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‘You have cancer’ – a devastating diagnosis that still
strikes patients hard. Despite substantial improvements
of standard therapies over the years, there is still no
general cure available. Thus, cancer represents an enor-
mous burden on modern societies – socially as well as
economically. According to recent statistics from the
National Cancer Institute, every second human being will
receive the diagnosis of cancer throughout his lifetime
and every fourth will succumb to the disease (Howlader
et al., 2014). For this year, the American Cancer Society
predicts that approximately 600 000 Americans are
expected to die of cancer – that is more than 1650 peo-
ple a day. This only gives a glimpse of the suffering and
emotional strain of the patient and his social environ-
ment. Besides, estimates of the direct medical costs for
cancer in the United States were $87.8 billion in 2014.
Even more striking is the prognosis. By 2030, 50% more
cancer cases will be diagnosed and mortality due to this
disease will increase by 60%. One major reason for this
increasing threat is the demographic chance of the soci-
ety. As cancer is essentially a disease of old age, with
improved live expectancy, the chance to develop cancer
is increasing accordingly. For such reasons, the intro-
duction of novel efficacious therapies is a task of utmost
importance for modern biomedical research. These
efforts are well in agreement with the sustainable devel-
opments demanded by the WHO especially with the

challenge: ensure healthy lives and promote well-being
for all at all ages.
Here, we review the revival of an old concept – the

use of bacteria as cancer therapeutics. Bacteria-
mediated tumour therapy has great potential to evolve
into a powerful tool against malignant solid tumours.
To date, early diagnosis and classical treatment

options like surgery, radio- and chemotherapy represent
the backbone of cancer therapy. Although such thera-
pies have been continuously improved, they bear many
disadvantages and risks (Crawford, 2013). For instance,
not every tumour can be surgically removed and the
unspecific activity of radio- and chemotherapies causes
serious damage to healthy tissue. This renders such
therapies suboptimal. The major disadvantage of the
classical tumour therapies, however, remains the
absence of a complete and sustainable cure, i.e. preven-
tion of tumour relapse or inability to clear metastases
and micrometastases. Therefore, in the past decades,
research focus has shifted to more specific therapies
that aim to fight cancer by, e.g., targeting molecular
characteristics of the tumour or using the specificity of
the immune system by employing antibodies or specific
T cells (Weiner et al., 2010; Perica et al., 2015). Another
example of an immunotherapeutic concept that is at the
verge of general acceptance is the use of genetically
modified bacteria against solid tumours. Such microor-
ganisms exhibit natural tumour-targeting as well as adju-
vant abilities (Forbes, 2010).
Bacteria-mediated tumour therapy (BMTT) is not a

new concept. The roots of this therapy reach beyond
introduction of radiotherapy for cancer treatment. Already
at the end of the 19th century, the US physician W.
Coley explored the potential of bacteria for treatment of
patients suffering from inoperable skin tumours (Hoption
Cann et al., 2003). Coley was quite successful. How-
ever, it was difficult to control the bacterial infections at
that time as antibiotics had not yet been discovered. In
addition, many experts questioned Coley’s approach as
he was not able to explain the mode of action of this
therapy. The idea to use bacterial pathogens to treat
tumours was considered foolish and still is by many
oncologists (McCarthy, 2006). In particular in the light of
the fact that some bacteria such as Helicobacter, Sal-
monella Typhi or Fusobacteria can induce or support
cancer (Ray, 2011; Kostic et al., 2013; Nagaraja and
Eslick, 2014; Wang et al., 2014), the approach of BMTT
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was considered irrational. For a long time, it appeared to
be impossible to find a balance between therapeutic
benefit, safety and risks.
However, these concerns about BMTT did not discour-

age other members of the scientific community to renew
research on this targeted therapy and first successes
became apparent recently. These were primarily due to
new tools of genetic engineering, as well as the
improved understanding of host–pathogen interactions
and tumour biology and resulted in different approaches
to treat tumours using bacteria. An outstanding example
is BCG (Bacillus Calmette-Guerin), a highly selected
strain of Mycobacterium bovis (Redelman-Sidi et al.,
2014). It was found to prevent relapses of superficial
bladder cancer to a high degree and has been deployed
in the clinics already since the late 1980s. Further
promising candidates for BMTT include Gram-positive
bacteria like Listeria monocytogenes or Clostridium
novyi-NT and Gram-negative bacteria like Salmonella
Typhimurium and Escherichia coli (Paterson et al., 2010;
Kubiak and Minton, 2015; Felgner et al., 2016a; Kocijan-
cic et al., 2016). Although the concepts to apply the vari-
ous bacteria for cancer therapy differ significantly, they
have all been able to demonstrate antitumour properties
in preclinical models and some even in clinical trials.
For instance, Listeria strains like ANZ-100 or CRS-207

are predominantly used as cancer vaccines that stimu-
late a T-cell-dependent anti-tumour response. Recent
clinical trials with CRS-207 expressing mesothelin
showed promising results in patients with pancreatic
cancer (Maciag et al., 2009; Le et al., 2012).
Similarly, the use of Clostridia spores in BMTT was

recently investigated in the clinic. It had been demon-
strated that such spores can colonize human and canine
tumours to induce anti-tumour effects (Krick et al., 2012;
Roberts et al., 2014). They were even able to breach
the blood–brain barrier in a rat glioma multiforma model
(Staedtke et al., 2015). Although the exact mechanisms
of tumour colonization and anti-tumour effects of Clostri-
dia spores are poorly understood, they are taken as safe
vectors as spores of these obligate anaerobic bacteria
can only germinate in necrotic cores of tumours that lack
oxygen (Barb�e et al., 2006). However, this confinement
to anoxia also represents a limitation because small
tumours often lack necrotic regions. Thus, neither small
metastases nor viable aerobic regions of the primary
tumour can be targeted with such spores.
To overcome this limitation, researchers focus on fac-

ultative anaerobic bacteria for BMTT. Accordingly, Sal-
monella Typhimurium can target both aerobic and
anaerobic tumour regions (Ruby et al., 2012). How Sal-
monella is able to invade solid tumours is still under
debate, but a reasonable explanation for the mechanism
is already specified: a cytokine storm is elicited upon

intravenous or intraperitoneal application of the bacteria
that is usually dominated by TNF-a. This cytokine opens
the pathological blood vessels of the tumour and results
in a haemorrhage and consequently in the formation of a
large necrotic area. Due to the high blood influx, the bac-
teria are flushed into the tumour. They then thrive in the
necrotic hypoxic/anoxic environment where they are pro-
tected from the immune system (Westphal et al., 2008;
Leschner et al., 2009). However, it remains still unclear
whether tumour colonization is essential for therapeutic
efficacy or whether the therapeutic power of the bacteria
is due to an adjuvant effect exerted by the bacteria
exclusively in immune inductive sites.
While the ability of Salmonella to grow in the presence

of oxygen might be beneficial for tumour therapy, it
enables Salmonella to also target healthy tissues like
spleen and liver. Thus, in principle, Salmonella is not as
tumour specific as Clostridia. Therefore, Salmonella
needs to be attenuated in a way that it can only survive
and inflict damage inside the immune-privileged site of
the tumour. Unfortunately, attenuating Salmonella for
cancer therapy is not a straightforward process. Many
studies have shown that inactivating essential genes
easily results in overattenuated therapeutic strains (Sch-
mitt et al., 1994; Frahm et al., 2015). Although safe in
various animal models, the antitumour properties might
not be preserved. Thus, the major challenge of using
Salmonella in BMTT is to find an appropriate balance of
safety and therapeutic efficacy.
In the past decades, several strategies have been fol-

lowed to find such a balance. First approaches aimed to
passage Salmonella through cancerous tissue either
in vitro or in vivo to improve tumour-targeting by selec-
tion. This strategy resulted in the prominent Salmonella
vector strains VNP20009 and A1-R (Low et al., 2004;
Zhao et al., 2006; Zhang et al., 2017). VNP20009 was
evaluated in clinical trials. However, it turned out that
VNP20009 was overattenuated due to the uncontrolled
introduction of multiple deletions during the selection pro-
cess (Toso et al., 2002; Broadway et al., 2015). This
might explain the ineffectiveness of this strain in human
patients. The Salmonella variant A1-R, on the other
hand, appears to be highly potent. This strain is deficient
for the amino acids arginine and leucine and has shown
great promise in many different types of murine tumours
and patient-derived orthotopic xenografts (Hoffman,
2016; Zhang et al., 2017). It will be interesting to follow
this particular strain and its performance in clinical trials
with human cancer patients.
In addition to random selection, another promising

strategy is to design Salmonella strains by targeted gene
deletion, which avoids unexpected modifications. Promi-
nent candidates by this approach include the magic spot
mutant of Salmonella (DppGpp) that was enhanced by
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expressing a secreted flagellin (Yun et al., 2012; Zheng
et al., 2017), and SF200 which comprises several muta-
tions affecting LPS and flagella synthesis, as well as
containing metabolic modifications (unpublished data).
Both strains have been shown to be tumour specific and
exhibit high efficacy in various murine tumour models.
Strain SF200 is interesting in particular because it was
constructed in a modular way. Thereby, the bacteria are
not only attenuated but at the same time, the immune
stimulatory capacities were increased by targeted modifi-
cations (Felgner et al., 2016b; Kocijancic et al., 2017).
As consequence, SF200 is the first therapeutic strain
able to overcome pre-existing anti-Salmonella immunity
and retains its therapeutic efficacy under such condi-
tions. It may counter one of the major obstacles for
BMTT and could be a promising candidate for clinical tri-
als.
In summary, many of these studies have shown that

bacteria can target and retard the growth of several
tumours, and even clear these neoplasia in some cases.
However, many tumours still withstand the therapy after
an initial phase of response. Thus, researchers shift to
either (i) use the bacteria as a vector system that shuttles
therapeutic substances, e.g. rIL-2, sh-RNAs, CPG2, cyto-
sine deaminase, as well as toxins like a-haemolysin into
tumours (Nemunaitis et al., 2003; Friedlos et al., 2008;
Nguyen et al., 2010; Blache et al., 2012; St. Jean et al.,
2014); or (ii) adjuvant therapy, where the bacteria are
applied together with checkpoint inhibitors like a-PD-1 and
a-CTLA-4 or together with adoptively transferred anti-
cancer T cells (Binder et al., 2013, 2016; Hiroshima et al.,
2014, 2015). To avoid safety concerns, another approach
is to replace the bacterial vector by nanoparticles that
shuttle bacterial components into tumours (Felgner et al.,
2016c; Mercado-Lubo et al., 2016). However, the speci-
ficity and side-effects of such therapies remain unclear
and are still subject to investigations. Furthermore, bacte-
ria can be also employed for cancer diagnostics as
demonstrated recently (Yu et al., 2004; Danino et al.,
2015). This possibility has been little explored thus far but
the great potential became apparent.
Taken together, the unique intrinsic properties of bac-

teria to specifically colonize cancerous tissue and to eli-
cit an antitumour response combined with their potential
as a targeted delivery vector system provide a solid plat-
form for cancer therapy with an extremely high potency.
It represents a perfect example how the delivery and
quality of therapeutics can be improved. From the first
attempts to revive Coley’s strategy (Pawelek et al.,
1997) until today, dramatic progress has been made in
understanding the process but also in enhancing the
bacteria by genetic modifications. This progress will con-
tinue. Thus, BMTT will grow into a versatile alternative to
conventional therapies that is not restricted to a

particular type of tumour. In fact, microbial therapy may
become one of the most specific therapies for cancer
treatment besides its potential in cancer prevention and
biotechnological diagnostic. Thus, BMTT has the poten-
tial to help to release mankind from the curse of cancer.
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