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Quantitative Susceptibility Mapping (QSM) is an MRI tool with the potential to reveal pathological changes from magnetic
susceptibility measurements. Before phase data can be used to recover susceptibility (Δχ), the QSM process begins with two steps:
data acquisition and phase estimation. We assess the performance of these steps, when applied without user intervention, on
several variations of a phantom imaging task. We used a rotating-tube phantom with five tubes ranging from Δχ � 0.05 ppm to
Δχ � 0.336 ppm.MRI data was acquired at nine angles of rotation for four different pulse sequences.+e images were processed by
10 phase estimation algorithms including Laplacian, region-growing, branch-cut, temporal unwrapping, and maximum-like-
lihood methods, resulting in approximately 90 different combinations of data acquisition and phase estimation methods. We
analyzed errors between measured and expected phases using the probability mass function and Cumulative Distribution
Function. Repeatable acquisition and estimation methods were identified based on the probability of relative phase errors. For
single-echo GRE and segmented EPI sequences, a region-growing method was most reliable with Pr (relative error <0.1)� 0.95
and 0.90, respectively. For multiecho sequences, a maximum-likelihood method was most reliable with Pr (relative error <0.1)�

0.97. +e most repeatable multiecho methods outperformed the most repeatable single-echo methods. We found a wide range of
repeatability and reproducibility for off-the-shelf MRI acquisition and phase estimation approaches, and this variability may
prevent the techniques from being widely integrated in clinical workflows. +e error was dominated in many cases by spatially
discontinuous phase unwrapping errors. Any postprocessing applied on erroneous phase estimates, such as QSM’s background
field removal and dipole inversion, would suffer from error propagation. Our paradigm identifies methods that yield consistent
and accurate phase estimates that would ultimately yield consistent and accurate Δχ estimates.

1. Introduction

Quantitative Susceptibility Mapping (QSM)[1–3] is a
method to estimate magnetic susceptibility of tissue from the
phase of the magnetic resonance (MR) signal. QSM has
potential clinical utility for characterizing neurological
diseases [4–6], blood oxygen content [7], iron overload in
the heart and liver [8], and quantitative tracking of contrast
agent bolus perfusion [9, 10].

Repeatability and reproducibility of QSM have been
assessed in phantoms and human subjects using different
scanners, magnetic field strengths, and data processing
methods. While some studies report high repeatability
[11–18], both in vivo and in phantoms, recent in vivo studies
report lower reproducibility across MRI scanners with the
same data processing method [19] and across QSM algo-
rithms using the same input data [20]. +ese conflicting
results limit the clinical adoption of QSM.
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A typical QSM process requires four steps: data acqui-
sition (Step 1), phase estimation (Step 2), background field
removal (Step 3), and magnetic susceptibility reconstruction
(Step 4). Recently proposed methods combine Steps 2–4 into
fewer steps [21].

In its standardization efforts, the QSM community has
actively evaluated competing methods [17, 22, 23], in
particular for methods in Steps 3 and 4 of the process [20].
However, the selection of the “best” QSM method is dif-
ficult for various reasons: (a) the appropriate definition of a
quality metric, for example, accuracy versus repeatability;
(b) competing quality metrics that favor different algo-
rithms [20]; (c) the lack of a gold standard in vivo; (d)
algorithm performance depending on imaging application
(in vivo versus phantoms); and (e) the large number of
methods for each QSM step, which would render any
exhaustive validation effort to be combinatorial and quickly
untenable.

We present an experimental setup that allows for an
exhaustive quantitative analysis of all four QSM steps. +is
framework uses a rotating-tube phantom design introduced
in the work of Erdevig et al. [24], which uses tubes that
rotate, within a background solution, relative to the main
magnetic field, B0. +e design enables the analysis of MRI
data obtained in objects at any orientation, using common
QSM techniques. +e closed-form theoretical relationship
between themagnetic field andmagnetic susceptibility in the
sample allows for mapping the magnetic field to magnetic
susceptibility without having to solve the dipole inversion
problem [25].

Our contributions include (a) a framework for evalua-
tion of repeatability and reproducibility of QSM algorithms
and (b) rigorous analysis of commonmethods in Steps 1 and
2 of the QSM process. We focus on the performance of QSM
Steps 1 and 2 for the following reasons:

(a) +ere exist a large number of methods in each of the
four QSM steps. We replicate here approximately 90
different combinations of Steps 1 and 2 methods. If
we analyze all four steps simultaneously, the
resulting data set would grow combinatorially and
become difficult to interpret.

(b) Errors introduced early in the QSM process prop-
agate downstream and have been overlooked in
validation studies. For example, Olsson et al. used
only one acquisition sequence and one phase esti-
mation algorithm [22].

(c) It is well understood that phase unwrapping, a
common algorithm used in Step 2, is a nondeter-
ministic polynomial-time-hard problem (in two
dimensions and higher) that often relies on user
intervention and careful parameter tuning. +ere-
fore, it is important to isolate the impact of such a
problem in the QSM processing methods.

(d) Susceptibility weighted imaging [26, 27], electrical
properties tomography [28], thermometry [29], flow
[30], and elastography [31] use MR phase infor-
mation, and this work can inform those applications.

We analyze Steps 1 and 2 of the QSM process to un-
derstand which are sufficiently robust to be executable
without user intervention and independent of scanner, se-
quence, and other parameter variations.

2. Methods

We used a rotating-tube phantom (Figure 1(a)) to explore
the reproducibility of phase estimates obtained after Steps 1
and 2. MRI data was acquired with different pulse sequences
(Step 1), at nine angles, and the performance of a wide
variety of phase estimation methods was compared to
theory. +e rotating-tube phantom was designed to take
advantage of the analytical model for a long cylinder at an
angle, θ, with respect to B0.+e internal z-axis field offset can
be derived fromMaxwell’s equations and is shown to be [25]

δBin �
ΔχB0

6
3 cos2 θ − 1􏼐 􏼑, (1)

where Δχ is the susceptibility difference between the inside
and outside of the cylinder and χ2 terms are ignored.

2.1.Experimental Setup. +e rotating-tube phantom consists
of five cylindrical, polypropylene tubes (80mm length and
10mm outer diameter; Nalgene cryogenic storage vials)
alternated orthogonally along the central axis of a larger
cylinder (610mm length and 140mm outer diameter)
containing water (Figure 1). Each tube contains one of the
following: 0.5mM GdCl3, 1.0mM GdCl3, or 3.2mM CuSO4
(Figure 1(b)). +is phantom is modifiable, and the range of
susceptibility values can be focused on particular areas of
interest. Here, the range of susceptibility values was selected
to span those observed in vivo from venous blood (1.0mM
GdCl3) to deep grey matter structures (0.5mMGdCl3) to the
lower limits of MRI detection (3.2mM CuSO4) [32]. A rod
extends from the internal rotation gears through the
phantom and outside the MRI scanner, allowing the tubes to
be manually rotated. Example MR images are shown for the
three primary planes (Figure 1(c)) and in a 3D rendering of
the tubes (Figure 1(d)). Temperature of the water was
continuously monitored via a fiber optic probe (OpSens
Medical, Québec, QC, Canada).

+e paramagnetic salt solution Δχ values were estimated
from susceptibility theory and corrected using Curie’s law
with the experimentally measured temperatures
(21.0°C–22.0°C). Δχ values were 0.336 ppm and 0.168 ppm
for the 1mM GdCl3 and 0.5mM GdCl3, respectively, and
0.0804 ppm for the 3.2mM CuSO4. Additional details on the
calculation of Δχ are in the Supplementary Material.

2.2. Data Acquisition. MR data was collected on a 3T Sie-
mens Biograph mMR (MR-PET scanner, Syngo MR E11
software) with a 6-element torso array and 9-element spine
array coil for a total of 15 elements. To assess the repro-
ducibility of phase estimation across pulse sequences, we
acquired data with four gradient echo (GRE) pulse se-
quences (details in Table 1):
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(a) (b)

Rotation
mechanism

A -- 1 mM GdCI3
B -- 0.5 mM GdCI3
C -- 3.2 mM CuSO4

(c) (d)

Figure 1: (a) 3D diagram of the rotating-tube phantom design with five smaller cylindrical samples along with temperature probe. (b)
Magnitude images of the sagittal (one tube), axial, and coronal (multiple tube) views. (c) A photograph of the 5 tubes. (d) 3D rendering from
MRI magnitude images.

Table 1: All data acquisition parameters.

Sequence Scan
ID

TR
(ms) Echo times (ms) Bandwidth

(Hz)
Alpha
(deg)

Resolution
(mm3)

Acquisition time
(min:s)

Single-echo GRE
(SEGE)

1 25 16 80 15 1.0×1.0× 2.0 1 : 59
2 35 25.7 80 15 0.5× 0.5× 2.0 4 : 35
3 45 30 80 15 1.0×1.0× 2.0 3 : 35

Multiecho GRE
(MEGE)

1 25 2.5, 6.2, 9.9, 13.6, 17.3, 21.0 500 15 1.0×1.0× 2.0 1 : 59
2 35 3, 7.8, 12.6, 17.4, 22.2, 27.0 530 15 0.5× 0.5× 2.0 4 : 35

3 45 2.5, 6.2, 9.9, 13.6, 17.3, 21.0, 24.7,
28.4, 32.1, 35.7, 39.5 500 15 1.0×1.0× 2.0 3 : 35

sEPI 1 72 27, ETL� 15 430 20 1.0×1.0× 2.0 0 : 31
2 72 27, ETL� 15 430 20 0.5× 0.5× 2.0 0 : 52

MAGPI

1 25 4.1, 8.9, 12.6, 16.3, 20.0 190 15 1.0×1.0× 2.0 1 : 59
2 35 7.6, 13.0, 17.3, 21.5, 25.7, 30.0 250 15 0.5× 0.5× 2.0 4 : 35

3 45 6.6, 13.0, 18.5, 23.8, 29.0, 34.2,
39.4 200 15 1.0×1.0× 2.0 3 : 35
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(i) Single-echo GRE (SEGE): +is is a commonly
chosen protocol with QSM and other suscepti-
bility-based techniques [33], wherein a single-
echo time TE is measured as close to T∗2 of tissue
of interest (here, the target is 60ms for 1mM
GdCl3). +is maximizes the phase SNR at this T∗2 .
To maximize the magnitude SNR at the chosen TE
and TR, we set the readout bandwidth at its lowest
possible value.

(ii) Segmented Echo Planar Imaging (sEPI): A recently
proposed sEPI sequence was shown to possess
similar quality phase images as SEGE [34], while
acquiring full brain coverage much faster than
SEGE. As with SEGE, phase images were generated
at a single TE at the center of the echo train.

(iii) Multiecho GRE (MEGE): +is protocol acquires
multiple TEs in a single TR. +e challenge with this
technique is the choice of the echo spacing ΔTE and
readout bandwidth BW. A short ΔTE reduces the
likelihood of aliasing in the phase domain but in-
troduces noise. A longΔTE yields phase images with
better SNR but suffers from potentially unrecov-
erable phase-aliasing errors. For example, to un-
wrap frequency offsets of ±150Hz, ΔTEmust be less
than 3.33ms. A common approach [33, 35] is to
acquire data with a short ΔTE and, in order to
recover SNR efficiency similar to SEGE sequences
[36], acquire as many echoes as possible in a TR.
However, due to hardware limitations, the readout
bandwidth, BW, places a lower limit on ΔTE. We
aimed to select the shortest ΔTE possible at the
highest BW attainable with the MR system. +is
choice minimizes the likelihood of phase wrap er-
rors, which may not be recoverable by all phase
unwrapping algorithms. We elaborate on this
choice further in the Discussion section.

(iv) MAGPI: +is is an MEGE sequence that uses
preoptimized echo times and bandwidths selection
that, when paired with a corresponding phase es-
timation algorithm, yields maximum-likelihood
optimal phase estimates in the presence of wrap-
ping, noise, and phase-offset errors [37, 38].

All sequences were 3D excitations of a
128mm× 128mm× 128mm slab (64 slices) with sagittal
slab-selection and phase encode along the B0 direction. We
used anisotropic voxels to boost SNR, a common practice for
QSM and Susceptibility-Weighted Imaging [26, 27, 39].
MAGPI and the sEPI sequences used alternating gradient
polarity, while the other sequences did not. Autoshimming
was completed prior to the first data acquisition, and then
the same shim parameters were used over time, over all
sequences and methods.

We assessed the effect of in-plane resolution and TR on
phase estimate reproducibility with each protocol (Table 1).
We also examined the reproducibility of phase estimates
across nine different angles by advancing the apparatus
approximately 18 degrees per turn.

2.3. Phase Estimation. Images generated in Steps 2–3 of
QSM are commonly referred to as frequency, phase, or field
maps, depending on the units of the data. We inter-
changeably use these names in this work depending on
context, and, in our analysis, we convert all phase images to
frequency via a simple scalar multiplication. Ten phase al-
gorithms were selected to estimate the frequency offset
image [37, 40–47]. Table 2 lists the methods used for each
pulse sequence; multiple codes were downloaded from freely
available resources (e.g., MEDI) and integrated with the
pipeline.

All phase estimation methods were applied with default
parameters in 3D over the entire acquisition volume and
were implemented and run blinded to the theoretical so-
lution. Apart from theMAGPI algorithm, which operates on
raw k-space channel-uncombined data, all methods (in-
cludingMAGPI-unopt) operated on unprocessed phase data
obtained using the vendor-provided adaptive-coil-combine
method. While this is “unprocessed phase data,” different
vendors may apply different filters, phase corrections, or
other adjustments that could influence the phase quality.
Here, adaptive-coil-combine describes the algorithm used
by this vendor to combine multichannel coil data [48]. Each
unwrapping method used the SNR in the magnitude image
to guide unwrapping orientation in the phase domain: for
example, the Laplacian-based methods used this SNR to
mask the entire image, while others (region-growing, GBC)
masked the phase values in regions with poor SNR. SNR was
measured as approximately 30 dB in water, similar to in vivo
values ranging from 25 to 30 dB.

For MEGE sequences, the multiecho data is processed
using the five following categories of algorithms:

(1) Spatial phase unwrapping at each echo, followed by
temporal combination of the resulting images using
a weighted averaging method, that is, phase SNR-
optimal [49].

(2) Spatial phase unwrapping at each echo with weighted
averaging (as in 1), but a 1D phase unwrapping step
is used just before weighted averaging. +is is meant
to correct any remaining aliasing that spatial
unwrapping failed to correct.

(3) Direct temporal phase estimation (Slope, Division)
applied in complex domain.+ese methods correctly
unwrap the phase over time, provided the inherent
frequency is less than the Nyquist frequency asso-
ciated with the echo spacing.

(4) Temporal phase combination (as in 3), followed by
3D spatial phase unwrapping to correct errors en-
countered with temporal phase estimation.

(5) Maximum-likelihood-based combination of multi-
echo and multichannel data (MAGPI) [37]. +is
method solves the phase estimation problem on a
voxel-by-voxel basis, without resorting to spatial
averaging techniques.

All phase images are eventually converted to frequency
offset (Hz) by dividing by 2π x phase evolution time.
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2.4. Adjusting for Field due to Rotation of Apparatus. To
accurately estimate Δχ from the phase images, we need to
remove the global field effects resulting from the tubes rotating
in the magnetic field, as well as field effects from the apparatus
itself. We call this process “frequency referencing” (FR).

+e scalar magnitude of the complete field inside a voxel
can be written as follows:

δB(r, θ) � δBΔχ(r, θ) + δB0(r, θ), (2)

where r is the spatial coordinate of the voxel and θ is the
rotation angle of the tube relative to B, δBΔχ(r, θ) is the field
caused by magnetic susceptibility variations (such as the one
due to a homogeneous cylindrical object immersed in a
homogeneous sphere), and δB0(r, θ) is an unknown field
offset component. We separate δB0(r, θ) into a component
that varies only spatially and a component that varies only
with the rotation of the apparatus:

δB0(r, θ) � δB
bkg
0 (r) + δB

rot
0 (θ). (3)

At a given angle of rotation, sources of spatially
varying global offsets δB

bkg
0 (r) are field inhomogeneity

(imperfections of magnetic field/coils), bulk magnetic
susceptibility of the apparatus [50, 51], and coil phase
offset [52]. As the apparatus is rotated, in the absence of
“shimming” at the console, the center frequency will be
shifted due to the bulk magnetic susceptibility of the entire
apparatus [53, 54]. Our goal is to extract Δχ by fitting
δB(r, θ) to the angle of rotation θ, inside the tube. δB

bkg
0 (r)

is a nuisance parameter that can be easily accounted for
during the fitting process by allowing for a constant shift
to the cosine.

First, we compute an estimate of δBrot
0 (θ) using the

average frequency in a static region outside the “Tube + -
Sphere” system (Figure2(a)). +e average (indicated by < >)
is taken over pixels in a region rout distant from local
susceptibility effects:

〈δB(r, θ)〉r∈rout � 〈δB
bkg
0 (r)〉r∈rout + δB

rot
0 (θ) � Crout

+ δB
rot
0 (θ),

(4)

where we defineCrout
to be a variable that is only a function of

the referencing region. +en, the referencing step consists of

δBref(r, θ) ≡ δB(r, θ) − 〈δB(r, θ)〉r∈rout � δBΔχ(r, θ) + δB
bkg
0 (r) − Crout

􏼐 􏼑, (5)

thus removing δBrot
0 (θ). Our goal is to use the referenced

field, δBref(r, θ), at every pixel in the tube center, r � rin, to
fit the field variation to the angle of rotation θ. +e only
component that varies with θ is the first term on right side of
equation (5). +e estimation step is a simple fit with respect
to θ, along with an arbitrary shift for the constant:
c � δB

bkg
0 (r) − Crout

. For the case of a cylinder (equation
(1)), the estimate can be obtained by solving

􏽣Δχ rin( 􏼁, c
∗

􏼐 􏼑 � argmin
Δχ,c

􏽣δBref rin, θ( 􏼁 −
Δχ
6

3 cos2 θ − 1􏼐 􏼑B0 + c􏼒 􏼓

�������

�������2
.

(6)

Fitting c effectively amounts to shifting the midline of the
data tomatch themodel (across all angles).We used a bisquare-

weightingmethod to fit thismidline.We include a few examples
of 􏽣Δχ estimation using equation (6) in Table S.1.

We apply this frequency referencing method after each
phase estimation algorithm. To investigate repeatability with
respect to the location of frequency reference estimate, we
apply this process in 13 different regions selected across
static areas of the phantom (Figure 2(a)).

2.5. Error Analysis. We use the theoretically determined
values of Δχ to predict the field values at each angle that
would have been measured with ideal methods in Steps 1
and 2. We then compute the error (Hz) between measured
frequency 􏽣δBref(rin, θ) and expected frequency offset:

Table 2: All phase estimationmethods.+e first six methods were combined with other common phase processing techniques to process the
multiecho data, as described in the Methods section.

Sequence Method Summary

SEGE, MEGE,
sEPI

Unprocessed Default channel combined output phase image produced by the scanner
Phun Region-based algorithm [46]
GBC Goldstein’s branch cut method [42]

MEDI.RG Region growing algorithm from MEDI Toolbox [45, 47]
MEDI.LP Laplacian algorithm from MEDI Toolbox [44, 45]
Laplace Laplacian algorithm [40]

MEGE

Slope Computes the frequency offset from the slope of the complex data across echoes [41]
Division Computes the frequency offset from the complex division of the data at successive echoes [43]

MAGPI-
unopt

Applies the MAGPI postprocessing algorithm using a random (unoptimized) subset of echoes from the
MEGE sequence. Since MAGPI requires uneven echo spacing, only four unequally spaced echoes were

selected [37]
MAGPI MAGPI Maximum-likelihood estimate of phase from optimal echo spacing [37]
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ε rin, θ( 􏼁 � 􏽣δBref rin, θ( 􏼁 −
Δχtrue
6

3 cos2 θ − 1􏼐 􏼑B0 + c
∗

􏼒 􏼓,

(7)

where c∗is obtained by solving equation (6) with Δχ set to
Δχtrue.

To account for any dependence on tube content, we
compute the absolute relative error:

ϵr rin, θ( 􏼁 �
ϵ rin, θ( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

B0Δχ
, (8)

where the absolute value is used instead of the signed error
due to the irrelevance of sign in this context.

Error statistics were computed for each voxel in the
tube ROI (mean tube ROI sizes were 17 pixels at 1 mm
resolution and 57 pixels at 0.5 mm resolution), for each
slice (2 slices per tube), each tube (5 total), each angle (9

total rotations), using each applicable phase estimation
method (from a possible 10), each background phase
removal ROI (13 total), and each sequence with its re-
spective resolution and TR variations (11 total). Cumu-
latively, 2.36 million frequency values were analyzed in
this experiment.

+e large number of data points allows us to extract
statistics about ε and εr including their probability mass
function, Pr(ε) and Pr(εr). +e probability of ε can exhibit a
multimodal distribution and therefore is not a Gaussian.
While we can report the absolute bias and standard devi-
ations from such a distribution, it would not be descriptive
of Pr(ε). A more practical measure is the likelihood of
observing absolute relative errors less than or equal to a
threshold, τ. +is is obtained by integrating Pr(εr) between 0
and τ a measure known as the Cumulative Distribution
Function (CDF),
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Figure 2: (a) An example magnitude GRE image showing both the tube ROI (small black box in center) used for the analysis and the
placement of the 13 background ROIs. (b) Example frequency images in tube 3 (0.5mM GdCl3) obtained with the single GRE sequence
(1mm, TR 45ms) and reconstructed with MEDI.RG phase estimation method. (c) Also using SEGE+MEDI.RG, the field difference
between two angles (δBtotal(r, θ2) − δBtotal(r, θ1)) showing that this difference is attributable to the spatially invariant component (in
homogeneous areas) and a spatially variant component (in areas close tomaterial boundaries).+e spatially invariant component of the field
difference is removed with frequency referencing (FR). (d) A plot of the frequency against the angle of rotation (modulo 180°) is shown for
each of the data without frequency referencing (in green (x), data after frequency referencing using the frequency reference ROI #9 (blue
circles), and the model’s prediction of the frequency (solid red line).
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Fεr
(τ) � Pr εr ≤ τ( 􏼁. (9)

+e CDF can be used to capture phase errors that are
dominated by outliers, as well as phase errors that result
from generally poor/unreliable model fitting. +e ideal CDF
is a step function, and any presence of outliers/large errors
yields a CDF with slow convergence to 1. +e frequency of
large errors is seen from the magnitude of the deviation of
the CDF from 1.0 at any given threshold.

3. Results

Figure 2(a) shows a magnitude GRE image of tube 3 (0.5mM
GdCl3) in one orientation. Figure 2(b) shows frequency offset
images corresponding to different rotations. Figure 2(c)
shows a typical field difference between two angles
(δB(r, θ2) − δB(r, θ1)). According to equation (3), this dif-
ference is equal to δBΔχ(r, θ2) − δBΔχ(r, θ1) + δBrot

0
(θ2) − δBrot

0 (θ1), predicting spatial variations only in loca-
tions close to areas with susceptibility changes and a constant
field in homogeneous locations. +is is precisely what we
observe in Figure 2(c). Figure 2(d) shows a plot of the fre-
quency values for a voxel inside the tube prior to frequency
referencing (symbol “x”). +e resulting plot does not follow
the expected sinusoid (solid line). After applying the fre-
quency referencing step, we observe the expected sinusoidal
shape (symbol “o”).

Figure 3 shows the resulting histogram of frequency
errors and resulting CDF. From Figures 3(a) and 3(b), we
note the probability of ε for this example exhibits a mul-
timodal distribution. We can see from the CDF in
Figure 3(c) that the probability of observing errors less than
10% (Fεr

(0.1)) is about 66%.
Table 3 summarizes the error statistics for all combi-

nation of sequences and algorithms. +e first column lists
the sequence type, and the second and third columns in-
dicate the name and category of each postprocessing algo-
rithm, respectively. We report the mean and standard
deviations of both ε and εr. We also report Fϵr(0.1) pooled
over all background ROIs, as well as the range (minimum,
FεrW

(0.1), and maximum, FεrB
(0.1)) of Fεr

(0.1) encountered
in those ROIs. +ese quantities are computed from data that
includes all tubes and angles. A representative subset of these
results is selected for more detailed analysis and illustration
in Figures 4–6.

Figure 4 shows a subset of frequency-offset images for
different sequence + algorithm pairs, at 3 of the 9 angles of
rotation. +is figure illustrates typical challenges with phase
estimation methods. For example, in Figure 4(a), we observe
phase unwrapping errors in SEGE+GBC, with abrupt
jumps across contiguous regions. +e corresponding fre-
quency versus angle plot (last column in Figure 4(a)) shows
that incorrect frequency referencing in these areas (square in
figure) yields occasional mismatch between measurement
and predictions at certain angles. SEGE+Laplace demon-
strates a smoothly varying frequency map across the FOV;
however, the resulting data deviates from the expected
theoretical values at almost every angle (Figure 4(b)).
MEGE+ Slope, a direct temporal phase estimation method

(MEGE category 3), exhibits phase wrapping errors when
the underlying frequency value is larger than the bandwidth
allowable by ΔTE(Figure 4(c)). Placing a frequency refer-
encing ROI in these areas yields incorrect values at the
respective angles. Note that the example frequency reference
ROI (#9 in Figure 2) is meant to highlight the phase errors or
artifacts observed. Figures 4(d) and 4(e) show that the results
from MAGPI-unopt and MAGPI are consistent with those
predicted from theory.

+e CDF of εr collects the errors, such as those observed
in Figure 4, over a variety of acquisition and processing
parameters. Figure 5 shows Fεr

(τ) for all algorithms when εr

is pooled over all voxels, background ROIs, slices, tubes, and
sequence variations. +is represents an overall summary of
algorithm behavior, irrespective of which parameter was
used in acquisition and postprocessing. We see that MAGPI
attains a nearly ideal CDF, with 0.91 probability of relative
errors, εr, less than 0.1 (Fεr

(0.1) � 0.91) and rapidly con-
verges to 1 (Figure 5). MAGPI and MAGPI-unopt achieve
similar CDFs, with MAGPI performing slightly better, as
expected. MEDI.RG and GBC phase unwrapping methods,
both based on region growing, have similar CDFs, with
Fεr

(0.1) � 0.69 and Fεr
(0.1) � 0.70, respectively. +e un-

processed phase images have the most artifacts and, thus, the
lowest CDF across all εr. Figure 5 focuses on the CDF for εr

in [0, 1.0] to highlight the different convergence pattern
(distribution/frequency of errors) in that domain. +e CDF
extends beyond εr � 1.0 for any occurrence of relative errors
greater than 100%.

Next, we explore the behavior of Fεr
(τ) as a function of

data acquisition strategy. In Figures 6(a)–6(c), we group
results by three sequence types: SEGE, sEPI, and MEGE.
Since MAGPI is a multiecho sequence, we include MAGPI
in the MEGE category. For each CDF curve Fϵr(τ), ϵr is
pooled across all pixels, background ROIs, slices, tubes, and
variations of TR and resolution within that sequence type.
We also explore variability of Fϵr(τ) with the frequency
referencing method. For each sequence, we show CDFs in
the ROI with the maximum Fϵr(τ � 0.1) (FϵrB

, Figures 6(d)–
6(f )) and the ROI with the minimum Fϵr(τ � 0.1) (FϵrW

,
Figures 6(g)–6(i)) for a given data set. +e separation be-
tween FϵrB

and FϵrW
demonstrates the robustness (or lack

thereof) of a method to frequency reference ROI selection.
Table 4 shows the dependence of the CDF on scan

variability and tube contents. Because the performance of
some methods is dominated by frequency reference ROI
(seen in Table 3 and Figure 6), Table 4 shows results for the
largest Fϵr(10%) for a given sequence +method pair ob-
served over all frequency reference ROIs, for every method,
sequence, scan variation, tube, and slice.

4. Discussion

A reliable pulse sequence protocol, with repeatable and
reproducible phase estimation, is a necessary step to develop
robust QSM methods for clinical use. Previous work ex-
amined the reproducibility of certain QSM methods using
phantoms [22, 25, 55], simulation [22, 25, 56], and human
subjects [19, 56]. We used a rotating-tube phantom to
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Table 3: Error statistics for each of the estimation methods and acquisition protocols. +e mean and standard deviation of error
measurements ε (Hz), as well as the absolute relative errors εr, are provided in columns 4–7. Columns 8-9 show Fϵr(0.1) of the overall data,
as well as the range (min and max) of Fϵr(0.1) across reference backgrounds.

Protocol Postprocessing Method μϵ(Hz) σϵ
(Hz) μϵr σϵr Fϵr(0.1) [FϵrW(0.1), FϵrB(0.1)]

SEGE Spatial 3D unwrap

Unprocessed 0.29 3.85 0.52 0.92 0.48 [0.24, 0.76]
Phun 0.21 5.12 0.35 1.38 0.67 [0.49, 0.89]
GBC − 0.22 4.83 0.53 1.08 0.66 [0.47, 0.82]
MEDI.RG − 0.19 1.60 0.08 0.22 0.90 [0.84, 0.96]
MEDI.LP − 0.01 1.07 0.14 0.12 0.50 [0.38, 0.62]
Laplace 0.00 1.01 0.14 0.15 0.54 [0.40, 0.66]

sEPI Spatial 3D unwrap

Unprocessed − 0.34 4.19 0.58 0.76 0.43 [0.32, 0.52]
Phun − 0.10 5.23 0.73 1.30 0.45 [0.31, 0.56]
GBC − 0.32 3.80 0.42 0.97 0.66 [0.31, 0.91]
MEDI.RG 1.03 4.14 0.32 1.15 0.85 [0.79, 0.91]
MEDI.LP 0.00 1.14 0.12 0.12 0.57 [0.51, 0.65]
Laplace 0.00 0.95 0.12 0.11 0.58 [0.47, 0.68]

Multiecho

1. Spatial 3D unwrap⟶ temporal average

(i) Unprocessed 0.01 2.60 0.48 0.41 0.16 [0.08, 0.23]
(ii) Phun 0.39 4.75 0.30 1.23 0.57 [0.48, 0.69]
(iii) GBC 0.31 2.21 0.15 0.36 0.78 [0.59, 0.91]
(iv) MEDI.RG − 0.37 3.47 0.66 0.95 0.35 [0.09, 0.63]
(v) MEDI.LP − 0.01 0.89 0.11 0.09 0.58 [0.49, 0.67]
(vi) Laplace 0.00 0.82 0.12 0.12 0.58 [0.44, 0.68]

2. Spatial 3D unwrap⟶ temporal 1D
unwrap⟶ temporal average

(i) Phun 0.19 7.66 0.94 2.23 0.55 [0.12, 0.96]
(ii) GBC 0.20 7.78 0.96 2.25 0.55 [0.12, 0.96]
(iii) MEDI.RG 0.13 7.95 0.97 2.29 0.55 [0.12, 0.96]
(iv) MEDI.LP − 0.01 0.89 0.11 0.09 0.58 [0.49, 0.67]
(v) Laplace 0.00 0.82 0.12 0.13 0.58 [0.45, 0.68]

3. Temporal estimation (i) Slope 0.26 9.28 1.15 2.79 0.55 [0.13, 0.96]
(ii) Division 0.26 9.27 1.15 2.78 0.55 [0.13, 0.95]

4. Temporal estimation⟶ spatial 3D
unwrap

(i) Phun 0.04 11.04 1.17 3.02 0.53 [0.06, 0.95]
(ii) GBC 0.17 9.18 1.10 2.69 0.54 [0.09, 0.95]
(iii) MEDI.RG 0.47 62.07 10.11 16.54 0.21 [0.00, 0.76]
(iv) MEDI.LP 0.16 3.87 0.54 1.16 0.43 [0.20, 0.70]
(v) Laplace 0.22 6.89 0.89 2.05 0.36 [0.10, 0.66]

5. MAGPI
(i) MAGPI
unopt 0.00 0.30 0.05 0.05 0.90 [0.78, 0.97]

(ii) MAGPI 0.00 0.27 0.05 0.04 0.91 [0.84, 0.98]
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Figure 3: (a) +e histogram of the error ε (in Hz) when the measurement is obtained with the SEGE+GBC phase estimation method. +e
error data is pooled over all ROI voxels, all backgrounds, rotations, and tubes. (b)+e histogram of the absolute relative error εr seen with the
same measurement. (c) +e corresponding Cumulative Distribution Function Fϵrof the error in (b). +e inset figure shows a portion of this
CDF within [0, 0.3] to better illustrate the distributions within reasonable error range. In this case, the CDF shows that the probability of
obtaining εr less than 0.1 is around 0.66 with the SEGE+GBC pair. +e maximum observed ϵ was 27.0Hz, and the maximum observed εr
was 6.85, illustrating the occasional large errors that may result with SEGE+GBC.
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Figure 4: Continued.
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quantitatively evaluate methods used for data acquisition
and phase estimation. +is is not the first study using long
tubes nor is it the first to position tubes relative to B0;
however, compared to previous work [22, 24, 25, 55, 57–59],
more acquisition and phase estimation methods were
considered. Specifically, we used ∼90 different combinations
of pulse sequences and phase estimation methods to analyze
millions of measurements from different ROIs, tube con-
tents, rotations, and sequence parameters. +is vast amount
of data ultimately allowed us to estimate the probability
distribution of phase error with every QSM method, along

with other important statistics. Additional phase estimation
methods could be retrospectively used on the data set, which
we aim to make publicly available.

Our results showed varying degrees of accuracy and
precision over all tested methods. For example, while the
majority of methods resulted in μϵ less than 1Hz (note the
particularly small μϵ with MEDI.LP, Laplace,
MEGE+MAGPI-unopt, and MAGPI), the only methods
with μϵr <10% are SEGE+MEDI.RG (7.6%),
MEGE+MAGPI-unopt (5.3%), and MAGPI (5.0%). We
observed a similar trend with precision, whereby methods
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Figure 5: CDF Fεrof the absolute relative error obtained for each of the phase estimation methods studied in this work, when the error is
pooled over all sequences, slices, tubes, angles, and frequency referencing ROIs. Note that somemethods do not converge to probability of 1,
due to the presence of errors greater than 100%.
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Figure 4: Each row in this figure shows five different examples of sequence (at 1mm resolution, TR� 45ms) and phase estimation method
pairs for three different angles of rotation in different tubes. +ese examples were selected to illustrate the spatial nature of different phase
estimations errors and artifacts. +e corresponding plots in the last column show the resulting frequency measurements as a function of
angle of rotation (modulo 180°), for a voxel inside the tube, after frequency referencing (blue circle). +e predicted frequency offset as
obtained from equation (1) is also shown in solid red line. +e background ROI (#9) used is shown with a square overlaid on the frequency
maps. (a) SEGE+GBC shows a phase wrapping error in tube 3 in the frequency reference ROI for the 160-degree angle. (b) SEGE+Laplace
shows smoothly varying frequency maps; however, the values deviate from the expected result at every angle. (c) MEGE+ Slope, without 3D
phase unwrapping, shows the presence of phase wrapping in areas with large frequency values. +e frequency reference ROI is within a
phase wrapped region across all angles. (d, e) MEGE+MAGPI-unopt and MAGPI’s phase estimation show frequency maps consistent with
values predicted from the model.
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Figure 6: Continued.
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Table 4: Probability of relative errors <0.1 in the background ROI that maximizes Fϵr(0.1) across sequences, scan variability (ID is as listed
in Table 1), and phantom tube components. +e tube contents are 1.0mM GdCl3 in tubes 1 and 2, 0.5mM GdCl3 in tubes 3 and 4, and
3.2mM CuSO4 in tube 5. +e last column is the standard deviation of all FϵrB

(0.1) for the given method.

Method Sequence Scan ID 1 Scan ID 2 Scan ID 3 Tube 1 Tube 2 Tube 3 Tube 4 Tube 5 Std FϵrB(0.1)

Unprocessed
SEGE 0.79 0.86 0.47 0.59 0.88 0.83 0.89 0.68

0.32MEGE 0.25 0.21 0.27 0.25 0.23 0.25 0.26 0.18
sEPI 0.51 0.55 — 1.00 0.00 0.86 0.06 0.77

Phun
SEGE 0.91 0.96 0.68 0.98 0.88 0.83 0.87 0.88

0.24MEGE 0.67 0.73 0.64 0.89 0.51 0.54 0.66 0.80
sEPI 0.56 0.58 — 0.92 0.00 0.87 0.37 0.79

GBC
SEGE 0.96 0.73 0.96 0.75 0.79 0.97 0.93 0.73

0.08MEGE 0.95 0.88 0.96 0.89 0.93 0.97 1.00 0.80
sEPI 0.89 0.97 — 0.95 0.89 0.90 1.00 0.82

MEDI.RG
SEGE 0.97 0.96 0.97 1.00 0.94 1.00 1.00 0.89

0.20MEGE 0.24 0.76 0.65 0.63 0.61 0.64 0.67 0.63
sEPI 0.91 0.92 — 1.00 0.84 0.94 0.97 0.84

MEDI.LP
SEGE 0.63 0.63 0.59 0.36 0.58 0.53 0.96 0.70

0.18MEGE 0.68 0.67 0.64 0.36 0.75 0.53 0.95 0.76
sEPI 0.65 0.66 — 0.36 0.63 0.53 1.00 0.78

Laplace
SEGE 0.57 0.68 0.68 0.36 0.97 0.52 0.85 0.56

0.19MEGE 0.62 0.72 0.64 0.36 1.00 0.69 0.90 0.46
sEPI 0.66 0.74 — 0.40 0.93 0.58 0.89 0.60

Slope MEGE 0.96 0.95 0.97 0.99 1.00 0.95 0.99 0.82 0.06
Division MEGE 0.95 0.94 0.96 0.99 1.00 0.95 0.99 0.78 0.07
MAGPI-unopt MEGE 0.97 0.97 0.97 1.00 1.00 0.98 1.00 0.87 0.04
MAGPI MAGPI 0.97 0.98 0.97 1.00 1.00 0.98 1.00 0.91 0.03
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Figure 6: +e CDFs for each acquisition and phase estimation method pair. Each column corresponds to a different type of acquisition:
single-echo acquisitions (SEGE) are shown in the first column, accelerated acquisitions with sEPI in the second, and multiecho acquisitions
(MEGE and MAGPI) in the third. +e first row (a–c) shows the CDF when all the error data is pooled, over all voxels, slices, tubes, and
background ROIs. Given the large variability in performance for different background ROIs, we show in the second (d–f) and third (g–i)
rows the CDFs obtained in the ROIs with the maximum and minimum Fϵr(0.1), respectively. A highly reproducible method will have a
similar curve shape across all plots.
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with the lowest relative standard deviation σϵr were
MEGE+MEDI.LP (8.9%), MEGE+MAGPI-unopt (4.8%),
and MAGPI (4.1%). +e detailed behavior of the error is
captured by the CDF (or PDF) of the data (Figure 5). A
summary of the CDF is in the second-to-last column of
Table 3 where we show the probability of observing relative
errors <10%, Fϵr(10%), which captures the frequency by
which relatively acceptable errors occur. An advantage of the
Laplace-based methods is that they had smooth phase maps
with qualitatively no apparent phase jumps. However,
analysis showed that Laplace phase images result in quan-
titatively larger errors (a low Fϵr(10%)) than other methods,
suggesting incorrect phase unwrapping results, similar to the
work of Chen et al. [60]. Other methods with low Fϵr(10%)

were the unprocessed phase data, MEGE+ Slope/Div, and
MEGE+MEDI.RG, which had large phase unwrapping
errors in a significant proportion of the data. Fϵr(10%) is an
arbitrary point at which we highlight the behavior of Fϵr and
does not represent the entirety of the distribution of error (or
CDF). For example, Fϵr(10%) of SEGE+MEDI.RG was
comparable to MEGE+MAGPI-unopt and MAGPI, despite
the comparatively poorer (larger) μϵr and σϵr of
SEGE+MEDI.RG. +is is due to relative errors falling
mostly within the chosen 10% threshold for these methods.

We explored the dependence of errors on frequency
reference ROI location (Figure 6). Since phase estimation
errors (particularly large errors) are undesirable anywhere in
the FOV, any spatial variation of the CDF highlights the
potential dependence of the method on user intervention
and/or its automated processing. We show the range of
Fϵr(10%) observed across the 13 different frequency refer-
ence ROIs in the last column of Table 3. +e results suggest
that the most repeatable methods across background ROIs
are SEGE+MEDI.RG, sEPI +MEDI.RG, MEGE+MAGPI-
unopt, and MAGPI.

+e MEGE data was processed using four broad classes
of postprocessing algorithms. We note the following about
these algorithms:

(i) +e results obtained with methods in Categories 1
and 2 were fundamentally similar. +at is, addi-
tional 1D-temporal processing does not alter the
performance of 3D spatial unwrapping methods
(with the exception of Laplacian-based methods,
which we discuss below). +is redundancy is due to
the inherent Nyquist limitation associated with the
echo spacing. As a result, we focus on the distinctive
results of Category 1: spatial phase unwrap-
ping +weighted averaging of echoes (Table 3).

(ii) Some postprocessing methods used in MEGE
Categories 1 and 2 performed more poorly with
MEGE than with SEGE (e.g., MEDI.RG).We believe
this is due to the relatively larger bandwidth used
with MEGE acquisitions, resulting in noisier images
at each echo. Higher BW acquisitions were needed
with MEGE to accommodate temporal methods
(MEGE Categories 3 and 4), which require short
echo spacing. It is possible that MEGE+MEDI.RG
would perform better with lower BW (wider echo

spacing). Due to time/complexity constraints, we
were unable to explore every possible MEGE vari-
ation that favors specific algorithms. +is is a
limitation of this study.

(iii) MEGE Category 3 methods (Division/Slope) were
straightforward to apply but resulted in a wide range
of errors. +is is due to large errors observed in
frequency reference ROIs where the underlying fre-
quency-offset value is larger than what is allowable by
the smallest echo spacing. While such errors are
avoidable with shorter echo spacing, this is not always
possible (as was the case here) due to hardware
constraints on readout bandwidth, resolution, FOV,
and so forth. While Slope and Division are straight-
forward to apply, they result in a suboptimal com-
bination of echoes, with noisy phase estimates.

(iv) MEGE Category 4 methods have a similar perfor-
mance to that of Category 3 methods.+at is, spatial
phase unwrapping did not seem to markedly im-
prove the performance of temporal phase
unwrapping. +is is potentially due to the hard-to-
unwrap noisy boundary lines observed with Cate-
gory 3 methods, as shown in MEGE+ Slope ex-
ample in Figure 4, which are still present with
Category 4 methods.

Finally, we explored the dependence of the CDF on scan
variability and tube contents (Table 4), and we note the
following:

(1) Not all sequence +method pairs were invariant to
scan and/or tube content. sEPI + Phun and
sEPI +Unprocessed had greatest variability, followed
by all of the Laplace-based methods (LP, MEDI.LP),
indicating that some methods produced inconsistent
phase even in their best-case scenario. Laplace-based
techniques generated smoothly varying, though
numerically inaccurate phase maps, irrespective of
sequence, and sEPI + Phun suffered from sequence-
dependent errors.

(2) Considering the best-case ROI scenario, we did not
observe consistent performance differences between
pairing methods with either SEGE or sEPI. +e sEPI
sequence provides a significant acceleration over
SEGE via its segmented GRE approach and per-
formed better with some methods (GBC) and worse
with others (Phun).

(3) Table 4 compares Sequence +Method pair perfor-
mance as a function of variability of scan parameters.
For example, MEGE+ Slope performed consistently
well (FϵrB

(10%)> 0.95) irrespective of the scan type
used, while SEGE+Laplace was not always able to
estimate the correct phase, irrespective of scan.
SEGE+GBC, though, only struggled with Scan 2,
which had a shorter TR than Scan 1.

(4) +e same analysis can be applied to tube contents.
MAGPI achieved FϵrB

(10%) close to 1.0 for all tubes
and FϵrB

(10%) � 0.91 in Tube 5. sEPI + Phun had
inconsistent performance across tubes of similar
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content (Tubes 1, 2, 3, and 4). Among the methods
that maximized Fϵr(0.1), Tube 5 exhibited lower
FϵrB

(10%) compared to other tubes, which could be
due to challenges defining Δχth and the complexity of
CuSO4 compared to GdCl3.

Overall, the consistently good performance across tube
content, scan, and rotation angle in the absence of phase es-
timation errors validates the Δχ model (equation (1)) and
demonstrates that the rotating-tube phantom itself did not
introduce unexpected detrimental effects to the phase mea-
surements. In previous work, QSMperformance improvedwith
higher isotropic spatial resolution and higher coverage [56, 61].
Here, slice thickness was 2.0mm for all scans, which may
explain why performance did not drastically change with res-
olution. Additionally, Zhou et al. [61] and Karsa et al. [56]
examined the entire QSM process, including inversion, which
was not addressed here. Olsson et al. [22] used a phantom with
tubes of Gd in comparable concentrations, though only one
tube was used when varying angle with respect to B0 (five
angles). +at study used one method to estimate QSM [62–64]
over multiple spatial resolutions, volumes, and inversion pa-
rameters. Similar to the work of Karsa et al. [56], Olsson et al.’s
results improved with increasing resolution and volume cov-
erage, and, similar to our results, Olsson et al. observed errors in
phase estimation using [47], compared to the theoretical result.

A limitation of this work is that the geometric structure
of the phantomwas not identical to that encountered in vivo.
In vivo imaging may present different sources of phase errors
not included here (e.g., eddy currents, susceptibility-induced
signal drops), and the phantom could present some chal-
lenges that are not encountered or are less prominent in the
brain. +is is a common problem with nearly all phantom
studies, and it is counterbalanced by the advantage of having
a known truth, which is not possible in vivo. Errors observed
in phantoms are frequently observed in vivo, even when the
geometry of the phantom is a gross simplification of human
anatomy. For example, in T1 estimation, while phantoms can
be used to refine a method, errors are amplified when
methods are applied in vivo [65]. +e many parameters,
sequences, and processing steps considered here are useful to
evaluate the robustness of phase estimation techniques, and
this work can be viewed as a complement to other efforts
seeking to evaluate the accuracy of QSM techniques, such as
the use of simulated data [66, 67].

We introduced a wide range of variability to test re-
peatability and reproducibility of many data acquisition
scenarios. While the performance of each method could be
improved with additional “intervention” and potentially
adapting the acquisition parameters to the intended post-
processing methods to be used later, our intent was to assess
the ability of existing techniques in diverse imaging sce-
narios encountered in reality. +e degree to which Steps 3
and 4 of QSM are sensitive to the errors introduced in Steps 1
and 2 requires further investigation. +is phantom valida-
tion study allowed us to set a quantitative limit on the
performance of various Steps 1 and 2 methods. Ongoing
work focuses on evaluating the performance of a subset of
these methods, paired with Steps 3 and 4 methods.

5. Conclusion

In this work, we used a rotating-tube phantom to explore
sources of error in QSM data acquisition and phase es-
timation. To assess the robustness and repeatability of
methods, we did not manually intervene. +e two most
impactful parameters on reproducibility of measure-
ments were (a) acquisition protocol (e.g., single echo or
multiple echoes) and (b) phase errors. +e most re-
peatable and reproducible approaches were MAGPI and
MAGPI-unopt, both methods based on the maximum-
likelihood approach in phase estimation. For the
remaining methods, performance varied greatly, even
when systematically applied to the same underlying data
from the same sequence or with the same method across
different sequences. +is assessment of which methods
are repeatable and reproducible without manual inter-
vention is an important step towards using QSM pipe-
lines in clinical settings without experienced users.
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