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Simple Summary: Breast cancer in young women under 40 years of age shows a poor prognosis, and
its treatment is difficult due to premenopausal status and fertility preservation. The early prediction
of prognosis of young age breast cancer would be helpful for planning treatment and postoperative
surveillance. In this study, the radiomics-based nomogram for the prediction of recurrence shows
good predictive ability, especially 2-year disease-free survival after surgery. Several radiomics
features presumed to be unique imaging features of young age breast cancer were also observed:
tumor homogeneity and tumor sphericity. As these radiomics features are quantitative parameters
extracted through the texture analysis of breast MRI, they may reflect the information of tumors
more objectively, such as the tumor microenvironment. Furthermore, these results will be the basis
for identifying the unique biology of young age breast cancer through multi-omics studies such as
radio-genomics.

Abstract: This study aimed to predict early breast cancer recurrence in women under 40 years of
age using radiomics signature and clinicopathological information. We retrospectively investigated
155 patients under 40 years of age with invasive breast cancer who underwent MRI and surgery.
Through stratified random sampling, 111 patients were assigned as the training set, and 44 were
assigned as the validation set. Recurrence-associated factors were investigated based on recurrence
within 5 years during the total follow-up period. A Rad-score was generated through texture analysis
(3D slicer, ver. 4.8.0) of breast MRI using the least absolute shrinkage and selection operator Cox
regression model. The Rad-score showed a significant association with disease-free survival (DFS) in
the training set (p = 0.003) and validation set (p = 0.020) in the Kaplan–Meier analysis. The nomogram
was generated through Cox proportional hazards models, and its predictive ability was validated.
The nomogram included the Rad-score and estrogen receptor negativity as predictive factors and
showed fair DFS predictive ability in both the training and validation sets (C-index 0.63, 95% CI
0.45–0.79). In conclusion, the Rad-score can predict the disease recurrence of invasive breast cancer
in women under 40 years of age, and the Rad-score-based nomogram showed reasonably high DFS
predictive ability, especially within 2 years of surgery.

Keywords: young age breast cancer; disease-free survival; imaging biomarker; breast MRI;
radiomics nomogram

1. Introduction

For decades, the development of treatment and screening systems for breast cancer has
contributed to improving breast cancer mortality rates [1–3]. Despite these improvements,
the incidence of breast cancer and cancer-associated mortality in Asia has rapidly increased,
and the incidence and mortality rates of breast cancer were the highest in Asia among five
continents in 2020 [4,5]. Moreover, breast cancer in Asia affects a distinct population. The
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peak age of Asian women with breast cancer is mid-40s, much younger than that of women
from Western countries (in the 70s), and the proportion of young women is also much
higher in Asia [5,6]. In addition, aggressive tumor biology, including higher proportions
of the triple-negative subtype in young age breast cancer (YABC), has been confirmed by
several studies, and a young age is now regarded as a poor prognostic factor for breast
cancer [7–9]. In the prognosis of young age breast cancer, the association with family history
or genetic mutations such as BRCA1/BRCA2 is always mentioned in YABC. However, most
YABC patients have no first-degree family history of breast cancer (89%), only 10% of YABC
patients are BRCA carriers and most YABC cases occur sporadically [10,11]. Consequently,
there is controversy regarding whether YABC should be classified as a distinct type among
various subtypes of breast cancer.

Standard screening programs and treatment guidelines for breast cancer are currently
based on the data of breast cancer patients of average age, especially in the Western hemi-
sphere. In addition, regardless of the continent, most of the previous studies evaluated
breast cancer in average-age women. With the recent increase in the incidence of breast can-
cer in Asia, several clinical studies have investigated the characteristics of YABC. However,
most studies have focused on the treatment methods or molecular characteristics of Asian
YABC [12,13], and only a few studies on the imaging characteristics of YABC have been
published. A previous study investigated the imaging features of YABC, focusing on the
correlation of pathologic factors: a high recurrence rate within two years of breast cancer
surgery and recurrence-associated MRI parameters were revealed through texture analy-
sis [14]. Radiomics, which is defined as the extraction and analysis of high-dimensional
quantitative data from medical imaging, is an emerging translational field of medicine.
The traditional imaging evaluation of tumors through mammography, ultrasound or MRI
is qualitative, and it may vary depending on the experience of the radiologists. On the
other hand, the radiologists can assess more objective imaging features through radiomics-
based tumor analysis [15,16], and radiomics-based analysis is applied to various imaging
methods, including mammography, ultrasound and MRI [17–20].

Considering this background, we aimed to utilize the recurrence-associated imaging
features to create the radiomics signature of YABC and establish a nomogram for the
prediction of disease-free survival (DFS) of YABC using radiomics signature and variable
clinical factors.

2. Materials and Methods
2.1. Patients

This retrospective study was approved by the Institutional Review Board of our
institution. The requirement for informed consent was waived by the ethics committee due
to the retrospective design. All assessments were carried out according to the Declaration
of Helsinki of 1975, revised in 2013.

From January 2011 to February 2019, among 4451 patients who underwent breast can-
cer surgery in our institution, 320 female patients under 40 years old who were diagnosed
with invasive breast cancer were consecutively included. Because pretreatment breast MRI
was used to create the radiomics signature, patients without pretreatment MRI (n = 21) or
patients with incomplete MR data (n = 86) were excluded. To investigate the DFS rates two
years after surgery, patients with less than two years of follow-up (n = 58) were excluded.
Patients who had not been diagnosed with recurrent breast cancer by the end of five years
were censored.

Disease recurrence was defined as newly diagnosed breast cancer in the ipsilateral or
contralateral breast or the axillary or distant metastasis. The diagnosis of disease recur-
rence was based on pathological confirmation through biopsy. If biopsy was impossible,
recurrence was diagnosed using imaging modalities such as positron emission tomography
and computed tomography.
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2.2. MRI Protocol

All enrolled patients underwent dynamic contrast-enhanced MRI, including diffusion-
weighted images with 3-Teslar MRI vendors. MRI was performed in the prone position
using a dedicated bilateral breast surface coil. Imaging with 3-Teslar MRI systems (Verio,
Siemens Healthcare, Erlangen, Germany; Ingenia, Philips Medical Systems, Best, The
Netherlands) was performed. The detail of each sequence is described in Appendix A.1.

2.3. Texture Analysis for Radiomics Feature Extraction

Two expert breast radiologists with 8 and 24 years of experience in breast MRI retro-
spectively reviewed the pretreatment breast MRI using a picture archiving and communica-
tion system (PACS) with a workstation monitor. The target lesion was defined as the largest
enhancing lesion regardless of mass or non-mass enhancement. One radiologist segmented
the target lesion three-dimensionally with a semiautomatic tool using an open-source
software package (3D slicer, ver. 4.10.2; available at: https://slicer.org/, accessed on 1 June
2020) in the early phase of contrast-enhanced T1-weighted subtraction imaging and ADC
mapping. If the target lesion was not clearly delineated on the ADC map, the segmented
volume of interest on early-phase contrast-enhanced T1 subtraction images was applied
to the ADC map with modification. After the segmentation of the target lesion, radiomics
features were extracted using open-source PyRadiomics software. A total of 107 features
were extracted from early-phase contrast-enhanced T1 subtraction images and ADC maps.

2.4. Clinicopathologic Information and Conventional MRI Analysis

Clinicopathologic information including age, treatment methods, stage and follow-up
period after surgery were reviewed from medical records. Pathologic characteristics of
tumors were collected from pathologic reports after surgery (Appendix A).

Morphologic data of the tumor, including shape, margin, internal enhancement pattern
and enhancement kinetics, were obtained from the expert consensus of the conventional
MRI analysis of PACS and reviewed according to the fifth edition of the Breast Imaging
Reporting and Data System MRI lexicon. In addition, previously established poor prognos-
tic factors, peritumoral edema and ipsilateral vascularity around the tumor [21,22], were
reviewed on T2-weighted images and maximum intensity projection images, respectively.

2.5. Statistical Analysis

As in the standard statistical inference, two-tailed p values < 0.05 were considered
significant. All statistical analyses were performed using R software version 4.0.2 (Ihaka and
Gentleman, 1996). We fitted the least absolute shrinkage and selection operator (LASSO)
Cox regression model using the “glmnet” package, and the “rms” and “hdnom” packages
were used for the Kaplan–Meier curve, nomogram and calibration plot.

Creation and Validation of Rad-Score

We randomly divided patients into a training set (n = 111) and a validation set (n = 44)
to create a radiomics signature (Rad-score). To compare patients’ characteristics between
the two cohorts, we conducted a Wilcoxon rank-sum test for continuous variables and
Fisher’s exact test for categorical variables. We first used the univariate Cox proportional
hazards model to screen for insignificant variables. We then used the LASSO regularization
method [23] to perform radiomics feature selection from the training set. The Rad-score of
each patient was calculated using a combination of selected features and their estimated
coefficients. We analyzed the association between the Rad-score and DFS from the training
set and then assessed it in the validation set. The patients were classified as high- or
low-risk based on the Rad-score. We used Youden’s index [24] to set the cut-off value of
the Rad-score in the receiver-operating characteristic curve analysis. The DFS of high- and
low-risk patients was analyzed using Kaplan–Meier survival analysis, and the log-rank
test was applied to evaluate the difference in DFS between the two groups.

https://slicer.org/
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A radiomics-based prediction model for recurrence was constructed using the Rad-
score and clinicopathologic and morphologic information. We used the univariate Cox
proportional hazards model to exclude the insignificant variables. We then fitted the
multivariate Cox proportional hazards model based on all significant variables from the
univariate analysis. To avoid multicollinearity, we conducted stepwise variable selection
based on the Akaike information criterion. We compared the prediction power among the
models with several combinations of significant variables in the validation set with the
C-index and calibrated them.

3. Results
3.1. Patient Characteristics

In total, 155 patients were enrolled in the study (Figure 1). The mean age was 35 years
(SD ± 4.8), and the mean follow-up period was 55 months (SD ± 26.55). Of the 155 patients,
138 were diagnosed with invasive ductal carcinoma, 4 were diagnosed with invasive
lobular carcinoma and 13 were diagnosed with other histologies, including mucinous
carcinoma (8 cases), adenoid cystic carcinoma (2 cases), invasive micropapillary carcinoma
(1 case), metaplastic carcinoma (1 case), and mixed mucinous and invasive micropapillary
carcinoma (1 case). There were 50 patients with luminal A subtype (32.2%), 61 patients with
luminal B subtype (39.4%), 10 patients with HER2 positive subtype (6.5%) and 34 patients
with triple-negative subtype (21.9%). Furthermore, 52 patients underwent neoadjuvant
chemotherapy after diagnosis, while the remaining 103 patients did not.
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Figure 1. Patient inclusion and exclusion criteria. Figure 1. Patient inclusion and exclusion criteria.

During the mean follow-up period of 55 months (6–118 months), 42 patients were
diagnosed as experiencing recurrence. Among the 42 recurrent patients, 3 were diagnosed
as experiencing recurrence after five years (60 months) of surgery and were censored.
Among the 39 recurrent patients, 20 (13 in the training set and 7 in the validation set)
experienced disease recurrence within 24 months, with a median recurrence interval of
13 months (range, 3–23 months). Of the 20 cases of recurrence, 13 were manifested as local
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recurrence of the ipsilateral breast, 6 were manifested as distant metastases to the lung, brain
and contralateral supraclavicular lymph nodes, 1 was manifested as contralateral breast
recurrence, 1 was manifested as both ipsilateral breast recurrence and distant metastasis,
and 1 was manifested as both contralateral breast recurrence and distant metastasis. The
patients’ characteristics in each cohort are listed in Table 1. Except for delayed enhancement
kinetics, there was no difference between the training and validation sets.

Table 1. Characteristics of patients in the training set and validation set.

Characteristics Training Set (n = 111) Validation Set (n = 44) p Value

Age 34.94 ± 5.25 35.73 ± 3.48 0.511
Rad-score −0.01 ± 0.36 0.04 ± 0.45 0.358
Operation 0.103

Breast-conserving surgery 70 (63.06%) 21 (47.73%)
Mastectomy 41(36.94%) 23 (52.27%)

Adjuvant radiation therapy 0.237
Yes 95 (85.59%) 34 (77.27%)
No 16 (14.41%) 10 (22.73%)

Adjuvant chemotherapy 0.537
Yes 86 (77.48%) 32 (72.73%)
No 25 (22.52%) 12 (27.27%)

Adjuvant endocrine therapy 0.549
Yes 79 (71.17%) 34 (77.27%)
No 32 (28.83%) 10 (22.73%)

Adjuvant target therapy 0.624
Yes 16 (14.41%) 8 (18.18%)
No 95 (85.59%) 36 (81.82%)

T stage 1
1 35 (31.53%) 14 (31.82%)
2 55 (49.55%) 21 (47.73%)
3 19 (17.12%) 8 (18.18%)
4 2 (1.80%) 1 (2.27%)

N stage 0.780
0 49 (44.14%) 23 (52.27%)
1 41 (36.94%) 13 (29.55%)
2 12 (10.81%) 4 (9.09%)
3 9 (8.11%) 4 (9.09%)

M stage 1
0 110 (99.10%) 44 (100%)
1 1 (0.90%) 0 (0%)

Overall stage 0.921
I 24 (21.62%) 10 (22.73%)
II 59 (53.15%) 22 (50%)
III 27 (24.32%) 12 (27.27%)
IV 1 (0.90%) 0 (0%)

Histologic type 0.537
Invasive breast cancer 97 (87.39%) 41 (93.18%)
Invasive lobular carcinoma 4 (3.60%) 0 (0%)
Others 10 (9.01%) 3 (6.82%)

Histologic grade 0.843
1 20 (18.02%) 8 (18.18%)
2 53 (47.75%) 19 (43.18%)
3 38 (34.23%) 17 (38.64%)

Lymphovascular invasion 0.858
Present (yes) 48 (43.24%) 20 (45.45%)
Absent (no) 63 (56.76%) 24 (54.55%)

Estrogen receptor 0.693



Cancers 2022, 14, 4461 6 of 18

Table 1. Cont.

Characteristics Training Set (n = 111) Validation Set (n = 44) p Value

Positive 78 (70.27%) 33 (75%)
Negative 33 (29.73%) 11 (25%)

Progesterone receptor 0.717
Positive 66 (59.46%) 28 (63.64%)
Negative 45 (40.54%) 16 (36.36%)

HER2 0.461
Positive 15 (13.51%) 8 (18.18%)
Negative 96 (86.49%) 36 (81.82%)

Ki67 index 0.894
Mean (± SD) 36.06 ± 27.46 36.23 ± 27.24

Tumor size 0.250
Mean (± SD) 3.59 ± 2.27 4.05 ± 2.48

Tumor laterality 0.481
Right 62 (55.86%) 22 (50%)
Left 48 (43.24%) 22 (50%)

Lesion type 0.866
Mass 80 (72.07%) 33 (75%)
Non-mass enhancement (NME) 9 (8.11%) 2 (4.55%)
Mass with NME 22 (19.82%) 9 (20.45%)

Peritumoral edema on T2WI 0.722
Present (yes) 53 (47.75%) 19 (43.18%)
Absent (no) 58 (52.25%) 25 (56.82%)

Ipsilateral vascularity 0.102
Mean (± SD) 3.29 ± 2.7 3.82 ± 2.6

Multifocality 1
Yes 54 (48.65%) 22 (50%)
No 57 (51.35%) 22 (50%)

Early enhancement pattern 0.482
Rapid 105 (94.59%) 44 (100%)
Medium 2 (1.80%) 0 (0%)
Slow 4 (3.60%) 0 (0%)

Delayed enhancement pattern 0.005
Washout 80 (72.07%) 32 (72.73%)
Plateau 16 (14.41%) 12 (27.27%)
Persistent 15 (13.51%) 0 (0%)

Fibroglandular tissue 0.617
Fatty 0 (0%) 0 (0%)
Scattered 5 (4.50%) 2 (4.55%)
Heterogenous 75 (67.57%) 33 (75%)
Extreme 31 (27.93%) 9 (20.45%)

Background parenchymal
enhancement 1

Minimal 51 (45.95%) 20 (45.45%)
Mild 21 (18.92%) 8 (18.18%)
Moderate 26 (23.42%) 11 (25%)
Marked 13 (11.71%) 5 (11.36%)

3.2. Creation of Rad-Score & Assessment of Disease-Free Survival

The 214 total texture features (107 from each cohort), including shape (14 features),
first-order (18 features), gray-level co-occurrence matrix (24 features), gray-level run-length
matrix (16 features), gray-level size zone matrix (16 features), gray-level dependence matrix
(14 features) and neighboring gray-tone difference matrix (5 features), were extracted. These
features were standardized and used to generate the radiomics-based scoring equation (Rad-
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score). Based on the fitted LASSO Cox regression model from the training set, the Rad-score
for predicting disease recurrence was created as follows:

Rad − score = (−0.08303501 × surfacevolumeratio_T1)
+(0.19940815 × LargeAreaLowGrayLevelEmphasis_T1)
+(0.1041660 × correlation_ADC)
+(0.06086060 × ClusterProminence_ADC)
+(0.04198567 × ClusterTendency_ADC)
+(0.12402528 × High Gray Level Zone Emphasis_ADC).

Using the equation above, the Rad-score of each patient was calculated, and the
patients in the training set were classified as high- or low-risk for disease recurrence. The
optimal cut-off value for separating the high- and low-risk patients was determined to
be −0.016 according to Youden’s index. The characteristics of the patients according to
risk are presented in Table 2. In the training set, Rad-score, mastectomy ratio, T stage, N
stage, overall stage, mean tumor size, ratio of non-mass enhancement or combined pattern,
ipsilateral vascularity and the presence of peritumoral edema were all positively correlated
with high risk.

Table 2. Characteristics of patients in the low-risk and high-risk groups in the training set.

Characteristics Low-Risk Group (n = 65) High-Risk Group (n = 46) p Value

Age 35.05 ± 6.09 34.78 ± 3.82 0.141
Rad-score −0.22 ± 0.14 0.27 ± 0.38 <0.001
Operation <0.001

Breast conserving surgery 51 (78.46%) 19 (41.30%)
Mastectomy 14 (21.54%) 27 (58.70%)

Adjuvant radiation therapy 0.585
Yes 57 (87.69%) 38 (81.61%)
No 8 (12.31%) 8 (17.39%)

Adjuvant chemotherapy 0.494
Yes 52 (80%) 34 (73.91%)
No 13 (20%) 12 (26.09%)

Adjuvant endocrine therapy 0.833
Yes 47 (72.31%) 32 (69.57%)
No 18 (27.69%) 14 (30.43%)

Adjuvant target therapy 0.273
Yes 7 (10.77%) 9 (19.57%)
No 58 (89.23%) 37 (80.43%)

T stage <0.001
1 32 (49.23%) 3 (6.52%)
2 31 (47.69%) 24 (52.17%)
3 2 (3.08%) 17 (36.96%)
4 0 (0%) 2 (4.35%)

N stage 0.003
0 33 (50.77%) 16 (34.78%)
1 27 (41.54%) 14 (30.43%)
2 4 (6.15%) 8 (17.39%)
3 1 (1.54%) 8 (17.39%)

M stage 1
0 64 (98.46%) 46 (100%)
1 1 (1.54%) 0 (0%)

Overall stage <0.001
I 22 (33.85%) 2 (4.35%)
II 36 (55.38%) 23 (50%)
III 6 (9.23%) 21 (45.65%)
IV 1 (1.54%) 0 (0%)

Histologic type 0.740
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Table 2. Cont.

Characteristics Low-Risk Group (n = 65) High-Risk Group (n = 46) p Value

Invasive breast cancer 57 (87.69%) 40 (86.96%)
Invasive lobular carcinoma 3 (4.62%) 1 (2.17%)
Others 5 (7.69%) 5 (10.87%)

Histologic grade 0.844
1 13 (20%) 7 (15.22%)
2 30 (46.15%) 23 (50%)
3 22 (33.85%) 16 (34.78%)

Lymphovascular invasion 0.846
Present (yes) 29 (44.62%) 19 (41.30%)
Absent (no) 36 (55.38%) 27 (58.70%)

Estrogen receptor 0.207
Positive 49 (75.38%) 29 (63.04%)
Negative 16 (24.62%) 17 (36.96%)

Progesterone receptor 0.240
Positive 42 (64.62%) 24 (52.17%)
Negative 23 (35.38%) 22 (47.83%)

HER2 0.159
Positive 6 (9.23%) 9 (19.57%)
Negative 59 (90.77%) 37 (80.43%)

Ki67 index 0.636
Mean (±SD) 34.34 ± 26.38 38.49 ± 29.04

Tumor size <0.001
Mean (±SD) 2.74 ± 1.84 4.8 ± 2.28

Tumor laterality 0.172
Right 40 (61.54%) 22 (47.83%)
Left 24 (36.92%) 24 (52.17%)

Lesion type 0.026
Mass 53 (81.54%) 27 (58.70%)
Non-mass enhancement (NME) 4 (6.15%) 5 (10.87%)
Mass with NME 8 (12.31%) 14 (30.43%)

Peritumoral edema on T2WI <0.001
Present (yes) 22 (33.85%) 31 (67.39%)
Absent (no) 43 (66.15%) 15 (32.61%)

Ipsilateral vascularity <0.001
Mean (±SD) 2.42 ± 1.98 4.5 ± 3.09

Multifocality 0.086
Yes 27 (41.54%) 27 (58.70%)
No 38 (58.46%) 19 (41.30%)

Early enhancement pattern 0.824
Rapid 61 (93.85%) 44 (95.65%)
Medium 1 (1.54%) 1 (2.17%)
Slow 3 (4.62%) 1 (2.17%)

Delayed enhancement pattern 0.785
Washout 48 (73.85%) 32 (69.57%)
Plateau 8 (12.31%) 8 (17.39%)
Persistent 9 (13.85%) 6 (13.04%)

Fibroglandular tissue 0.239
Fatty 0 (0%) 0 (0%)
Scattered 1 (1.54%) 4 (8.70%)
Heterogenous 46 (70.77%) 29 (63.04%)
Extreme 18 (27.69%) 13 (28.26%)

Background parenchymal
enhancement 0.466

Minimal 32 (49.23%) 19 (41.30%)
Mild 12 (18.46%) 9 (19.57%)
Moderate 12 (18.46%) 14 (30.43%)
Marked 9 (13.85%) 4 (8.70%)
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Using Kaplan–Meier survival analysis, the DFS by Rad-score was analyzed. The
high-risk group in the training set showed significantly lower DFS values within 2 years of
surgery (p = 0.003). Similarly, the high-risk group showed significantly lower survival rates
in the validation set (p = 0.020) (Figure 2).
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3.3. Rad-Score-Based Recurrence Prediction Model: Radiomics Nomogram

Univariate analysis showed that a higher Rad-score (p < 0.001) and ER-negativity
(p = 0.044) were associated with recurrence. Multivariate analysis confirmed the inde-
pendent association of Rad-score (hazard ratio 5.87, 95% CI 2.87–11.99, p < 0.001) and
ER-negativity (hazard ratio 0.41, 0.19–0.86, p = 0.019) with disease recurrence (Table 3).
With Rad-score and ER-negativity, the Rad-score-based nomogram for the prediction of
disease recurrence within 2 years of surgery was created (Figure 3).

Table 3. Univariate and multivariate analysis of DFS in the training set.

Univariate Analysis Multivariate Analysis

Characteristics Hazard Ratio (95% CI) p Value Hazard Ratio (95%
CI) p Value

Age 1.00 (0.93–1.07) 0.985
Rad-score 5.15 (2.60–10.20) <0.001 5.87 (2.87–11.99) <0.001
Operation

Breast-conserving surgery Ref
Mastectomy 1.02 (0.48–2.16) 0.96

Adjuvant radiation therapy
Yes 0.52 (0.21–1.28) 0.154
No Ref

Adjuvant chemotherapy
Yes 0.89 (0.332–2.386) 0.817
No Ref

Adjuvant endocrine therapy
Yes 0.48 (0.23–0.99) 0.05
No Ref

Adjuvant target therapy
Yes 1.38 (0.52–3.62) 0.512
No Ref

T stage
1 Ref
2 2.52 (0.91–7.0) 0.075
3 3.09 (1.01–9.46) 0.048
4 7.94 (0.90–70.18) 0.063

N stage
0 Ref
1 0.53 (0.64–3.63) 0.337
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Table 3. Cont.

Univariate Analysis Multivariate Analysis

Characteristics Hazard Ratio (95% CI) p Value Hazard Ratio (95%
CI) p Value

2 1.36 (0.37–5.0) 0.647
3 5.13 (1.71–15.39) 0.003

M stage
0 Ref
1 0 (0-∞) 0.997

Stage
I Ref
II 1.79 (0.59–5.40) 0.301
III 2.66 (0.83–8.47) 0.099
IV 0 (0-∞) 0.997

Histologic type
Invasive breast cancer Ref
Invasive lobular carcinoma 0 (0-∞) 0.997
Others 1.23 (0.37–4.06) 0.737

Histologic grade
1 Ref
2 1.6 (0.45–5.62) 0.463
3 2.39 (0.68–8.34) 0.174

Lymphovascular invasion
Present (yes) 0.75 (0.36–1.56) 0.455
Absent (no) Ref

Estrogen receptor
Positive 0.47 (0.23–0.98) 0.044 0.41 (0.19–0.86) 0.019
Negative Ref Ref

Progesterone receptor
Positive 0.514 (0.247–1.07) 0.075
Negative Ref

HER2
Positive 2.043 (0.829–5.035) 0.12
Negative Ref

Ki67 index 1.011 (0.998–1.024) 0.094
Tumor size 1.119 (0.972–1.287) 0.118
Tumor laterality

Right Ref
Left 1.199 (0.579–2.485) 0.625

Lesion type
Mass Ref
Non-mass enhancement (NME) 0.605 (0.141–2.595) 0.499
Mass with NME 0.935 (0.377–2.318) 0.885

Peritumoral edema on T2WI
Present (yes) 1.873 (0.884–3.967) 0.101
Absent (no) Ref

Ipsilateral vascularity 1.124 (0.995–1.269) 0.06
Multifocality

Yes 0.942 (0.453–1.957) 0.873
No Ref

Early enhancement pattern
Rapid Ref
Medium 1.999 (0.27–14.778) 0.497
Slow 1.311 (0.18–9.66) 0.79

Delayed enhancement pattern
Washout Ref
Plateau 1.158 (0.43–3.11) 0.77
Persistent 1.469 (0.55–3.94) 0.445

Fibroglandular tissue
Fatty NA
Scattered Ref
Heterogenous 0.625 (0.14–2.71) 0.529
Extreme 0.815 (0.18–3.73) 0.792

Background parenchymal enhancement
Minimal Ref
Mild 1.54 (0.62–3.87) 0.356
Moderate 0.95 (0.38–2.38) 0.909
Marked 0.53 (0.12–2.37) 0.41

We compared the prediction power among three models in the validation set: the
radiomics nomogram, the ER-negativity only model and the Rad-score only model. The
C-index of the radiomics nomogram was 0.63 (95% CI 0.45–0.80), displaying fair predic-
tive ability for disease recurrence, whereas the C-index of the ER-negativity-only model
was 0.51 (95% CI 0.39–0.66). In addition, the Rad-score-only model showed a value of
0.71 (95% CI 0.51–0.86). The calibration curves of these models in the validation set are
shown in Figure 4. Additionally, the calibration curves of these models in the training set
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are shown in Figure A1, Appendix B. Representative recurrent and non-recurrent cases are
shown in Figures 5 and 6.

Cancers 2022, 14, x FOR PEER REVIEW 11 of 19 
 

 

Absent (no) Ref    

Ipsilateral vascularity 1.124 (0.995–1.269) 0.06   

Multifocality     

Yes 0.942 (0.453–1.957) 0.873   

No Ref    

Early enhancement pattern     

Rapid Ref    

Medium 1.999 (0.27–14.778) 0.497   

Slow 1.311 (0.18–9.66) 0.79   

Delayed enhancement pattern     

Washout Ref    

Plateau 1.158 (0.43–3.11) 0.77   

Persistent 1.469 (0.55–3.94) 0.445   

Fibroglandular tissue     

Fatty NA    

Scattered Ref    

Heterogenous 0.625 (0.14–2.71) 0.529   

Extreme 0.815 (0.18–3.73) 0.792   

Background parenchymal en-

hancement 
    

Minimal Ref    

Mild 1.54 (0.62–3.87) 0.356   

Moderate 0.95 (0.38–2.38) 0.909   

Marked 0.53 (0.12–2.37) 0.41   

 

Figure 3. Radiomics-based nomogram for the prediction of two-year disease recurrence in young 

age breast cancer. 

We compared the prediction power among three models in the validation set: the 

radiomics nomogram, the ER-negativity only model and the Rad-score only model. The 

C-index of the radiomics nomogram was 0.63 (95% CI 0.45–0.80), displaying fair predic-

tive ability for disease recurrence, whereas the C-index of the ER-negativity-only model 

was 0.51 (95% CI 0.39–0.66). In addition, the Rad-score-only model showed a value of 0.71 

(95% CI 0.51–0.86). The calibration curves of these models in the validation set are shown 

in Figure 4. Additionally, the calibration curves of these models in the training set are 

shown in Figure A1, Appendix B. Representative recurrent and non-recurrent cases are 

shown in Figures 5 and 6. 

Figure 3. Radiomics-based nomogram for the prediction of two-year disease recurrence in young age
breast cancer.

Cancers 2022, 14, x FOR PEER REVIEW 12 of 19 
 

 

   

(a) (b) (c) 

Figure 4. Calibration curves of three models in the validation set. (a) Calibration curve of the radi-

omics nomogram. (b) Calibration curve of the ER-negativity-only model. (c) Calibration curve of 

the Rad-score-only model. (ER: estrogen receptor.) 

 

Figure 5. Recurrence case: A 34̶year-old woman with grade 3 invasive breast cancer of the triple-

negative subtype had an irregularly shaped mass with internal heterogeneous enhancement in the 

right breast. After segmentation of the mass in (a) the contrast-enhanced subtraction T1-weighted 

image and (b) the ADC map, texture analysis was performed, and the Rad-score was calculated as 

1.253. (c) Applying this score and ER-negativity in the radiomics nomogram, the total points were 

calculated to be 115, which showed a less-than-20% probability of recurrence survival. The patient 

underwent nipple-sparing mastectomy with the reconstruction of the right breast, and skin metas-

tasis was confirmed in the right reconstructed breast three months after surgery. (ER: estrogen re-

ceptor; ADC: apparent diffusion coefficient.) 

O
b

se
rv

ed
 S

u
rv

iv
al

 P
ro

b
ab

il
it

y
 

O
b

se
rv

ed
 S

u
rv

iv
al

 P
ro

b
ab

il
it

y
 

O
b

se
rv

ed
 S

u
rv

iv
al

 P
ro

b
ab

il
it

y
 

Figure 4. Calibration curves of three models in the validation set. (a) Calibration curve of the
radiomics nomogram. (b) Calibration curve of the ER-negativity-only model. (c) Calibration curve of
the Rad-score-only model. (ER: estrogen receptor.)
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Figure 5. Recurrence case: A 34-year-old woman with grade 3 invasive breast cancer of the triple-
negative subtype had an irregularly shaped mass with internal heterogeneous enhancement in the
right breast. After segmentation of the mass in (a) the contrast-enhanced subtraction T1-weighted
image and (b) the ADC map, texture analysis was performed, and the Rad-score was calculated as
1.253. (c) Applying this score and ER-negativity in the radiomics nomogram, the total points were
calculated to be 115, which showed a less-than-20% probability of recurrence survival. The patient
underwent nipple-sparing mastectomy with the reconstruction of the right breast, and skin metastasis
was confirmed in the right reconstructed breast three months after surgery. (ER: estrogen receptor;
ADC: apparent diffusion coefficient.)
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Figure 6. Nonrecurrence case: A 37-year-old woman with grade 2 invasive breast cancer of the
hormone receptor-positive subtype. After segmentation of the mass in (a) the contrast-enhanced
subtraction T1-weighted images and (b) the ADC map, the Rad-score based on texture analysis
was calculated as −0.345. (c) Applying this score and ER-positivity in the radiomics nomogram,
the total points were calculated as 20, which showed a probability of recurrence survival of more
than 95%. The patient underwent breast-conserving surgery with adjuvant chemotherapy and
hormone therapy. The patient remained stable, without recurrence. (ER: estrogen receptor; ADC:
apparent diffusion coefficient.)

4. Discussion

In this study, we developed a radiomics-based nomogram for predicting early disease
recurrence in YABC. Rad-score and ER negativity were associated with early cancer recur-
rence within two years of surgery. Among the three prediction models, those employing
the Rad-score demonstrated higher predictive ability for recurrence than the model that
only included ER status. Moreover, the Rad-score-only model showed a higher predictive
performance than the Rad-score and ER negativity model. Note that the relatively small
sample size may lead to larger variability in predictive ability; the sparse model is often
preferred in this case. However, as we pointed out, the sample size used in this study can
still provide a small margin of error close to the threshold value suggested in [25].

The Rad-score was generated using the equation created from six features of the tumor
texture analysis. Of these six features, a few were consistent with a previous study on
YABC. Previously, a low surface-area-to-volume ratio, indicating tumor sphericity, and
texture parameters indicating tumor homogeneity exhibited an association with cancer
recurrence [14]. In this study, a low surface-area-to-volume ratio and a high cluster tendency
were also correlated with a high Rad-score. Moreover, most malignant masses exhibited
a high surface-area-to-volume ratio because of irregular shapes with non-circumscribed
margins. In contrast, a low surface-area-to-volume ratio indicated a more spherical shape.
This result is not only consistent with previous studies but is also consistent with the fact
that the triple-negative subtype tends to be more spherical [26,27], and there was a high
proportion of the triple-negative subtype in the recurrence group in the current study.

Generally, tumor heterogeneity from texture analysis is a poor prognostic factor, as it
represents aggressive tumor biology [28,29]. However, several previous studies suggested
that lower entropy or higher tumor uniformity in contrast-enhanced T1 subtraction images,
as well as tumor heterogeneity in T2-weighted images, are associated with poor breast
cancer outcomes [29,30]. In these previous studies, it was hypothesized that the vascular
permeability of tumors leads to increased parenchymal enhancement, resulting in less
heterogeneity in texture analysis. However, the results of the present and previous studies
consistently showed an association between the tumor homogeneity of ADC maps and
lower DFS. In this study, the cluster tendency from the ADC map showed a positive
correlation with disease recurrence, and in a previous study, the inverse difference moment
from the ADC map was associated with disease recurrence. Usually, ADC maps represent
tumor cellularity, and low ADC values are associated with high-grade tumors [31] or high
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tumor proliferation [32]. However, because the association between tumor cellularity and
the texture parameters of ADC maps has not yet been evaluated, tumor homogeneity as a
recurrence-associated factor is not yet confirmed as a unique factor of YABC. Technically,
variations between MRI vendors can affect the tumor homogeneity from texture analysis.
Therefore, further studies are warranted to verify tumor homogeneity from ADC maps as a
recurrence-associated factor in YABC.

Of the 20 cases of disease recurrence, 10 showed ER-negativity, 2 of which were HER2
positive and 8 were triple-negative. Because we investigated DFS within two years of
surgery, the high proportion of the triple-negative subtype is expected due to the aggressive
nature of the triple-negative subtype [33,34]. In our study, the overall rate of the triple-
negative subtype was higher (22%, 34/155) than that of the general population of breast
cancer, which is consistent with the idea that YABC has a higher rate of the triple-negative
subtype [35]. Thus, ER-negativity as a recurrence-associated factor cannot necessarily be
considered unique to YABC. Therefore, further studies are needed to compare clinical,
imaging or genetic features of ER-negative breast cancer between young- and average-age
breast cancer patients.

This study has the limitation of the inevitable selection bias of YABC cases because
it was a retrospective study conducted at a single institution. Second, a relatively small
sample size was used to make and validate the nomogram. Moreover, the Rad-score-only
model showed a higher predictive performance than the radiomics nomogram model,
which has both the Rad-score and ER negativity as predictors. Note that the relatively
small sample size may lead to a larger variability in prediction; in this case, the model
with a smaller number of predictors is often preferred in the test dataset. Therefore, we
calculate a margin of error and compare it with the guidelines provided in [25]. For a given
sample of 155 with a 12.9% recurrence rate, the margin of error is 0.053, which is close to
0.05, the suggested threshold value in [25]. This implies that the sample size used in this
study can lead to robust prediction models, though collecting larger samples could provide
a smaller variability in prediction. We provide details about calculating the margin of error
in Appendix C. In addition, considering the proportion of young age patients among all
breast cancer patients, the number of patients enrolled in our study is not that small. Third,
though we validated the nomogram with a separate cohort, we did not perform external
validation with data from more independent resources, such as prospective patient groups
or patient groups of other institutions. For this reason, we are planning to validate this
nomogram with a prospective group in our institution. Moreover, the overall survival
of YABC should be investigated with a follow-up period of more than 10 years. Finally,
information regarding family history or the presence of BRCA mutations is lacking in our
study group. However, only 10% of YABC patients have an association with a first-degree
family history of breast cancer or BRCA mutations [10,11], and a family history of breast
cancer or the presence of BRCA mutations cannot affect the mortality of breast cancer
patients [36,37].

5. Conclusions

In conclusion, our nomogram based on the radiomics signature and clinicopathologic
information showed reasonably high predictive ability of disease-free survival, especially
within 2 years of surgery. Future prospective studies should be conducted to validate
the predictability of the radiomics nomogram for YABC. Furthermore, it is crucial to
determine the relationship between tumor biology including genetic mutation and the
imaging phenotype of YABC through multi-omics studies.
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Appendix A. Material & Methods

Appendix A.1. Protocols of MRI

Appendix A.1.1. Verio, Siemens Healthcare

(1) Axial, turbo spin-echo T2-weighted-imaging sequence with a TR/TE of 4530/93, a
flip angle of 80◦, 34 slices, a 320 mm field of view, a matrix size of 576 × 403, 1 excitation,
a 4 mm slice thickness and an acquisition time of 2 min 28 s; (2) axial diffusion-weighted
imaging with a single-shot echoplanar image or a readout-segmented echoplanar image
(b values 0 and 750 s/mm2, TR/TE 9800/87 ms and 5600/55 ms, respectively; field of view,
340 × 117 mm2 and 360× 180 mm2, respectively; matrix size, 192 × 82; slice thickness
4 mm; acquisition time 2 min 47 s and 2 min 31 s, respectively; 5 readout segments for the
readout-segmented echoplanar image). Apparent diffusion coefficient (ADC) maps were
calculated automatically using MRI software; (3) pre- and post-contrast axial T1-weighted
flash 3D volumetric interpolated brain examination sequences with a TR/TE of 4.4/1.7, a
flip angle of 10◦, a slice thickness of 1.2 mm and an acquisition time of 1 min. The images
were obtained before and at 10, 70, 130, 190, 250 and 310 s after the injection of gadolinium
DTPA (0.1 mmol/kg Gadovist; Bayer Schering Pharma, Berlin, Germany).

Appendix A.1.2. Ingenia, Philips Medical Systems

(1) Axial turbo spin-echo T2-weighted imaging with a TR/TE of 3919/80 ms, a flip
angle of 90◦, a field of view of 300 × 300 mm2, a matrix size of 484 × 300, 2 excitations,
a slice thickness of 2 mm and an acquisition time of 3 min; (2) axial diffusion-weighted
imaging with a single-shot spin-echo echoplanar image pulse sequence with a TR/TE of
12,043.5/102.3 ms, a flip angle of 90◦, an FOV of 320 × 320 mm2, a matrix size of 184 × 184
and a slice thickness of 3 mm, using three b values (b = 0, 1000 s/mm2). The ADC map was
calculated with an mono-exponential fit using a b value of 1000; (3) pre- and post-contrast
T1-weighted high-resolution isotropic volume examination with a TR/TE of 4.0/1.8 ms, a
field of view of 300 × 300 mm2, a matrix size 332 × 332, 1 excitation, a slice thickness of
1 mm, a flip angle of 12◦ and an acquisition time of 1 min 10 s. The images were obtained
before and at 85, 155, 225, 295 and 365 s after the injection of 0.1 mmol/kg Gadovist,
followed by a 20 mL saline flush.

Appendix A.2. Clinicopathologic Information and Conventional MRI Analysis

Patient age, operations, adjuvant therapy after surgery, pathologic stage (T, N stage by
AJCC 7th edition) and follow-up period after surgery were reviewed from medical records.
Histologic type, tumor grade, hormone receptor status, Ki-67 index and the presence of
lymphovascular invasion were collected from pathologic reports after surgery. When
patients underwent neoadjuvant chemotherapy, the clinical stage was adopted, and the
histologic information of the tumor was obtained from a biopsy report.
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Appendix B. Result

The Calibration Curves of Three Models in the Training Set
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Appendix C. Discussion

The margin of error can measure the amount of random sampling error in the survey
data. Riley RD et al. [25] recommend that a margin of error should be smaller than
or equal to 0.05 to build robust clinical prediction models. Especially when we have a
binary outcome (recurrence/no-recurrence), a margin of error from an approximate 95%
confidence interval is
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where 0.129 is a sample recurrence rate, and 155 is our sample size.
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