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Abstract: Of the various proteins encoded by plant viruses, one of the most interesting is the move-
ment protein (MP). MPs are unique to plant viruses and show surprising structural and functional
variability while maintaining their core function, which is to facilitate the intercellular transport of
viruses or viral nucleoprotein complexes. MPs interact with components of the intercellular channels,
the plasmodesmata (PD), modifying their size exclusion limits and thus allowing larger particles,
including virions, to pass through. The interaction of MPs with the components of PD, the formation
of transport complexes and the recruitment of host cellular components have all revealed different
facets of their functions. Multitasking is an inherent property of most viral proteins, and MPs are
no exception. Some MPs carry out multitasking, which includes gene silencing suppression, viral
replication and modulation of host protein turnover machinery. This review brings together the
current knowledge on MPs, focusing on their structural variability, various functions and interactions
with host proteins.

Keywords: callose; coat protein; plasmodesmata; triple gene block; viral suppressor; virus movement;
virus replication complex

1. Introduction

The process of infection of plants with viruses is broadly divided into two types;
local and systemic. Local infection is often subliminal and is characterized by intracellular
confinement of virus within and nearby the site of infection, while the systemic infection
is progressive throughout the host and involves first, the short-distance movement of the
virus from the infected cell to surrounding cells followed by long-distance movement using
the host vasculature preferably the phloem tissue [1]. However, some phloem-limited
viruses often skip the first route and are directly injected into the phloem by their vector
interested in the phloem sap. In general, the plant viruses show a “symplastic” life cycle,
i.e., from entry into the host cell to it accumulates in multiple copies; all occur in the
cell symplast. The local intercellular virus spread in the host largely occurs through the
symplastically connected cells via the plasmodesmata (PD, Figure 1) until they encounter
the host vasculature for long-distance systemic infection [1,2].

The intercellular transport through PD depends upon its size exclusion limit (SEL),
defined by the size of the largest molecule, which can pass through. Although solely
dependent upon the hydrodynamic stokes radius [3], the PD SEL is highly dynamic and
varies with cell-type, ambient light, temperature and developmental stages, being higher
in some newly formed mesophyll cells compared to the fully differentiated mature cells [4].
Not surprisingly, the size of most viruses, (e.g., tobacco mosaic virus, TMV = 300 × 18 nm)
or their nucleic acids, whether in the free or folded state, exceeds the SEL of most PDs
(~60 nm) [5,6]. This indicates that the SEL of PD is modified during virus infection leading
to systemic movement of viral progenies. Most of the plant viruses, if not all, encode a
class of structurally diverse protein(s) known as movement protein (MP) that facilitates
such intercellular adjustments for virus movements. These MPs have been reported to
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interact with various host factors to ensure successful virus movement across cells [5].
In general, the MPs perform the function of interacting with the viral genome, targeting
them to PDs and modifying the SEL of PD, a process often termed as “gating”. The
idea of synchronous coupling of virus replication and intercellular movement of viral
genomes through MP-assisted PD-gating has further divided the movement into sub-
stages involving post replication interactions, movement of an infection unit from the
replication site to the gated PDs and the actual intercellular transport. This has further
expanded the list of MP interacting partners [1,2,5,6].
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Figure 1. The symplastic and apoplastic pathways between adjacent plant cells and the model illustrating plasmodesmata
(PD) structure with-associated cytoskeletal components and proteins governing PD permeability. Abbreviations: CalS—
callose synthases; NCAPP—non-cell-autonomous pathway proteins; PAPK—plasmodesmal-associated protein kinase;
PDCB—plasmodesmata-associated callose-binding proteins; PDLP—plasmodesmata-located proteins; RGP—reversibly
glycosylated polypeptide; Syta—synaptotagmin A.

Despite sharing a common function, there exists a large variation among MPs and
their mechanisms of action. In recent years, a number of functions-associated with MPs,
namely the mechanisms of modifying the PD SEL, formation of a viral transport complex,
interaction with host components and suppression of RNA silencing, have been revealed.
In addition, there are other viral proteins that mimic the functionality of MPs. In this
review, we have chosen to bring together recent findings on MPs, interactions that they
share and the division of labor that they show with other ancillary proteins required for
the intercellular movement of plant viruses. Several other previous in-depth reviews
present an exhaustive discussion on various aspects governing the intra-, and intercellular
movement of viruses and the reader is guided to these for a more holistic understanding of
this topic [7–14]. Additionally, we request readers to go through the reviews [5,15–18] to
get an overview of the historical perspective and earlier findings, specifically on MPs and
their interactions.
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2. PD and PD Associated Proteins (PDAPs): The Facilitators of Virus Movement

PDs (Figure 1) are membrane-lined interconnected channels formed primarily upon
entrapment of components of the endoplasmic reticulum (ER) in the course of phrag-
moplast formation during cytokinesis. PDs are centrally occupied by the appressed ER
(desmotubule; DT), which brings about cytoplasmic continuity at the interface of adjacent
cells. Surrounding the DT is a continuous channel of variable size called cytoplasmic sleeve,
which is delimited by the plasma membrane (PM) [19] and is available for intercellular
trafficking. Various PD-associated proteins (PDAPs; Figure 1) regulate PD permeability [20]
and thus can affect the intercellular movement of viruses. The cytoskeleton proteins actin
and myosin connect DT to PM through helically arranged globular particles and spoke-like
tubular structures, thus, regulating the size of the cytoplasmic sleeve [21]. The SEL is
negatively regulated by the deposition of callose (β-1,3-glucan). Callose is synthesized by
callose synthase (CalS) and degraded by glucanases [22]. Calreticulin, a highly conserved
Ca2+ sequestering chaperone protein, restricts the exit of misfolded proteins from the
ER and accumulates in the PD [23]. The Arabidopsis calreticulin-1 (AtCRT1) shows a 22
amino acid (aa) PD-localizing signal sequence and accumulates around DT in PD, thereby
blocking the movement of molecules across PD cytoplasmic sleeves [23,24]. Centrin is
a Ca2+-binding contractile nano-filament protein localized in the PD-neck region, which
negatively regulates the PD permeability upon dephosphorylation. Formin is an evolu-
tionarily conserved integral membrane protein that regulates permeability by stabilizing
and tethering the actin filaments to the PD membrane [25]. Lipid rafts are sterol- and
sphingolipid-rich PM microdomains that regulate the callose homeostasis across PD [26].
Other PD-associated proteins affecting PD permeability include non-cell-autonomous path-
way proteins (NCAPP) located near the orifice [27], PD-associated protein kinase (PAPK),
carries out phosphorylation of NCAPP and other-associated proteins [9,27], PD-associated
callose-binding proteins (PDCBs) abundant at PD neck region near the callose deposition
site and affecting the callose metabolism [28], plasmodesmata-located proteins (PDLPs)
promote callose deposition [29], lipid raft anchored protein (remorin) and reversibly glyco-
sylated polypeptide (RGP) [30,31]. The Arabidopsis synaptotagmin A (SYTA) tethers the
ER-PM contact sites across PD where it helps in endocytic recycling [32], tropomyosin
binds to actin and regulates the myosin–actin binding, and myosin motor proteins act for
the establishment of actin cables across PD and driving the cytoskeletal movements [33].
The locations of the above are depicted diagrammatically in Figure 1.

3. Types of MPs

With the pioneering study on temperature-sensitive mutants of TMV and the discovery
of a virus-encoded nonstructural 30 kDa MP that assists the virus for its local spread [5,34],
a large number of MPs have been discovered in several virus genera (Table 1). The criteria
for a protein to qualify as MP is based upon: (a) loss of virus spread upon removal or
mutation of the putative MP encoding gene fragment (b) use of transgenic plants expressing
viral MPs or use of MPs of other related viruses for complementing viral movement where
MP is removed or made non-functional (c) localization of MP-reporter gene fusions to the
PD and (d) comparison of its sequence with a previously known viral MP.
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Table 1. General details of movement proteins of some of the most worked out viruses across genera.

Family/Genus Species MP MP—Properties MP—Mode of Virus
Intercellular Movement

Assisting Viral Proteins
and Their Putative

Function

Interacting Host Proteins and Their
Putative Function References

Virgaviridae/
Tobamovirus TMV 30 kDa (P30)

• α-Helical domain rich
• Binds ssRNA
• PD-localized
• Membrane-bound

• PD-gating
(increases SEL)

• Helps in the
formation of
replication complex
and, along with
p126 (silencing
suppressor),
participates in
intracellular
transport

• Replicase—binds to
vRNP and along with
facilitates its movement
across PD

• PME—cell wall receptor, PD
delivery

• PAPK, CK2, RIO kinase—MP
phosphorylation

• KELP, MBF1—transcriptional
co-activators

• MPB2C—subcellular localization
by the microtubular association
of MP

• Actin—movement of vRNA
along ER increase PD SEL

• EB1a—microtubular association
of MP for vRNP movement

• ANK—cytoplasmic receptor for
MP

• Tubulin and
γ-tubulin—movement of vRNA

• NtMPIP1—DnaJ-like chaperone
assisting movement

• Calreticulin—movement of the
viral ribonucleoprotein

• SYTA—recognizes the MP PLS,
remodeling of the PD
permeability

[1,11,15,22,35–
59]

Tombusviridae/
Dianthovirus RCNMV 35 kDa (P35)

• Binds ssRNA
• Have localization

domains for both cell
wall and ER

• Silencing suppressor
• Host range

determinant

PD-gating (increases
SEL)

• Viral replicase
complexes formed with
RNA1—recruits MP to
punctate cortical
structures of ER, which
is essential for
intercellular movement

• MP—interacts with CP
for long-distance
systemic movement

• NbGAPDH—A intercalates
between VRC and MP and
facilitates intercellular
movement

[60–64]
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Table 1. Cont.

Family/Genus Species MP MP—Properties MP—Mode of Virus
Intercellular Movement

Assisting Viral Proteins
and Their Putative

Function

Interacting Host Proteins and Their
Putative Function References

Tombusviridae/
Carmovirus
MPs-(often

termed double
gene block
proteins)

TCV P8 and P9

• P8—binds ssRNA
• P8—nuclear-localized
• P9—cytosolic and ER

membrane-localized

PD-gating (increase SEL)

• CP—only for
long-distance systemic
movement through an
assemblage of the virus
particle and supportive
silencing suppression
activity

• P8—interacts with Atp8 with
two “RGD”
sequences-cytoskeleton
trafficking interactions for virus
movement

[65,66]

CarMV P7 and P9

• P7—binds ssRNA
• P9—no RNA-binding

activity
• P7—cytosolic initially,

later localized near the
cell wall

• P9—probably localized
to ER membranes

PD-gating (increase SEL) NK NK [67]

PFBV P7 and P12
• P12—binds RNA
• P12—localized to ER

membranes
PD-gating (increase SEL) NK NK [68]

MNSV P7A and P7B

• P7A—binds RNA
• P7B—no RNA-binding

activity
• P7B—probably

localized to ER
membranes, silencing
suppression activity

• PD-gating (increase
SEL)

• P7B accumulates on
Golgi and
modulates actin
filaments to PD

CP—R2-subdomain, also a
VSR

Movement is energy-dependent on
unknown host protein (s) [69,70]
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Table 1. Cont.

Family/Genus Species MP MP—Properties MP—Mode of Virus
Intercellular Movement

Assisting Viral Proteins
and Their Putative

Function

Interacting Host Proteins and Their
Putative Function References

Kitaviridae/
Higrivirus HGSV BMB1 and

BMB2

• BMB1-binds RNA
• BMB2—no

RNA-binding activity
• BMB2—an integral ER

protein, induces ER
constriction, acquire
W-like topology like
reticulons and also
forms a PD-associated
replication
compartment

• BMB2—can mediate
the transport of BMB1
to and through
plasmodesmata

• PD-gating (increase
SEL) NK NK [71,72]

Tombusviridae/
Tombusvirus TBSV P22

• Binds RNA
• Have regulatory

sequences for RNA
accumulation

• Induces HR-like
necrotic local lesions on
Nicotiana edwardsonii

PD-gating (increases
SEL)

P19—assist systemic
movement through silencing
suppression

HFI22—leucine zipper homeodomain
protein interacts with P22 for delivery
of P22/RNA complexes through PD
for intercellular movement

[73]

Closteroviridae/
Closterovirus

BYV
CTV

P6, P64, CP,
CPm and
HSP70h

• P6—RER-associated
• PD-localized (HSP70h)
• MT-binding (HSP70h)
• Virion assembly (CP,

CPm, and HSP70h)

PD-gating (increase SEL)
P20—interacts with HSP70h
for long-distance systemic
movement

Class VII myosins—motility and
targeting of HSP70h to PD [74]
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Table 1. Cont.

Family/Genus Species MP MP—Properties MP—Mode of Virus
Intercellular Movement

Assisting Viral Proteins
and Their Putative

Function

Interacting Host Proteins and Their
Putative Function References

Closteroviridae/
Crinivirus LIYV

P6, P64, CP,
CPm and

HSP70h P26
(essential for

virus systemic
infection)

• PD-localized
• Forms conical PM

deposits (PLDs) at PM
over PD pit fields

PD-gating (increases
SEL) P9—unknown function NK [75]

Potyviridae/
Potyvirus

TEV,
TuMV,
SMV,

BCNMV,
LMV

P3N-PIPO,
CP

(TEV/TuMV/
SMV)

CP and
HC-Pro (BC-
NMV/LMV)

• CP—N terminal and
central core domain
participates in the
movement

• HC—Pro-silencing
suppressor

• P3N-PIPO—localized
to PM and PD

PD-gating (increase SEL)

• CI—directed to PD by
P3N-PIPO and forms
conical structure aiding
intercellular movement

• CP— (cis expressed)
associates the RNP
complexes (RNPs)

• P3—recruits a small
portion of P3N-PIPO to
the 6 K2 aggregates

pCAP1—binds to P3N-PIPO aids its
localization to the PD and
intercellular movement

[76–80]

Luteoviridae/
Polerovirus

PLRV,
TuYV,
PeVYV

17 kDa (P17)
175 kDa) P4

(PeVYV)

• Binds RNA
• PD-localized
• Phosphorylated

(host-dependent)

PD-gating (increase SEL)
P3a—localization to the
outer membrane of
mitochondria and plastid

• PKC—related
membrane-associated protein
kinase phosphorylation

• Actin—intracellular trafficking
and PD localization

[81–83]

Luteoviridae/
Luteovirus BYDV 17 kDa (P4)

• Binds RNA
• PD-localized
• Silencing suppressor
• Cause PCD
• Nuclear membrane

targeting
• Self -interactive

PD-gating (increases
SEL)

P3a—localization to the
outer membrane of
mitochondria and plastid

NK [84]
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Table 1. Cont.

Family/Genus Species MP MP—Properties MP—Mode of Virus
Intercellular Movement

Assisting Viral Proteins
and Their Putative

Function

Interacting Host Proteins and Their
Putative Function References

Geminiviridae/
Begomovirus

BDMV
AbMV,
ToLCNDV

BC1 (BL1)

• Binds ss/ds DNA
• PM, cell wall and

nucleus localized
• Influence the symptom

severity
• Phosphorylated
• ToLCNV (BC1 MP) is a

determinant of
mechanical
transmissibility

PD-gating (increases
SEL)

• BV1-NSP—replicated
viral genome delivery
from the nucleus to the
cytoplasm

• Formation of a
nucleoprotein complex

• CP—for long-distance
movement

• PAPK—MP phosphorylation
• Histone H3—formation of

DNA-H3-NSP-MP complex in
BDMV

• Hsp-70—assist AbMV
movement through stromules
and plastids

• SCD-2—AbMV movement

[85,86]

Rhabdoviridae/
Nucleorhadb-

dovirus

RYSV,
SYNV,
MMV,
MFSV,
PYDV,
EMDV,
CaLCuV

P3 (RYSV and
MMV)

P3 or sc4
(SYNV)

P4 (MFSV)
Y (PYDV and

EMDV)

• Secondary structure
similarity with 30 K
superfamily

• PD-targeted
• P3 and sc4 binds RNA

nonspecifically
• sc4 is

membrane-associated

PD-gating (increase SEL)

• M (matrix) and G
(glyco)
protein—formation of
movement complex
(PYDV)

• G (glyco) protein—
formation of movement
complex (SYNV)

• P3 or sc4 (SYNV) —interacts
with MT localized sc4i21 and
sc4i17 (homologs of the
Arabidopsis phloem-associated
transcription activator AtVOZ1)
—for intracellular trafficking and
aiding in the intercellular
movement

[87,88]

Rhabdoviridae/
Cytorhabdovirus

LNYV,
ADV,

TYMaV

4b (LNVY)
P3 (ADV and

TYMaV)

• P3—PD-localized
• 4b shows nuclear

localization
• Membrane-associated

(4b and P3)

PD-gating (increase SEL)
P (phospho) protein—
formation of movement
complex (ADV)

P3 (LNVY) —interacts with
MT-associated VOZ1-like
transcriptional activator—for
anchoring the virus movement
complexes to the MT network for
intracellular trafficking and aiding in
the intercellular movement

[87,88]
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Table 1. Cont.

Family/Genus Species MP MP—Properties MP—Mode of Virus
Intercellular Movement

Assisting Viral Proteins
and Their Putative

Function

Interacting Host Proteins and Their
Putative Function References

Alphaflexiviridae/
Potexvirus

and
Betaflexiviridae/

Foveavirus a

PVX
GRSPaV

TGB1
TGB2
TGB3
TGB1
TGB2
TGB3
Some

members
have TMV 30

K-like MP

• TGB1—25 kDa binds to
ssRNA,
ATPase/helicase
activity, RNA silencing
suppressor, translation
activator, organization
of VRC (X-bodies)
through ER/actin
remodeling

• TGB2—12 kDa, ER
transmembrane protein

• TGB3—8 kDa, ER
transmembrane
protein, induces PCD
in N. benthamiana

• PD-gating (increase
SEL)

• TGB2—provides
the environment for
robust virus
replication

• TGB1—CP
• TGB2—viral RdRp

TGB1-

• Actin—organization of PVX-X
bodies

• Remorin—interaction impairs
the virus movement

• Fibrillarin and coilin—assist in
vRNPs formation

• CK2-like kinase—for MP
phosphorylation

TGB2-

• TIP—interacts with BG1 for
regulating callose accumulation

• NbCPIP2a and
NbCPIP2b—interacts with PVX
RNA and CP for replication and
movement

[12,18,37,89–
94]

Virgaviridae/
Hordeivirus BSMV

TGB1
TGB2
TGB3

• TGB1—42–63 kDa,
have nucleolar and
nuclear localization
signals, binds to RNA,
NTPase/helicase
activity causing
unwinding of virus
RNA duplex

• TGB2—13–14 kDa ER
transmembrane protein

• TGB3—17 kDa ER
transmembrane
protein, PD targeting

• PD-gating

(Increase SEL)

• TGB3 interacts with
TGB1 and TGB2
and provides a
basic framework for
RNP formation

• TGB1—interacts with
CP

• TGB2—replicase

γb (also a VSR)- enhances
the ATPase-mediated
assembly of BSMV-RNP
complex

• Fibrillarin—formation of RNP
for intercellular BSMV
movement

• CK2—protein kinase,
phosphorylates TGB1 for
intercellular BSMV movement

• Actin—intercellular BSMV
movement and TGB3
localization to the cell wall

[18,89–93]
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Table 1. Cont.

Family/Genus Species MP MP—Properties MP—Mode of Virus
Intercellular Movement

Assisting Viral Proteins
and Their Putative

Function

Interacting Host Proteins and Their
Putative Function References

Bunyaviridae/
Benyviruses BNYVV

TGB1
TGB2
TGB3

• TGB1—has nucleic
acid-binding activity at
its N-terminal

• TGB1—contains
ATP/GTP-dependent
SF1 helicase type
consensus sequence
motifs

• TGB1, TGB2 and TGB3
are localized on
ER-derived peripheral
membrane bodies

• PD-gating (increase
SEL)

• TGB 2 and 3
facilitate the
targeting of TGB1
to PD-associated
peripheral punctate
bodies

NK NK [12]

Tombusviridae/
Umbravirus

PEMV-
2 P26 and P27

• Bind RNA, interact
with PEMV-1
Enamovirus during
natural coinfections
and assist its
movement

• Protect viral and host
transcript from
nonsense-mediated
decay

Tubule formation NK NK [95]

Caulimoviridae/
Caulimovirus CaMV 38 kDa MP

(P1) Binds RNA Tubule formation

• P6—forms virus
inclusion bodies that
serve as translation
sites for other proteins,
including MP

• P3—for MP-CP
interaction at PD

• PRA1—vesicle trafficking
regulation

• AtSRC2.2 and
PDLPs—recruitment of MP to
PD

• CHUP1—virion delivery to PD
• MP17—a rab acceptor-like

vesicle-associated protein and
PME-putative role in
intercellular movement.

• PDLPs—recruitment of MP to
PD

[96–99]
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Table 1. Cont.

Family/Genus Species MP MP—Properties MP—Mode of Virus
Intercellular Movement

Assisting Viral Proteins
and Their Putative

Function

Interacting Host Proteins and Their
Putative Function References

Secoviridae/
Nepovirus GFLV 38 kDa MP Binds RNA Tubule formation CP

• KNOLLE—vesicle trafficking of
MP

• Myosin—MP delivery to PD
• Calreticulin and

PDLPs—recruitment of MP to
PD

[100–102]

Comoviridae/
Comovirus CPMV 48 kDa MP Has large CP, GTP, ssRNA,

ssDNA-binding regions Tubule formation Large CP (CPL)-37 kDa PDLPs-recruitment of MP to PD [103–107]

Bunyaviridae/
Tospovirus TSWV NSm protein

• Binds ssRNA
• Avirulence determinant

for Sw-5 and RTSW
resistance gene

• Associated with the ER
membrane

Tubule formation
TSWV
N—protein-recognition of
nucleocapsid structures

• DNA J-like chaperone proteins,
e.g., AtA39—may act as a
putative molecular motor for
intercellular transport

• NbSGT1—a molecular
co-chaperone, interacts with
NSm for intercellular and
systemic infection

[96–99,108–
110]

Tombusviridae/
Umbravirus GRV 28 kDa, MP

(P4)

• PD-localized
• Binds to both ssDNA

and ssRNA
Tubule formation

ORF3 protein assist for
vRNP formation for
cell-to-cell movement

Fibrillarin—vRNP complex formation
for transport, interacts with virus
ORF3 protein

[111,112]

Bromoviridae/
Alfamovirus AMV 32 kDa MP

(P3)

• Bind RNA
• PD-localized
• ER-associated

• PD-gating

(increases SEL)

• Tubule formation

CP

• Patellin 3 (atPATL3) and Patellin
6 (atPATL6) —inhibitory effect
on intercellular movement

• Host kinases—for MP
phosphorylation

[113]



Microorganisms 2021, 9, 695 12 of 30

Table 1. Cont.

Family/Genus Species MP MP—Properties MP—Mode of Virus
Intercellular Movement

Assisting Viral Proteins
and Their Putative

Function

Interacting Host Proteins and Their
Putative Function References

Bromoviridae/
Bromovirus BMV 32 kDa MP

(3a)

• Binds RNA
• PD-localized

• PD-gating

(increases SEL)/

• Tubule formation
(BMV-MI?)

CP (BMV-MI strain) NbNACa1—PD localization [114–116]

Bromoviridae/
Cucumovirus CMV

32 to 36 kDa
MP (3a)
2b-for

long-distance
movement

• Binds RNA
• PD located suppresses

the PAMP-triggered
immune responses of
the host

• 2b is a VSR

• PD-gating

(increases SEL)/

• Tubule formation

CP (for tubule formation?)

• Ascorbate oxidase—movement
of vRNP-MP to PD

• Actin—PD-gating
• RIO kinase—MP

phosphorylation

[117–120]

Bromoviridae/
Ilarvirus PNRSV 32 to 36 kDa

MP (3a)

• Binds RNA
• PD located

• PD-gating

(increased SEL)/

• Tubule formation

CP NK [121]

a The TGB proteins of GRSPaV (Foveavirus) is highly similar to their counterparts in potato virus X (PVX) [94]. Abbreviations: ADV—alfalfa dwarf virus; AMV—alfalfa mosaic virus; AtSRC2.2—Arabidopsis
thaliana soybean response to cold; BCNMV—bean common mosaic necrosis virus; BMV—brome mosaic virus; BNYVV—beet necrotic yellow vein virus; BSMV—barley stripe mosaic virus; BYDV—barley yellow
dwarf virus; BYV—beet yellows virus; CarMV—carnation mottle virus; CHUP1—chloroplast unusual positioning 1; CK2—casein kinase 2; CMV—cucumber mosaic virus; Eb1a—end-binding protein 1a;
EMDV—eggplant mottled dwarf virus; GRSPaV—Grapevine rupestris stem pitting-associated virus; HGSV—hibiscus green spot virus; HSP70h—heat shock protein 70 homolog; LNYV—lettuce necrotic yellows
virus; LMV—lettuce mosaic virus; LIYV—lettuce infectious yellows virus; MBF-1—multiprotein bridging factor 1; MPB2C—movement protein-binding 2C; MNSV—melon necrotic spot virus; MMV—maize
mosaic virus MFSV—maize fine streak virus; NK—not known; NtMPIP1—Nicotiana tabacum MP interacting protein 1; PAMP—pathogen-associated molecular patterns; PAPK—plasmodesmal-associated protein
kinase; PCD—programmed cell death; PEMV-2—pea entaion mosaic virus-2; PeVYV—pepper vein yellows virus; PFBV—pelargonium flower break Carmovirus; PLRV—potato leafroll virus; PME—pectin
methylesterase; PNRSV—prunus necrotic ringspot virus; PRA-1—prenylated rab acceptor1; PVX—potato virus X; PYDV—potato yellow dwarf virus; RCNMV—red clover necrotic mosaic virus; RIO
kinase—Serine/threonine–protein kinase; RTSW—TSWV resistance locus; RYSV—rice yellow stunt virus; SCD-2—stomatal cytokinesis defective 2; SMV—soybean mosaic virus; SYNV—Sonchus yellow
net virus; TBSV—tomato bushy stunt virus; TCV—turnip crinkle virus; TEV—tobacco etch virus; TMV—tobacco mosaic virus; ToLCNDV—tomato leaf curl New Delhi virus; TuYV—turnip yellows virus;
TYMaV—tomato yellow mottle-associated virus; vRNA—viral RNA; vRNP—viral ribonucleoprotein; VSR—viral suppressor of RNA silencing.
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Functionally, one or more than one viral proteins act as MP and facilitate virus inter-
cellular movement by primarily influencing the host cellular systems for the regulation of
PD permeability. On this basis, MPs can be divided into three major types: (a) PD-gating
MPs that modify the PD SEL without any structural modifications in the PD (b) Tubule
forming MPs that bring about structural modifications in PD by aggregating and forming
“multisubunit tubular structures” that serve as conduits for the passage of virus particles
and (c) MPs that facilitate virus movement across the cell by either/both gating the PDs
and forming tubules. In addition, some of the viral proteins act as suppressors of RNA
silencing (VSRs).

3.1. Viral Proteins (MPs) That Increase PD SEL without Any Structural Modifications in PD

The phenomenon of increasing the SEL of PD to allow macromolecular exchange,
including the movement of virus particles, is termed as “gating”. Although the exact
mechanism of gating still needs to be deciphered, to date, many models have been proposed.
The PD-gating was initially observed in TMV MP-expressing transgenic plants, which
showed a movement of much larger dextrans (9400 kDa) across PD compared to the
SEL in control plants (700–800 kDa) [35]. In addition, the fluorescent dextrans were
observed even far away from the primary microinjected site indicating that either the
TMV MP itself moves across PD or initiates a series of diffusible signals that dilate PD
at the distant site [122]. PD-gating may occur by a pore size increase caused by callose
degradation upon action by β-1,3-glucanases (BGs). This causes an increase in the radius
of the cytoplasmic sleeve, allowing virus movement [123]. There is also the possibility
that the decrease in callose is attributed to downregulation or complete suppression of the
callose synthase gene [124,125]. It is also proposed that the gating through MP may be
due to its interaction with some PD-associated host proteins. An increased rate of TMV
systemic spread and cell-to-cell movement was observed in tobacco plants with increased
ankyrin ANK1 protein levels. ANK1 is normally a cytoplasmic protein, which upon virus
infection is recruited to PD by the TMV MP. ANK, when coexpressed with TMV MP, caused
reduction of callose deposits, thereby relaxing the callose sphincters at PD [36]. Among
the PDLPs, which are known to be recruited by the tubule forming viruses (explained
later), the PDLP5 initiates PD closure through callose deposition by stimulating callose
synthase. The pdlp5-1 mutants in tobacco reported an increase in cell-to-cell movement of
TMV, although the actual interaction still needs further investigation [126]. In addition,
the stress and damage to the cell wall upon virus entry causes methanol release from
existing and newly synthesized pectin methylesterase (PME), which digests pectin and
releases methanol vapors that activate the methanol-inducible genes (MIGs), including
BG and NCAPP. BG promotes callose degradation, while NCAPP is a cellular factor that
stimulates intracellular trafficking important for MP functioning [20,27]. New reports
of PD lacking cytoplasmic sleeves [127] and lack of unambiguous electron microscopic
evidence of PD dilation upon virus infection have made the existence of alternate options
for intercellular movement of viruses a distinct possibility. Among the various virus
genera, the intercellular movement through PD-gating is observed in viruses belonging
to the genera Dianthovirus, Carmovirus, Closterovirus, Luteovirus, Potyvirus, Tobamovirus,
Tombusvirus and some geminiviruses (e.g., Begomovirus). In addition, the PD-gating is
also observed in genera Benyvirus and Rhabdovirus and in some members of the family
Alphaflexiviridae, Betaflexiviridae, and Virgaviridae (Table 1).

3.1.1. Characteristics of the TMV MP-The “30 K” Superfamily MPs
Tobamoviral MPs

With around 37 species, the Tobamoviruses constitute the largest genus of the family
Virgaviridae, having TMV as their type genus [128]. TMV requires a 30 kDa movement
protein for their intercellular movement (Table 1; Figure 2).
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Figure 2. Model for intercellular movement of TMV: The TMV movement protein (MP) at the peripheral endoplasmic
reticulum (ER) binds to viral RNA to form a vRNP complex (TMV MP-vRNA), which is joined by replicase to form a VRC.
The VRC is delivered to PD either through calreticulin-containing ER-derived vesicle gliding through cell cytoskeleton
constituted by the microtubule and ER-actin network (1; red arrows) [8,11] or under the influence of an MP-PLS [32,47,48],
the VRC moves along the ER to PD, rafting over cytoskeleton driven by the myosin motor proteins (2; black arrows).
Once the VRC reaches the PD, several PDAPs and other viral and host factors cumulatively work for PD “gating” [129].
Gating may occur by MP-mediated severing of actin microfilaments or by recruitment of specific β-1,3-glucanases for
callose degradation. Additionally, the MP also interacts with the ANK host factor for downregulating callose. The cell wall-
associated PME cause PD targeting of MP and assist gating [36,130]. The MP-PLS is recognized by SYTA, a tethering protein
across ER-PM contact sites. These sites are recruited by MP for gating [32,49]. The microtubule near VRC may cause MP
degradation via 26 s proteasome [6]. The MPB2C, a microtubule-associated plant factor, causes microtubular accumulation
and binds to TMV-MP at the late infection stage to hinder its intercellular movement function [131]. Abbreviations: ANK—
ankyrin repeat-containing; MPB2C—movement protein-binding 2C; PDAPs—PD-associated proteins; PLS—plasmodesmata
localization signal; PME—pectin methyltransferase; SYTA—synaptotagmin A; VRC—viral replication complex; vRNP—
viral ribonucleoprotein.

Many other movement proteins have properties similar to that of TMV P30, and
on the basis of this and their predicted secondary structure, they are grouped as the
“30 K” superfamily [37]. Thus, a detailed study of the TMV MP generally serves as a
blueprint for characterizing other similar MPs. Transmission electron microscopic studies
revealed TMV MP to be localized in PD [38]. TMV MP binds to the vRNA in a sequence
non-specific manner and facilitates its intercellular movement through PD in the form of
ribonucleoprotein complexes (RNPs). In addition to PD, it also localizes to the peripheral ER
membrane, where it forms viral replication centers (VRCs) [39,40]. The viral replicase acts
synergistically with TMV MP, binds to RNP and facilitates its spread in PD desmotubule
by lateral diffusion [41]. The presence of MP at ER cytosolic face, its association with the
MT network for facilitating the VRC movement and the presence of the whole VRC-MP
complex at the PD later was also demonstrated by fluorescence immunolabeling and
electron microscopy [42]. The subcellular distribution and activation of TMV MP gating
function is host-dependent and is regulated by C- terminal phosphorylation at Thr-256,
Ser-257, Ser-261, and Ser-263 with either of the two host kinases, casein kinase 2 (CK2)
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and plasmodesmal-associated protein kinase (PAPK) sharing identical molecular weights.
The regulation is, however, sequential, with initial activation of TMV MP gating function
through phosphorylation at a single site, leading to successful virus intercellular movement
followed by its inactivation by further phosphorylation events. This also provides a
rationale behind the TMV infecting the plants (N. tabacum) even in the presence of the
phosphorylation-based inactivation mechanism [43–46]. The plasmodesmal localization
signal (PLS) in TMV MP resides in the 50-aa at the N-terminal end and is the first example
of PLS in plant virus MP [47]. Other less efficient regions (from aa positions 61 to 80 and
from 147 to 170) that functionally mimic PLS are also reported [47,48]. The MP PLS binds
to the plant SYTA, which is localized to the plasma membrane, but more concentrated
across PD where it tethers the ER-PM contact sites. These sites are then recruited by MP for
remodeling the PD permeability [32,48–50]. This concept of MP-PLS to reach PD via SYTA
interaction, however, does not support the ER-actin cytoskeletal involvement in the delivery
of MP to PD since the PLS with its hydrophilic stretch of 50 aa lacks the features displayed
by proteins interacting with the ER [40]. TMV RNP movement through ER membrane
occurs by simple diffusion assisted by the host cytoskeletal elements. TMV spread depends
upon myosin XI-2 [51]. TMV MP localization at PD was inhibited when the actin and
ER membrane networks were disrupted. However, disruption of MT had no effect upon
TMV intercellular movement, although, at permissive temperatures, TMV MP showed
interaction with MT. In addition, the mutant plants with reduced MT dynamics were less
susceptible to TMV [11]. These contradictory findings of PD localization either through
MP-PLS or through ER-actin network indeed need further investigation. Moreover, there
is still no direct evidence to show the interaction of MP with PD [11]. However, reports
of indirect interaction of MP with callose through callose metabolism enzymes [52] and
PDAPs for regulating the PD aperture [20] appear convincing. The TMV MP interacts with
A. thaliana calreticulin-1 (AtCRT1) both in vivo and in vitro and co-resides with it at PD.
Under stress and under overexpressed conditions, the increased calreticulin levels interfere
with the TMV MP PD localization and instead directs it to the microtubular network away
from PD [23]. As explained earlier, the PME initiates MIGs, including BG and NCAPP,
that aid PD permeability and the intercellular movement of viruses. TMV MP interacts
with PME in vitro, and deletion of domains responsible for this interaction hindered the
ability of MP to facilitate the spread of viral infection [53]. Interestingly, plants expressing
anti-sense PME showed delayed systemic spread of TMV [54].

In the case of TMV infection, it is observed that once the virus from the initially
infected cell starts moving to the adjacent cells, the spread is even faster, and it seems
that the MP initiates favorable conditioning of the surrounding cells before the cell is
actually approached by the vRNA [55]. This prior conditioning event can be attributed
to the early synthesis of TMV MP from the genomic vRNA and movement of TMV MP
to the surrounding cells through PD-gating without even associating with the VRC. The
former is possible due to the presence of an internal ribosome entry site that initiates
prior translation of MP straightaway from the genomic RNA before even the synthesis of
subgenomic RNA [56–58], while the latter can be explained by the interactome repertoire
of MP, which includes the various PDAPs and other factors regulating the PD SEL [20]. The
TMV-MP-mediated enhancement of systemic RNA silencing by facilitating the movement
of siRNA across PD [59] also supports the function of TMV MP as an independent cellular
conditioner for virus movement.

Dianthoviral MPs

The RNA2 component of red clover necrotic mosaic virus (RCNMV), a Dianthovirus
encodes for a 35 kDa MP (P35, Table 1) that belongs to the 30 K superfamily, and like TMV,
it does not require capsid protein for intercellular movement [60]. Localization studies
of the GFP-fused MP mutants established a correlation between MP targeting to the cell
wall and intercellular movement [61]. In addition, complementation studies of mutant
MP with wild-type, alanine scanning mutagenesis and turnip crinkle virus-based GFP
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assay revealed definite domains for movement, complementarity and cell wall localization,
PD-gating, cooperativity and RNA silencing suppression in RCNMV MP [62]. Using
GFP-fused MP, Kaido et al. [63,64] showed colocalization of MP and replicase to the ER, for
which C-terminal 70 aa of MP was crucial.

Geminiviral MPs

Among geminiviruses (Table 1), the DNA from the nuclei is shuttled to the cytoplasm
via coat protein (CP; V1 ORF) in monopartite geminiviruses (e.g., Begomoviruses and
Mastreviruses), while in bipartite, it is through the DNA B-encoded nuclear shuttle protein
(NSP/BV1) [85,86]. Subsequent cytoplasmic localization to PD and further intercellular
movement in monopartite geminiviruses is through an MP encoded by the V2 ORF or
V3 ORF (e.g., beet curly top virus, a Curtovirus) or by the DNA-B encoded MP (BC1) in
bipartite ones. Functional variation occurs in MP among monopartite viruses, for e.g.,
MPs in monopartite Begomoviruses has DNA-binding property, while MPs encoded by
monopartite Mastreviruses do not bind to DNA [85,86]. Hence, it needs the viral CP to
form a complex with the DNA, and the CP-DNA complex is then carried across PD by
the MP. Such differences in the delivery of DNA from the nucleus to PD and across it are
also found among bipartite Begomoviruses, for, e.g., abutilon mosaic virus (AbMV) shows
“couple skating model” where NSP remains intact with the DNA from the nuclei and the
NSP-DNA complex is then carried to PD and across it by the MP [132], while BDMV shows
“relay race model” where the NSP hands over the viral DNA to MP from the nucleus into
the cytoplasm, which is then carried to and across PD [133].

Similar to TMV, the MPs encoded by geminiviruses, squash leaf curl virus (SLCV) and
cabbage leaf curl virus (CaLCuV) interact with Arabidopsis SYTA protein. Mutation in the
SYTA gene hampered the intercellular movement of these viruses. It is proposed that the
interactions of both MPs, encoded by CaLCuV and TMV with SYTA directs them to be
loaded on early endosomes, which are then carried away by a recapture pathway to dock
at the PD [134].

3.1.2. The Triple Gene Block (TGB) Proteins

The triple gene block (TGB1, TGB2 and TGB3) is a specialized and evolutionary con-
served group of nonstructural viral movement proteins found in 9 genera of plant viruses
belonging to the families Alphaflexiviridae, Benyviridae and Betaflexiviridae (Table 1). Their
structural features, interactions and role in the intercellular movement of the virus have
been extensively reviewed ([12,18], and references therein). In addition to PD-gating and
assisting the intercellular movement of plant viruses (Figure 3), the TGB proteins display a
myriad of other functions in host cells [89]. The Potexvirus TGBp1 localizes partially in
the nucleus and nucleolus, where it interacts with nucleolar proteins fibrillarin and coilin.
These proteins may take part in the formation of viral cytoplasmic RNPs and thus take part
in the long-distance movement of the viruses. The TGBp1 protein is also known to remodel
the host actin and microtubular arrangement and putatively assist the virus movement-
independent host protein trafficking to plasmodesmata [89]. The hordeiviral TGBp1 binds
to host BSr1 R-protein and elicits hypersensitive response [90]. The potexviral TGBp1s have
strong RNA interference suppression activities [91], a property described in detail later.
The pepino mosaic virus (PepMV) TGBp1 interacts with host ROS scavenging enzyme
catalase 1, resulting in the weakening of the ROS-mediated plant defense mechanism [92].
The potato virus X (PVX) TGBp2 plays a role as the molecular adaptor in viral replication
by interacting with the C-terminal domain of RdRp and forming chain-mail-like aggregates
around RdRp that further localizes TGBp3 aggregates to enhance viral replication [93]. The
PVX TGBp3 is responsible for virus-induced unfolded protein response under ER stress
and upregulates the ER-resident and ubiquitin ligase chaperones [89].
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Figure 3. Model for TGB-mediated movement of PVX: The TGB1 organizes the ‘X-body’ (protective center of virus
replication and assembly) and recruits TGB2 and TGB3 to it. TGB2 bridges the RdRp/dsRNA-TGBp3 interaction in the
X-body. The vRNA in the X body replicates and forms VRC with ribosomes and viral RdRp [9]. The TGB1 alone or with CP
binds to the vRNA at the VRC to form a vRNP complex (TGB1-vRNA/TGB1-vRNA-CP) that either directly reaches PD
(orange arrows) or binds to the TGB2 and TGB3-associated vesicles and reaches PD along the ER through actin and myosin
motor proteins guided by TGB3 (blue arrows) [8,17,129]. Alternatively, the VRC can be delivered to PD by TGB2 and TGB3
without vesicles (brown arrows). TGB2 facilitates the VRC fusion to PD. TGB1 and TGB2 perform PD-gating by interacting
with remorin and β-1,3-glucanase-associated host factor TIP1, respectively, causing callose reduction. Subsequently, the
vRNP complex is delivered to the adjacent cell leaving back TGB2 and TGB3 for recycling via endocytic pathway (black
arrows) [18]. According to a recent alternative model (blue background) [93], the vRNA binds to RdRp in the cytoplasm
forming the core replication unit later joined by TGB1, TGB2, TGB3 and CP to form a “cytoplasmic X-body”, which either
joins the ER-associated perinuclear X-body (red dashed arrow) or directly reach the PD through TGB3 guided movement
forming cap like complexes at PD (green dashed arrow). Abbreviations: BG1—β-1,3-glucanases; CP—coat protein; PDAPs—
PD-associated proteins; RdRp—RNA-dependent RNA polymerase; TGB—triple gene block; TIP—TGB12K-interacting
proteins; VRC—virus replication complex; vRNA—viral RNA; vRNP—viral ribonucleoprotein.

3.1.3. Potyviral MPs

PD-gating for intercellular movement is also observed in members of genus Potyvirus,
the largest group of flexible filamentous viruses, where virus-encoded proteins destined for
different functions helps in virus cell-to-cell movement. The PD located protein P3N-PIPO
is a dedicated MP in the Potyvirus, turnip mosaic virus (TuMV) [76]; it directs the viral
cylindrical inclusion protein (CI) to form PD-associated conical structures that assist in
intercellular movement (Figure 4).

It has been recently shown that the CP with its vRNA interacting conserved core
and C-terminal domain also participates in intercellular trafficking of the virion [77]. The
well-known potyviral RNA silencing suppressor HC-Pro helps in Potyvirus movement
by increasing the PD SEL in coordination with CP [78]. TuMV P3N–PIPO recruits the
PM-associated Ca2+-binding protein 1 (PCaP1) to PD. PCaP1 can sever actin filaments,
which is required for the intercellular movement of the virus [79]. Notably, both P3N and
PIPO domains of TuMV P3N–PIPO are essential for intercellular movement. The PIPO
domain is important for its interaction with CI, while the P3N domain for its interaction
with P3. The Potyvirus 6 kDa (6 K2) membrane protein interacts with the host ER for the
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biogenesis of cytoplasmic membranous vesicles, the site for virus replication. The shared
N terminus of P3N-PIPO interacts with P3, which recruits the 6 K2-induced vesicles to the
PD, where they are docked at the CI-induced conical structures that assist in intercellular
movement [80].
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PD and-6 K2 clusters by interaction with P3-colocalized P3N-PIPO where probably they participate in replication. The PD
recruited CI forms a CI-P3N-PIPO complex to which more CI molecules join via self-interaction resulting in the formation
of conical structures. The CI also self-integrates to form a cytosolic pinwheel-like structure. The CK2 vesicle cluster either
combines with CI, P3 and P3N-PIPO to form a virus-induced cytosolic viroplasm or is directly delivered to PD and docked
at the P3N-PIPO-associated conical CI structures. Upon reaching the PD, the viral RNA is encapsidated by CP to form
an intact virion or RNP complex, which is delivered to the neighboring cell by the CI. Adapted and modified from [80].
Abbreviations: CI—cylindrical inclusion; HF—host factor; NIb—nuclear inclusion protein; PDAPs—PD-associated proteins;
PM—plasma membrane; RdRp—RNA-dependent RNA polymerase; SYTA—synaptotagmin A; TuMV—turnip mosaic
virus; VpG—viral protein genome-linked.

3.2. Viral Proteins (MPs) That Increase PD SEL by Structural Modifications Caused by Tubular
Aggregates

The intercellular movement in some viruses involves intact virions to be moved
across the cell [9]. These viruses modify the normal PD architecture for their intercellular
movement by forming specialized structures (tubules) across cells by the oligomerization
of their MP and, sometimes, CP [135]. In the transiently transfected protoplasts and/or
insect cells, the MPs of these viruses undergo oligomerization and form tubular structures
that protrude out from the plasma membrane indicating that in general, the MP in itself is
capable of tubule formation. Neither CP nor any other host cellular structure (e.g., PDs) is
needed for the formation of tubules [96,108,109,136]. The tubule formation for intercellular
movement is found in viruses belonging to the genera Caulimovirus, Tospovirus, Umbravirus
and members of subfamily Comovirinae of the family Secoviridae (Table 1).

3.2.1. Caulimoviral MP

In Caulimoviruses, the most studied movement protein is that of its type species
cauliflower mosaic virus (CaMV). Its tubule forming RNA-binding MP is a 38 kDa protein
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encoded by the ORF1 (P1; Table 1; Figure 5) [96,97]. The tubule-forming capacity of CaMV
MP was also demonstrated in infected protoplasts and insect cells [96]. CaMV MP interacts
with host PDLPs, the MP receptors at PD [98], but the actual mechanism of tubule formation
involving PD desmotubule replacement, increase in SEL and oligomerization of MP to
form tubule is still unclear. Intact virions traversing the PD through a tubular structure
have been clearly revealed by electron microscopy [99].
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Figure 5. Model for tubule formation by MP in CaMV and GFLV (A) The CaMV vDNA transcribes in the nucleus to 19S
and 35S RNA, which translate in the cytoplasm. The 19S RNA encodes a 58 kDa P6 protein that forms ribosomes rich IB
(virus factory), the center for other virus proteins translation (e.g., P1-MP, P3, P4-CP, etc.) by 35S RNA. The MP reaches PD
through vesicular transport via secretory pathway (black arrows), resulting in multiple MP copies that form tubule across
PD. Once the virus attains a threshold copy number in IB, the P6 protein detaches as a vesicle and is assisted by CHUP1 to
move over the actin filament network. After the virion reaches PD, the MP interacts with the virion (vDNA+56 kDa CP)
through P3. PDLPs (also an MP receptor) and AtSRC2.2 at the PD help in the virion delivery. The virion delivery to the
next cell putatively occurs through a tread-milling mechanism where there is unidirectional addition of vDNA-P3-CP-MP
subunits assembly at one end and subsequent disassembly at the other, causing the virion delivery [7,137]. (B) The virion
delivery is similar in GFLV, but here the MP first reaches the calreticulin-rich sites on the PM and thereafter, it reaches the
PD by diffusion (red arrows). The PDLP is also delivered to PD by diffusion through PM, where it reaches via a secretory
pathway in association with class XI, XI-K and XI-2 myosin [11,129]. Abbreviations: AtSRC2.2—Arabidopsis thaliana soybean
response to cold; CaMV—cauliflower mosaic virus; CHUP1—chloroplast unusual positioning protein; GFLV—grapevine
fanleaf Nepovirus IB—inclusion bodies; PDLP—plasmodesmata localized protein; vDNA—viral DNA.

3.2.2. Tospoviral MP

In the tomato spotted wilt virus (TSWV), a Tospovirus, the NSM protein is the MP
as displayed by its properties of oligomerization and formation of tubular structures in
infected protoplasts and insect cells. It forms and extends the tubule across PDs, assist-
ing the intercellular movement of the non-enveloped nucleocapsids [108]. In the thrips
vector Frankliniella occidentalis, TSWV NSM protein is functionally linked with autophagic
pathways, not involved in assisting the intercellular movements [110].

3.2.3. Umbraviral MP

The ORF-4 of the groundnut rosette virus (GRV), an Umbravirus, encodes for 28 kDa
protein that is PD-localized, binds to both ssDNA and ssRNA cooperatively in a sequence
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nonspecific manner and induces tubule formation on the protoplasts surfaces in N. ben-
thamiana [111,112]. Umbraviruses do not encode for their own CP and require a helper
Luteoviridae member for virion formation and vector transmission. This reduces MP
dependency on CP, and as indicated by the protoplast experiments, among Umbravirus
members, MP in itself is self-sufficient for tubule formation and intercellular movement of
virion [138].

3.2.4. MPs of Comoviruses, Fabaviruses, and Nepoviruses

As indicated by the mutagenesis studies, the tubule forming MPs in members of sub-
family Comovirinae, Comoviruses, Fabaviruses, and Nepoviruses have molecular weights of
48/58 kDa, 37 kDa and 38–43 kDa, respectively (Table 1) and are products of polyproteins
encoded through their RNA-2 [96]. Tubule formation by the MP of cowpea mosaic virus
(CPMV), a Comovirus, was demonstrated in both infected protoplasts/insect cells and
infected plant material where clear tubular structures containing virus particles superseding
the PD desmotubule were observed under an electron microscope. Studies using antisera
and mutagenesis confirmed the 48 kDa moiety of the 58 K/48 K protein to be crucial
for tubule formation [136,139]. Tubule formation was also observed in grapevine fanleaf
Nepovirus (GFLV; Figure 5) and broad bean wilt virus 2 (BBWV-2) a Fabavirus [100,101,109].
The MPs of these viruses have different binding affinities for CP. Both CPMV and BBWV-2
encode a large CP of 35–40 kDa and a small CP of 20–25 kDa, but the MP of the former
binds to the large CP, whereas in the latter, it binds to the small CP [140,141]. The C-
terminal domain of MP was found to be crucial for this interaction; a CPMV MP with
C-terminal deletion showed an empty tubule with no virions [103], a similar deletion
in GFLV MP abolished the interaction with CP and restricted the systemic spread [102].
However, whether the C-terminal deletion abolished the interaction of CPMV MP with the
CP is not clear. Combining both, it was postulated that in both CPMV and GFLV, the C
terminal domain of MP is crucial for association with CP and virion formation so that an
intact virion moves intercellularly via tubules. The tubule formation was later-associated
with the N-terminal and central region of the CPMV MP, while the virion incorporation
in the tubules was defined as a function of its C-terminal domain [104,105]. Deletion and
point mutation studies in CPMV MP showed that initially, the MP is targeted to plasma
membrane involving its oligomerization (involving aa 228–251); later, it accumulates in
spots after possible interaction with some host protein (involving aa 252–276). Finally,
tubules assemble (involving aa 293–298 of MP) from the spots, which traverse the PD,
replacing the desmotubules. The process culminates with the delivery of the virion in an
adjacent uninfected cell and disassembly of the tubule [106,107]. The host PDLPs have no
role in the transfer of viral particles, but they may act as PD receptors for MP, assisting
them in oligomerization to form tubules [98].

3.3. MPs That Increase PD SEL with or without Any Structural Modifications across PD

Apart from the exclusive nature of either gating or tubule forming, members of the
family Bromoviridae harbor certain MPs that apparently perform both gating as well as
tubule forming functions (Table 1). The MPs of viruses belonging to genera Alfamovirus,
Bromovirus, Cucumovirus, and Ilarvirus of family Bromoviridae increase the PD-SEL, are
PD-localized, bind to RNA and show molecular weights between 32 and 36 kDa. They are
encoded by the 3a gene fragment of RNA3 [117,142].

Among these members, a significant variation is observed between species and strains
regarding the requirement of CP for the movement-related functions of MPs [113,114,143].

The intercellular movement of the alfalfa mosaic virus (AMV) requires both MP and
CP. The MP induces tubule formation and exhibits RNA-binding capacity in a sequence
nonspecific manner. An intact virion formation is not necessary for the intercellular
movement of the virus; however, the association of MP with CP is crucial, as observed by
restricted intercellular movement following mutation of CP [113].
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While most of the brome mosaic virus (BMV) strains do not require CP for intercellular
movement [115], the tubule forming M1 strain [114] requires CP in addition to its MP when
its intercellular movement was tracked in Chenopodium sp. The MP interacts with N.
benthamiana protein (NbNACa1), which apparently regulates its localization on PD [116].

In another Bromovirus, the cowpea chlorotic mottle virus (CCMV), MP is sufficient (no
CP required) for intercellular movement. Interestingly, the rate of intercellular movement
is host-dependent, being faster in an experimental host (N. benthamiana) than its natural
host (cowpea), as demonstrated when CP was replaced by an enhanced GFP [144]. When
the MP gene of BMV and CCMV were exchanged, and the CP expression was impaired, the
recombinant CCMV harboring BMV MP showed restricted movement, while no effect on
intercellular movement was observed in the case of recombinant BMV harboring CCMV MP.
This qualifies MP as the chief determinant of the virus-specific CP functions for intercellular
movement in Bromovirus [145]. However, considering the above facts, the CP and MP
interaction and dependency need to be further examined in light of the differential response
observed between virus strains and species as well as their host.

The cucumber mosaic virus (CMV) tubule forming MP is PD-localized and binds to
ssRNA [118]. CMV MP requires CP assistance for intercellular movement. However, the
CP-dependency was abolished when a truncated MP was used, having 33 aa removed from
C-terminal [119]. The truncated MP, as observed through atomic force microscopy, showed
a strong binding affinity for viral RNA and formed a more condensed RNP complex
compared to a native MP requiring CP [120]. The CMV MP showed tubule formation
on the protoplast surface; however, no such tubules were observed in CMV-infected N.
clevelandii as observed by quantitative immunogold labeling of the MP of CMV. However,
the MP was observed at both the entry and the central cavity of the PD pore, as well as
the distant connecting sieve elements. In addition, CMV having a mutation in the 3a gene
encoding the MP was still able to infect tobacco both locally and systemically, although
protoplasts containing such mutants showed no tubule formation [117].

The MP of prunus necrotic ringspot virus (PNRSV), an Ilarvirus, also binds to ss RNA
in a sequence-nonspecific manner. A 33 aa domain at the N-terminal of MP is crucial for ss
RNA binding as found out by deletion mutagenesis followed by Northwestern analysis.
The N-terminal location of the RNA-binding domain in MPs encoded by Ilarviruses and
Alfamoviruses are different from MPs encoded by other members of the family Bromoviridae
where the similar domain lies at the C-terminal. This may have evolutionary implications
showing phylogenetic divergence among viruses belonging to the family Bromoviridae [121].

Members of the family Bromoviridae also show high functional variability in the
dependence of their MPs on CP as well as tubule formation. With the current findings, a
correlation between CP interaction and tubule formation by the MP can be established.
MPs requiring CP for virus movement may form tubule, and the ones, which do not require
CP may move by gating the PD. However, it requires further conclusive studies involving
both the variability in virus species and strains as well as the host range to establish this
functional relationship.

3.4. MPs as RNA Silencing Suppressors

RNA interference (RNAi) is a fundamental mechanism of regulation of gene expres-
sion in eukaryotes both at the transcriptional and post-transcriptional level by specific
mRNA degradation through complementary small RNA [146]. RNAi is used by plants
as an important anti-viral defense through degradation of the viral RNA [147]. Some
viruses mount a counter-defense at the sites of VRC from RNAi by compartmentalization
using subcellular structures, e.g., ER spherules or by speeding up the replication and
systemic infection process outpacing the mobile RNAi signals [148]. Most viruses, however,
mount counter-defense by expressing proteins called viral suppressors of RNA silencing
(VSRs) [147]. The VSRs are generally multifunctional in nature, and some of them, in
addition to the inhibition of specific steps of the RNAi pathway, is also involved in virus
replication and movement. Interestingly, a large number of MPs have also been shown to
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have VSR activities (Table 1). Although there is a report that the TMV MP controls its own
propagation via promoting the spread of host RNA silencing [149], most of the other viral
MPs act as VSR and suppress the host defense system (Table 1; Figure 6).
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Figure 6. Schematic illustration of the action points of the MPs or movement assisting proteins
acting as VSRs over basic RNAi mechanism layout: The PVX TGB1 targets AGO1 and causes its
degradation through the proteasome pathway [150]. The RRSV Pns6 targets the upstream step of
viral dsRNA formation [151]. The ACLSV P50 is a suppressor of systemic silencing by inhibiting the
systemic movement of silencing signals [152]. The CLBV MP40 acts as a local silencing suppressor by
putatively affecting the dSRNA and siRNA generation [153]. The P4 movement protein in Luteovirus
has been recently identified as a systemic RNA silencing suppressor [84]. The P6 protein of CaMV
acts as a silencing suppressor by indirectly blocking the DCL4 [154]. The 2b protein of CMV act
as a silencing suppressor by interacting with DCL1, AGO1 and 4, siRNA biogenesis and RdRp
downregulation [155]. The Potyvirus HC-Pro selectively binds to siRNA of different sizes, blocks
HEN1 methyltransferase, binds and inhibits HEN1, prevents AGO1 loading, downregulates AGO1
by upregulating its corresponding micro RNA and may be involved in AGO3 cleavage, interact with
RAV2 factor, thus blocking the siRNA biogenesis [155]. The BSMV γb binds to siRNA [156]. The PCV
P15 interacts with AGO1 and prevents the siRNA binding [156]. The RCNMV P35 suppresses RNAi
probably by sequestering DCL1 and using its helicase activity for its own replication [62]. The P38
CP, which assists TCV movement, is an RNAi suppressor, which binds to AGO 1 and 2, upregulating
the DCL1 for antagonizing the functions of DCL3 and 4, binding to dsRNA and preventing primary
siRNA biogenesis and upregulating AGO1 specific miRNAs [155]. The B4 protein of BBTV is a
silencing suppressor; however, the exact target for suppression is not found yet [157]. Abbreviations:
VSRs—viral suppressors of RNA silencing; PVX—potato virus X—RRSV—rice ragged stunt virus;
ACLSV—apple chlorotic leafspot virus; CLBV—citrus leaf blotch virus; CaMV—cauliflower mosaic
virus; CMV—cucumber mosaic virus; DCL—dicer-like; AGO—Argonaute; siRNA—small interfering
RNA; RdRp—RNA-dependent RNA polymerase; HC-Pro—helper component proteinase; HEN1—
HUA enhancer 1 (small RNA methyltransferase); BSMV—barley stripe mosaic virus; PCV—peanut
clump virus; RCNMV—red clover necrotic mosaic virus; TCV—turnip crinkle virus; CP—coat
protein; BBTV—banana bunchy top virus.
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In this regard, it is important to note that either the MP in itself or another movement-
associated protein may act as VSR (e.g., Luteoviral P4 or Potyviral HC-Pro) [84,158] or the
replicase-type proteins involved in the formation of transport complexes, such as VRCs
(e.g., 126 kDa TMV replicase) [159]. The synchronicity of transfer of VSRs with the viral
genome also plays a critical role in preventing the viral genome from degradation through
RNAi and thus promotes pathogenicity. If the MPs having VSR activity get transferred to
the new cell first and then the viral genome enters it through plasmodesmata, the former
can condition the new cell for the proper proliferation of the latter. If the MPs are a part
of VRCs (e.g., 126 kDa TMV replicase), the VSR activity should go hand-in-hand with the
viral infection [130,160,161].

4. Conclusions

It is abundantly clear that MPs have evolved diverse mechanisms to accomplish
their goal of ensuring the transport of viruses across the host imposed natural barriers
(e.g., rigid cell walls) and provoke a successful, productive systemic infection. Although
highly variable, MPs interact with a plethora of viral as well as host factors, facilitating the
movement of the viral genomes to and through PD. Studies on viral MPs indicate that the
virus movement is spatially and temporally coupled with replication, encapsidation and
suppression of host RNAi-mediated defense, and all this involves a close association of viral
MPs with the host PD, cell cytoskeleton, endomembrane system and the secretory pathway.

Further progress in our understanding of their actions will probably be achieved by
revealing finer details of their structures and interactions with components of PD and
other viral proteins. Whether MPs also play a role in the tissue tropism of certain viruses
may be revealed by better understanding the functions of various PD types in tissues
and their interactions with MP. A new aspect of the function of MPs is emerging when
one considers their role in non-cell-autonomous functions in plants, a subject which may
have implications in viral pathogenicity. Several outstanding questions that can be put
forward are:

What is the role of the tertiary structure of MPs on their interactions with key proteins
of PD? How does the specific function of MP change upon post-translational modifications?
Are there variants of PD-localization signal in MPs structurally different from each other?
If yes, then how do the various membrane contact sites/receptors differentiate between
these signals? Is it possible that the limited non-cell-autonomous functions known in plants
are intimately modified by MPs? Is cellular conditioning at the infection front before the
virus spread a general phenomenon acquired by viruses of the “30 K” superfamily clan, or
the mechanism extends to other viruses with non-related MPs too? How does the role of
MPs known in RNA silencing suppression impact their effect on the intercellular spread of
viruses? In tubule-forming viruses, what is the mechanism by which MP modifies the PD
components in forming the tubules?

Finally, one can look forward to further developments in super-resolution- and fluo-
rescent probe-based 3-D microscopic techniques for a clearer picture of the interactome of
MPs. In addition, the detailed study on MP interaction and function can yield a significant
amount of information about the response of the host cellular machinery, not only towards
viral infection but also may provide a novel handle for the better understanding of cellu-
lar machinery for intercellular movement of macromolecules and other substances (both
cellular and foreign) across PD.
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