results were achieved at
canopy level, for both CCC and CNC, considering all the tested combinations of spectral
(PCA components) and sample (AL algorithms) reductions (R2 = 0.86–0.87,
RMSE = 0.21–0.22 g m−2 and R2 = 0.92–0.93, RMSE = 0.72–0.76 g m−2 for CCC and CNC,
respectively). Conversely, only some DR configurations provided good results at leaf level,
as shown in Figure 3: CBD and EBD with PCA10, PCA20 and noPCA for LCC; PAL with
PCA15 and RSAL with both PCA10 and PCA15 for LNC.

In a recent survey about the use of HAL approach for the estimation of terres-
trial vegetation traits from EO data, Berger et al. [33] identified six peer-reviewed articles
fulfilling the search requirements: Verrelst et al. [31], Upreti et al. [45], Verrelst et al. [32],
Upreti et al. [75], Zhou et al. [26] and Pipia et al. [76]. In addition to the abovementioned
articles, two other papers were published later, on the same topic: Verrelst et al. [34] and
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Tagliabue et al. [35]. These studies showed that no AL method outperforms the others for
a single crop trait: different best-performing ALs are obtained in different contexts, even
though these differences are often small. Considering LCC, for example, all AL methods
tested by Verrelst et al. [31] provided R2 > 0.94, whereas EBD achieved only slightly higher
performance than ABD and CBD for the case study presented in Upreti et al. [45]. In
Zhou et al. [26] the combination of entropy query by bagging AL and GPR showed the
best accuracy for LCC estimation (RMSE = 12.43 µg cm−2, rRMSE = 21.77%), whereas
ABD reached the best performance (R2 > 0.67, RMSE = 5.88 µg cm−2, nRMSE = 11.70%)
in Tagliabue et al. [35]. Considering the above results, both spectral and sampling dimen-
sionality reductions are critical factors for the crop trait retrieval process. Although this
does not represent an issue at canopy level, where all the tested combinations provided
similar results, it seems to be relevant when working at leaf level. Therefore, a priori choice
of the number of PCA components and/or AL heuristics might lead to sub-optimal results,
especially at leaf level.

Beside PCA, different dimensionality reduction approaches have been proposed in
the literature within the hybrid framework. Examples of such approaches include band
selection either by expert-based/physically based knowledge [25,74] or automatic band
selection tools [74,77,78]. With respect to PCA, these approaches have the advantage of an
easier interpretation of the band physiological meaning, even though this is at the expense
of the information content available over the full spectral range. In this regard, it would be
worth exploiting a comprehensive dataset (multi-season, multi-site and multi-crop) for a
systematic comparison of the performance of different DR approaches, including automatic
band selection tool, PCA and physically based approaches, to evaluate the best strategy
and its transferability in different contexts.

4.3. Operational Use of the Hybrid Approach in the Framework of CHIME Mission

The presented work was performed within the ESA CHIME Mission Requirements
Consolidation (MRC) study. This study was devoted to evaluate retrieval methods to assess
several priority variables, identified by the CHIME mission advisory group among the
thematic fields of vegetation, soil and raw materials. The findings from CHIME-MRC will
support the development of the CHIME end-to-end (E2E) mission performance simulator.
The simulator, whose development already started within the ESA CHIME-E2E study, is
able to accurately simulate all the steps required in the EO data processing chain, starting
from data acquisition up to final surface parameter maps, which also includes the crop
traits presented here [79]. In the next years, during the CHIME mission preparation phase,
the simulator will be further expanded and improved upon until the launch of the satellite,
within the CHIME-E2E mission performance simulator project [34]. In particular, one of the
main features of the simulator is the possibility to validate the generated products against
reference input data, allowing its validation and tuning, exploiting new data from planned
campaigns [79]. This feature is extremely important considering that, differently from HYB,
which is a method independent from external data, HAL relies on in situ measurements for
the sampling optimization step. While this improves the retrieval performance, it might
limit the model transferability if the reference dataset is not representative of broad crop
conditions. In this regard, the uncertainty map associated with crop trait estimates is an
interesting GPR feature. Uncertainty maps, representing a measure of the model retrieval
performance, can be used to assess map quality and to mask less reliable trait estimates (e.g.,
CV > 20%). Moreover, this GPR feature can provide useful information about crop types
or conditions not taken into account during the AL phase as well as other non-vegetated
surfaces which should be included in the training dataset for global mapping. The latter is
especially important when the hybrid approach is applied within an operational framework.
In such a case, the addition of non-vegetated spectra to the training dataset will increase
the reliability of the estimates when mapping a whole EO image, which usually includes
any kind of surface [34]. To date, only Tagliabue et al. [35] performed a rigorous validation
of HAL performance: the authors trained a HAL model with a dataset acquired in 2020 and
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used an independent dataset acquired in the same study area in 2021 for the validation. The
retrieval accuracy for the two years showed almost comparable performance for chlorophyll
at both canopy (CCC: R2 = 0.82, nRMSE = 10.2% in 2020 and R2 = 0.84, nRMSE = 18.5% in
2021) and leaf level (LCC: R2 = 0.67, nRMSE = 11.7% in 2020 and R2 = 0.62, nRMSE = 27.9%
in 2021), but worse performance for nitrogen (CNC: R2 = 0.92, nRMSE = 5.5% in 2020 and
R2 = 0.79, nRMSE = 23.7% in 2021), especially at leaf level (LNC: R2 = 0.87, nRMSE = 7.46%
in 2020 and R2 = 0.35, nRMSE = 28.4% in 2021), requiring additional improvements. The
high accuracy and consistency of the results obtained for most traits supports the use of the
HAL approach applied to spaceborne imaging spectroscopy for crop monitoring. Future
studies should be devoted to test HAL performance in diverse locations and/or different
growing seasons, broadening vegetation types and conditions, to improve its generalization
for an operational use within the CHIME mission.

5. Conclusions

This work evaluated the potential of the hybrid approach for the retrieval of maize
traits (chlorophyll and nitrogen at leaf and canopy level) within the framework of the future
space-borne hyperspectral mission CHIME. The standard hybrid approach HYB and its
recent variant HAL, used to optimize the LUT through different active learning heuristics,
were tested in combination with several feature dimensionality reductions based on PCA.

The analysis of retrieval accuracy proved that both hybrid approaches are able to
accurately estimate chlorophyll and nitrogen content at canopy level. Conversely, only HAL
was able to accurately retrieve the crop traits at leaf level. Regarding the dimensionality
reduction, the results showed that an a priori choice of the number of PCA components
and/or AL heuristics is a critical factor in the trait retrieval process and might lead to
sub-optimal results, especially at leaf level.

In conclusion, the results obtained in this and previous studies proved that crops
traits can be successfully assessed from spaceborne imaging spectroscopy. However, it is
worth noting that, whereas HYB is an approach fully independent from external data, HAL
relies on measured data to perform the active learning step. In either case, the retrieval
strategies need to be further investigated across different years, sites and crop types in order
to improve the actual transferability to other contexts. This will help to understand the real
potential of this approach, within the operational framework of the future CHIME mission.
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