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Abstract

Motivation: The understanding of the ever-increasing number of metagenomic sequences accumulating in our data-
bases demands for approaches that rapidly ‘explore’ the content of multiple and/or large metagenomic datasets
with respect to specific domain targets, avoiding full domain annotation and full assembly.

Results: S3A is a fast and accurate domain-targeted assembler designed for a rapid functional profiling. It is based
on a novel construction and a fast traversal of the Overlap-Layout-Consensus graph, designed to reconstruct coding
regions from domain annotated metagenomic sequence reads. S3A relies on high-quality domain annotation to effi-
ciently assemble metagenomic sequences and on the design of a new confidence measure for a fast evaluation of
overlapping reads. Its implementation is highly generic and can be applied to any arbitrary type of annotation. On
simulated data, S3A achieves a level of accuracy similar to that of classical metagenomics assembly tools while per-
mitting to conduct a faster and sensitive profiling on domains of interest. When studying a few dozens of functional
domains—a typical scenario—S3A is up to an order of magnitude faster than general purpose metagenomic assem-
blers, thus enabling the analysis of a larger number of datasets in the same amount of time. S3A opens new avenues
to the fast exploration of the rapidly increasing number of metagenomic datasets displaying an ever-increasing size.

Availability and implementation: S3A is available at http://www.lcqb.upmc.fr/S3A_ASSEMBLER/.

Contact: hugues.richard@upmc.fr or alessandra.carbone@lip6.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Next-generation sequencing of environmental samples (e.g. metage-
nomics) aims at studying microbial communities (Allen and
Banfield, 2005; Eisen, 2007). It is commonly followed by a function-
al annotation of the predicted coding regions to describe the com-
munity’s metabolic activities (De Filippo et al., 2012; Escobar-
Zepeda et al., 2015). This consists in annotating domains and func-
tional motifs within amino acid sequences (Finn et al., 2011; Ugarte
et al., 2018). In metagenomics, annotation is hampered for shorter
sequences of 100–150 bp in length—common with current technolo-
gies—thus making sequence assembly a prerequisite for any im-
provement. In this context, a good-quality assembler is necessary, as
it increases the length of assembled coding regions. The sheer size of
metagenomic datasets typically requires huge time and memory
resources when doing de novo metagenome assembly (Georganas
et al., 2018). Thus, several strategies have been proposed to perform
a targeted assembly (Wang et al., 2015; Zhang et al., 2014), based

on a preliminary protein domain annotation followed by a domain-
guided assembly.

Domain targeted assembly has a second major advantage.
Indeed, it can be restrained to a limited number of domains, from a
few 10s to the 100s, providing a fast way to ‘explore’ many large
metagenome datasets with a given hypothesis in mind.
Metagenomics studies are usually interested in understanding one
given function or biochemical pathway across multiple conditions
or samples, and, in practice, only a limited number of domains (a
few dozens) needs to be annotated when profiling. Examples range
from the annotation of RNA transcripts in extreme environments
(Buelow et al., 2016), to a particular biochemical reaction in the gut
microbiota (Tagliabue et al., 2017; Vital et al., 2017), to the detec-
tion of antimicrobial resistance (Jia et al., 2017). Various targeted
assemblers were proposed for performing this task. They can either
perform an assembly around an identified domain (Zhang et al.,
2014) or annotate domains after reads’ clustering (Keegan et al.,
2016; Wilke et al., 2016). On very large datasets, the first are unable
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to scale and the latter are excessively slow. To overcome this limita-
tion, we developed the Scalable Accurate Annotated Assembly tool
S3A. S3A combines a step of fast reads clustering [using BCALM 2
(Chikhi et al., 2016)] with an efficient assembly performed from do-
main annotation. S3A is in practice as accurate, more sensitive and
up to one order of magnitude faster than existing targeted domain
assembly tools like the SAT assembler (Zhang et al., 2014). It is
slightly more precise than the Xander assembler (Wang et al., 2015)
showing the same computational efficiency on up to 100 domains. It
is on par with traditional assemblers, such as Minia (Chikhi and
Rizk, 2013), when considering up to 100 domains. When consider-
ing realistic metagenomic dataset analyses on a few dozens of
domains, S3A can, in the same running time and final accuracy as a
metagenomic assembler, annotate six to eight times more samples.

2 The S3A approach

S3A is a tool for targeted domain search in metagenomic datasets. It
is designed as an assembly algorithm of annotated reads addressing
the problem of reducing the time complexity of the Overlap-Layout-
Consensus (OLC) graph construction step, the bottleneck of tar-
geted assembly. The S3A flowchart is depicted in Figure 1. It starts
from a dataset of metagenomic reads, performs a preprocessing of
the reads to reduce the size of the set by constructing ‘protigs’, that
is protein unitigs (see Section 3.2), through the detection of open
reading frames (ORFs), their assembly in unitigs and a mapping of
the nucleotide sequence into an amino acid sequence. Then, it parses
protigs for a protein domain annotation, and it constructs the OLC
graph, in the amino acid sequence space, based on the overlap of do-
main annotations: an OLC graph is a directed graph where each
node corresponds to a protig, and each edge to an overlap between
two protigs. Based on two metrics, used to identify unreliable edges
and prune the graph (the longest matching substring length, lmsl
and the percentage of identity, ip; see Section 3), this step performs a
Depth-First Search (DFS) of the graph, called ‘graph traversal’, to
identify and assemble a set of overlapping protigs representing con-
sensus DNA regions surrounding protein domains, referred to as
contigs. S3A outputs a set of contigs for each targeted domain.

S3A exploits functional domain annotation as a first indicator
for protig overlap, making OLC graphs a central choice for targeted

assembly. The construction of the OLC graph in S3A is different
from the traditional one used for sequence assembly, where read
pairwise alignments are evaluated by the Hamming distance of the
overlapping region. Instead, in S3A, the quality of overlapping
regions is evaluated by the two fast computable measures lmsl and
ip. An OLC graph is also different from a de Bruijn graph, used in
(nontargeted) assembly algorithms, which replaces every read with
the corresponding set of k-mers (Zerbino and Birney, 2008).

2.1 S3A key features
The basic choice of S3A to assemble domain annotated sequences is
important for directly deriving the functional annotation of the
metagenomic sample. The second main motivation to considering
domain target assembly is the reduction of the time complexity
while retaining the highest accuracy possible. Indeed, by separating
and ordering reads by domain in the preprocessing step, the number
of read comparisons is highly decreased and the general algorithm
performance is greatly improved.

S3A evaluates overlapping reads sharing a common domain an-
notation, on the basis of two metrics, lmsl and ip. These metrics pro-
vide an overlapping confidence measure that is both complementary
and much faster than counting a fixed number of mismatches by dy-
namically computing an edit distance, as done by other targeted
assemblers like SAT (Zhang et al., 2014). They also allow for a tail-
ored OLC graph trimming which is independent on the sequencing
technology used and helps reducing the graph complexity.
Moreover, lmsl is used to resolve ambiguous cases in the absence of
transitive edges, and to select the most reliable transitive edges in the
OLC graph (Fig. 2).

S3A might create complex OLC graph structures due to chimeric
nodes, that are nodes with multiple entry and exit edges. In the ab-
sence of transitive edges, chimeric nodes are considered unreliable
and therefore removed, the goal of S3A being to be as accurate as
possible.

Most importantly, the possibility to annotate a reduced set of
domains and assemble only reads involving these domains, allows
for a fast exploration of metagenomic datasets allowing the user to
concentrate on specific functional targets.

3 Materials and methods

3.1 Domain hit
Given a sequence r annotated with a given domain d, a portion or
all of r will match to the domain. We define the domain hit region
for r as the start and end positions of the sequence matching inter-
val, relative to the whole domain (denoted s and e). Domains’ anno-
tation is realized on protigs, that is amino acid sequences generated
by a preprocessing step that identifies ORF regions in metagenomic
data (see Fig. 1 and Section 3.2).

3.2 Data preprocessing
Metagenomic sequences are prepared before assembly using three
main steps. First, an ORF prediction is realized with FragGeneScan
(Rho et al., 2010), checking both the forward and the reverse
strands of a read. Second, predicted ORF sequences are assembled
into unitigs obtained with BCALM 2 (Chikhi et al., 2016), where a
unitig is a local sequence assembly whose overlap are not disputed
by any other data. This step reduces greatly the time needed for do-
main annotation. Third, the translation of the nucleotide sequence
in amino acid sequence is followed by a functional domain annota-
tion realized with HMMER (Finn et al., 2011) or MetaCLADE
(Ugarte et al., 2018). Any type of annotation can be used. Sequences
remaining without domain annotation or annotated with more than
one domain are discarded.

As a result, S3A performs the assembly of a set of amino acid
sequences coming from coding regions and annotated with function-
al domains. They originate either directly from reads corresponding
to ORF sequences or from unitigs constructed from ORF sequences.
For simplicity, in the sequel, we shall refer to them as protigs.

Fig. 1. S3A flowchart. From domain annotated protigs, obtained by reads’ prepro-

cessing (ORF identification, unitig generation and mapping into amino acid se-

quence), S3A performs an efficient protigs comparison and builds an OLC graph. A

graph traversal approach based on an efficient resolution of alternative paths com-

bining two measures of sequence overlap, allows to assemble protigs
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3.3 The S3A algorithm
S3A consists of two main steps, retracing the architecture of SAT
(Zhang et al., 2014): the OLC graph construction and the OLC
graph traversal. However, the corresponding algorithms are signifi-
cantly different. The OLC graph construction combines domain evi-
dence with a fast estimation of the protigs overlap, and the OLC
graph traversal uses an efficient dynamic programming algorithm
based on edge weights to guide the traversal more efficiently. These
two steps are described in details below.

3.3.1 OLC graph construction

Let M be the number of domains involved in the annotation process.
We consider each protig to have a single domain annotation, and

protigs not having a single domain annotation are discarded. Protigs
are first grouped in a set of M hashtables fH1; . . . ;HMg, one per do-
main. For each hashtable Hi, protigs are sorted according to their s
(start) and e (end) position on domain i. This data organization,
sorting protigs by their matching position on the domain within do-
main specific hashtables, breaks down the OLC graph construction
to a simple interval traversal algorithm that avoids comparing each
possible pair of protigs. Namely, no comparison between pairs of
protigs (i) annotated by different domains, nor (ii) having no domain
overlapping (where two protigs have a domain overlap if their re-
spective domain hits overlap; Supplementary Fig. S2, top) is needed.

The OLC graph is constructed by creating an edge between each
pair of protigs (ri, rj) that overlap by more than c amino acids on the
same domain (Supplementary Fig. S2). To each edge (ri, rj), we add
two metric values computed from ri and rj nucleotidic sequences: the
length of the longest matching substring (lmsli;j) and the percentage
of identity between ri and rj on the domain overlap region (ipi;j). We
prefer the use of lmsl and ip over more precise ones (e.g. edit dis-
tance), as they estimate sequence similarity much faster.

By construction, the OLC graph is directed, but not necessarily
acyclic. Ideally, each occurrence of a domain in a gene should give
rise to a path in the graph. Thus, a graph pruning step will make the
graph acyclic and a graph traversal step will identify contigs by tra-
versing the graph from each source node (nodes without predeces-
sors), and using scoring paths according to the lmsl values stored on
the edges (see below and Supplementary Methods for algorithmic
details).

However, sequencing errors and sequence similarity between
genes and species can create ambiguities in the traversal and lead to
chimeric nodes (nodes with at least 2 predecessors and 2 successors).
To help solve those ambiguities, we identify transitive edges, edges
that connect two nodes which have an alternative path joining them.
These edges can be removed without losing information for the tra-
versal, but are kept in a separate data structure T , as they can help
resolve ambiguities raised by chimeric nodes (see Supplementary
Fig. S3).

3.3.2 Graph pruning and traversal

Once the OLC graph is built, contigs can be generated from its tra-
versal. The graph traversal is preceded by a pruning phase that
removes unreliable edges based on lmsl and ip values (step 1), and
enforce an acyclic graph (step 2). The graph is then simplified by
merging linear paths (step 3) and transitive edges that have no im-
pact on the traversal are efficiently removed (step 4) (see
Supplementary Methods). The resulting structure is a directed acyc-
lic graph with N sources nodes. N traversals are finally performed to
build output contigs.

The graph is then visited in a depth-first manner, using transitive
edges to resolve branching during the graph traversal. During the
traversal, when a chimeric node v is visited, T is queried to look for
transitive edges linking a predecessor u to one of its successors w. If
such an edge exists, the traversal will be guided to the path contain-
ing both v and w. If not, v is removed, which implies that edges join-
ing any such node to the rest of the graph are discarded as well. As a
result, its successors are therefore considered as additional source
nodes of the graph.

Bubbles are other kinds of topologies that can lead to errors dur-
ing the traversal. Bubbles exist in the graph when, given two nodes u
and v, two alternative paths starting from u and ending in v exist. In
that case, if no transitive edge exists, the ambiguity is resolved by
removing the path containing the edge with the smallest lmsl value.

3.3.3 Parameters’ default values

As default values, we used a minimal domain hit length of 20 amino
acids for the protigs, an ip threshold of 80% and an lmsl threshold
of 0.2.

The minimal domain hit length has been chosen to be the same
as in the SAT assembler. Since we annotate protigs, which are longer
in average than reads (see Supplementary Table S1), the threshold of
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20aa is usually satisfied by domain annotation. A lower value would
increment the number of false positives.

To compute the lmsl between two overlapping protigs, we nor-
malize the longest matching substring length by the mean length of
the protigs obtained for the metagenomic dataset under analysis,
allowing the default threshold to be used with reads coming from
whatever sequencing technology (Illumina, 454). Figure 3A–C (see
highlighted nodes in the green curves) shows that for our datasets, a
threshold of normalized lmsl at 0.2 gives high precision and accept-
able sensitivity.

The ip threshold has been set to 80% because a significantly dif-
ferent percentage proves to be either too lax or too strict
(Supplementary Fig. S1). Figure 3A–C and Supplementary Figure S1
demonstrate that S3A’s best performance is achieved around the de-
fault values.

3.3.4 Analysis of the time complexity

Let R be the number of annotated protigs and M be the number of
domains. If we consider RM the number of protigs for the same do-
main, then only protigs annotated from the same domain are com-
pared. Moreover, the protigs are sorted according to their starting
position on the domain which gives an overall OðR log RMÞ time
complexity for the graph construction. The graph traversal is based
on the DFS algorithm, whose complexity is OðjVj þ jEjÞ, where jVj
is the number of nodes and jEj the number of edges (hence overlaps).
Moreover, our transitive reduction step is quadratic in jVj2 in the
worst case, as a DFS is performed for every node in the graph.
However, the depth of each search is bounded by the number of
occurrences of the considered domain.

3.4 Datasets
To evaluate S3A, we considered a total of seven datasets of metage-
nomic sequences whose properties are summarized in Table 1. For
datasets with pair-end information, which is not used in S3A, pairs
of reads have been used as independent reads.

Five of the datasets are synthetic datasets. Three of them were
simulated according to two technologies sampling 55 equally abun-
dant species (11 archeal and 44 bacterial). To simulate reads we
used MetaSim (Richter et al., 2008), based on a read length which is
characteristic for 454 and Illumina sequencing, and different cover-
ages (7� and 30�). FlowSim (Balzer et al., 2010) was then applied
to obtain insertion and deletion sequencing error patterns corre-
sponding to the respective DNA sequencing technologies. The three
datasets have been used to compare S3A and SAT. Two more data-
sets were taken from the critical assessment of metagenome inter-
pretation (CAMI) challenge (Sczyrba et al., 2017), to compare S3A
to the classical metagenomic short-read assembler Minia (Chikhi
and Rizk, 2013). CAMI is a worldwide benchmarking challenge
aiming at the thorough evaluation of metagenome assembler per-
formance. We selected two types of complexity: low (30 genomes)
and high (450 genomes).

A real dataset was taken from a microbial community analysis of
the Arid soil of McMurdo Valley in Antartica (Buelow et al., 2016)
and a second one from the butyrate-producing community in the gut
microbiota (Vital et al., 2017). They have been assembled and anno-
tated by S3A. The McMurdo Valley dataset was analyzed according
to the 24 domains, related to soil communities in an extreme desert
environment, reported in Buelow et al. (2016). These datasets total
12.5 Gbp of sequence for an average 2�100 bp read length. The gut
microbiota dataset was analyzed according to three domains
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S3A, Xander and SAT precision (reported as ‘% Correct Contigs’) is computed on different simulated datasets (of reduced size, 3% of the reads in the full dataset). The green

curves are realized by varying the lmsl parameter values and keeping ip fixed at 80% (default value). By decreasing the lmsl values, the number of assembled contigs augments

but the proportion of correct ones decreases, and the curves show how fast precision deteriorates. S3A precision at default values is reported with a gray cross. (B) S3A,

Xander and Minia precision computed on the high-complexity CAMI dataset and reported as ‘% Correct Contigs’. Similarly to panel A, green curves are computed by varying

the lmsl values while keeping the ip default value. The upper green curve corresponds to S3A assemblies using MetaCLADE annotation, whereas the lower curve is obtained

with HMMER annotation. S3A precision at default values computed using MetaCLADE and HMMER annotations is reported by grey crosses. (C) Comparison between S3A,

Minia and Xander on domain precision (‘% Correct Domains’) and domain recall (‘% Annotated Domain’). Precision is computed for different lmsl thresholds on the whole

high complexity CAMI toy dataset. Domain precision and recall have been computed for Minia and S3A using HMMER annotation. S3A was also analyzed on MetaCLADE

annotation. S3A performance at default values is shown by a gray cross. Filled points correspond to the average accuracy obtained over 5 selections of 100 domains drawn at

random. Compare with panel F (see also text) for differences among S3A, Minia and Xander. (D) Run time performance of S3A, SAT and Xander computed on simulated

datasets of two sizes (3% or 100% of the sample), for varying technologies (454 or Illumina) or coverages (7� or 30�). SAT execution did not complete after 240 h on the

larger datasets (represented as a gray bar). (E) Run time performance of S3A, Minia and Xander on the low complexity CAMI dataset on restricted number of domains, from

5 up to 100, and on the full dataset. Time devoted to functional annotation is highlighted in light colors, and time for domain model construction in dark tones (for Xander).

(F) S3A, Xander and Minia comparison on domain recall, for different domain lengths. For each size range, the number of domain occurrences detected by each assembler is

compared to the total number of domain occurrences detected on the dataset gold standard. (Color version of this figure is available at Bioinformatics online.)
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reported in Vital et al. (2017). The data were originally organized in
several datasets, and we considered (with a random choice) three of
them. The properties of the two real datasets are reported in
Table 1.

3.5 Evaluation procedure
To compare S3A with other assemblers on synthetic data, we need
to rely on a ground truth that considers the fact that S3A is restricted
to domain annotated regions. To build this ground truth, we per-
form a domain annotation (with HMMER or MetaCLADE) and
analyze the performance of the tools on the same domain annotated
ground truth. Gene fraction is defined on the same ground truth.

We evaluate S3A either with respect to contigs correctly
assembled around a protein domain, or with respect to correctly
annotated domains in the metagenomic dataset. For this, we say
that ‘an assembly is correct’ when the two protigs are correctly
localized on the reference genome and ‘an assembly is incorrect’
when at least one of the protigs involved in the assembly is not cor-
rectly placed on the reference genome.

To evaluate S3A on contigs, we rely on the following three quan-
tities: the number of contigs correctly assembled (true positives, TP),
the number of contigs incorrectly assembled (false positives, FP) and
the number of correct contigs that have not been assembled (false
negatives, FN). We compute S3A precision (positive predictive
value) as TP/TPþFP and S3A recall (sensitivity) as TP/TPþFN.

To evaluate S3A on domain annotated contigs, we rely on the
following quantities: the number of contigs with correct or incorrect
assembly that are correctly annotated (TP), the number of contigs
with correct or incorrect assembly that are incorrectly annotated
(FP), the number of domain occurrences in the ground truth annota-
tion that are missed. Precision and recall are computed as above,
where TP, FP and FN are defined with respect to domain annotated
contigs. This evaluation does not demand assemblies to be correctly
placed on reference genomes, and this is especially important when
functionally profiling metagenomic sequences. Indeed, metagenomic
datasets are often composed of sequences coming from very close
species and an assembly of protigs from close origins appears rea-
sonable for the functional annotation of a community.

3.6 Influence of thresholds to evaluate precision
Along with limiting the complexity of the graph, different threshold
values for lmsl (at fixed ip, see Supplementary Fig. S1) can be used
to improve precision while recovering a sufficient portion of true
overlaps. In this way, S3A could be used as a step to assemble longer
genes, which will subsequently be annotated with better accuracy.
Note that the lmsl metric is less sensitive to false-positive matches
than other measures we tested.

3.7 Evaluation of running time
Running time evaluations of S3A, SAT, Xander and Minia have
been realized from simulated and real datasets of metagenomic
reads. For S3A running time calculation, we considered the entire
S3A pipeline (Fig. 1), including preprocessing steps and domain an-
notation. All the evaluations have been run on the same machine
with the following configuration: Intel Xeon CPU E5-2670
(2.6 GHz), 128 Gb of RAM, using 16 threads.

4 Results

4.1 S3A improves precision, recall and running times

over other targeted assemblers
S3A has been tested on three synthetic datasets simulated according
to Illumina and 454 technologies, with different read lengths (150
and 450 bp) and coverages (7� and 30�) (see Section 3). They are
based on a large number of species (55) which is enough to capture
most of the challenges for metagenome assembly (repeated regions,
chimeric nodes). Working with simulated data has the advantage
that all real overlaps are known and, as a consequence, we could
precisely compare S3A with the targeted assembler SAT (Zhang
et al., 2014) and Xander (Wang et al., 2015).

Performing targeted assembly improves significantly domain an-
notation in comparison with annotation on raw reads. Indeed, the
false-positive rate of S3A annotated domains decreases between
twofold and tenfold with respect to the one observed while annotat-
ing raw reads. Note that constructing protigs yields an improvement
up to twofold (Supplementary Table S1, middle) and that contig as-
sembly consistently decreases the rate of incorrect domain annota-
tion by producing longer sequences (with a median length increase
of 50–70 amino acids over raw reads; Supplementary Table S1).

We limited the analysis to datasets containing a small fraction of
the reads (3%), and evaluated S3A, SAT and Xander performance
by monitoring the run time and the precision of the predicted con-
tigs. The algorithmic design, based on a smart sorting of reads
aligned to a domain and a fast sequence overlap approximation,
makes S3A around 10 times faster than SAT and on par with
Xander (see Fig. 3B, columns ‘3%’ and Supplementary Table S2). In
practice, this means that S3A is capable of performing a targeted as-
sembly for more than a million reads while this task remains impos-
sible for SAT (Supplementary Table S2). S3A shows a slight but
clear improvement in precision over SAT (Fig. 3A). In Figure 3A, we
monitor S3A behavior with respect to an increasing number of cor-
rectly assembled contigs (TP) and show how fast S3A precision dete-
riorates. On the Illu/30� dataset, characterized by the highest
coverage, the proportion of correct contigs assembled by S3A
remains almost constant, around 94%, whereas the number of cor-
rectly assembled contigs almost doubles. Due to the size of this data-
set, SAT could not run.

S3A is also more sensitive than SAT and Xander. Indeed, at
equal precision level, S3A recovers 22% more correct contigs in the
Illu/7� dataset and 5% more on the 454/7� dataset (Fig. 3A; see
Section 3) than SAT demonstrating its robustness according to the
technology choice (see Section 3 for threshold’s robustness). On the
same datasets, S3A is also slightly better than Xander (Fig. 3A). It is
definitely more sensitive than Xander on the Illu/30� dataset, where
it achieves between 24% (default parameter) and 57% more anno-
tated correct contigs.

As reported in Supplementary Table S3, when precision is eval-
uated on correct domain annotation, S3A shows to annotate consist-
ently more domains than SAT and Xander for all three restricted
datasets.

Compared to Xander, S3A is more precise at an equivalent run-
ning time (Fig. 3C and Supplementary Table S2). Note that Xander
cannot be run on the models of the MetaCLADE library because it
generates its own HMMs (Hidden Markov Models) as part of the
assembly step. Also, Xander runs on each domain separately while

Table 1. Summary of the characteristics of the datasets used for evaluation

Name Technology Annotation N. genomes bps covered by reads Read length Read count

454/7� 454 MetaCLADE 55 15.5 Gbp 450 bp 3.5M

Illu/7� Illumina HMMER 55 15.7 Gbp 150 bp 10.5M

Illu/30� Illumina HMMER 55 67.5 Gbp 150 bp 45M

CAMI/low Illumina HMMER 30 15 Gbp 2�100 bp 15M

CAMI/high Illumina HMMER 450 75 Gbp 2�100 bp 75M

Arid soil—McMurdo valley Illumina MG-RAST NA 12.5 Gbp 2�100 bp 12.5M

Butyrate-producing community Illumina Xander NA 9 Gbp 2�100 bp 9M
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S3A annotates several domains at once. In this respect, S3A design is
more flexible in the treatment of multiple domains and independent
from model construction.

4.2 Gain over whole metagenome assembly
To assess how accurate S3A is in domain annotation, we considered
two datasets of low and high (depending on the number of species)
complexity from the CAMI challenge (see Section 3). We compared
S3A to Xander (Wang et al., 2015) and to the Minia assembler
(Chikhi and Rizk, 2013). We chose Minia as it was evaluated among
the best tools in the CAMI benchmark (Sczyrba et al., 2017). Like
previously observed with simulated data, the precision on predicted
contigs of S3A (83.1% MetaCLADE, 82.5% HMMER annotation)
is on par with Xander and Minia (82.8 and 81.7%, respectively;
compare Fig. 3A and B). However, the number of correctly pre-
dicted contigs is higher for S3A (71 512) than for Xander (70 842;
Fig. 3B).

Given a list of domains, we wished to test whether they are pre-
sent in the sample and, possibly, in which proportion. We first
restricted our evaluation to the coding regions where a domain was
annotated. We further limited the evaluation at the domain level,
that is, we counted the number of domains that are correctly recov-
ered in the sample. Figure 3C shows that, on the high complexity
CAMI dataset, S3A global accuracy is on par with Minia and
Xander, and that S3A can show higher precision in domain annota-
tion. In contrast, Minia and Xander recover a larger fraction of
domains than S3A. To explain the discrepancy, observe that S3A
relies on matching domain annotated sequences and that, during
protigs annotation, short domains are more likely to be missed than
longer ones. As a consequence, S3A is expected to identify a smaller
number of domain occurrences than Xander or Minia due to lower
performance in short domains. We verified this hypothesis on the
CAMI dataset by reporting the sensitivity of S3A, Minia and
Xander according to domain length in Figure 3E. It shows that the
behavior of the three tools is the same for domains larger than 90aa
and up to 170aa, that S3A performs better for larger domains
(>170aa), and that it is less sensitive than Minia and Xander for
domains of length <90aa. However, only a small fraction of the
domains are short, with those of length <90aa corresponding to the
8.8% of the total number of domains (Fig. 3F), and we would not
expect this to impact the functional profiling of a sample in practice.
To construct something more in line with the general use case, we
also compared the performance on a randomly chosen set of 100
domains (Fig. 3C, filled points). While the precision of the method
does not change much, the sensitivity of S3A is now on par with
Minia and Xander.

On the low-complexity CAMI dataset, a much simpler assembly
challenge, S3A, Minia and Xander precision is comparable and
reaches 98% over more than 75% of annotated genes, as reported
in Supplementary Table S4. S3A total running time is relatively lon-
ger (22 h) than Xander (10 h) or Minia (11 h) when tested on the
whole collection of domains in PFAM v30. Indeed the domain anno-
tation hampers the total running time for the targeted assembly as it
is performed before domain assembly. It is less the case for Minia or
Xander, where annotation is performed either during or before as-
sembly. However, S3A was not designed to perform a full domain
annotation, it is expected to be used when only 5–100 domains
needs scrutiny. Restricting the number of domains reduces the run-
ning time of S3A such that it becomes faster than Minia by a factor
of 6–10 and slightly faster than Xander (Fig. 3D). In practice, it per-
mits to handle many more samples than a general purpose metage-
nomic assembler like Minia in the same amount of time. This is a
significant practical gain when computing resources are limited and
the user is studying dozens of domains (Buelow et al., 2016).

4.3 Time performance on real datasets and comparison

with MG-RAST and Xander
To assess the performance of S3A in a typical analysis workflow,
we considered the microbial community of the Arid soil of
McMurdo Valley in Antartica (Buelow et al., 2016) and the

butyrate-producing community in the a microbiota (Vital et al.,
2017). The McMurdo Valley dataset relies on read clustering and
targeted HMMER annotation to uncover 24 domains. S3A correctly
detects all domain occurrences much faster than MG-RAST (Keegan
et al., 2016; Wilke et al., 2016) (2 h versus 8 h). It reconstructs
around 7% more domain sequences than MG-RAST with a
HMMER annotation, and 9% more when MetaCLADE is used for
annotation. S3A hence provides more information for analysis and
quantification (Supplementary Table S5).

A second performance analysis was realized with a gut micro-
biota dataset (Wang et al., 2015) used to test the Xander assembler.
It relied on a targeted HMMER annotation to uncover three
domains involved in butyrate production. All domain occurrences
have been detected by S3A in 1 h versus 1 h 10 with Xander. In con-
trast, S3A reconstructs around 3% more domain sequences than
Xander with a HMMER annotation, and 5% more when
MetaCLADE is used for annotation (Supplementary Table S5).

5 Discussion

The noticeable features of S3A are both its precision and reduced
time complexity, especially when focusing on several domains of
interest. In this sense, S3A does not try to outcompete traditional
metagenome assemblers, but enables a tradeoff between the number
of domains that are profiled and the number of samples that can be
considered in the same amount of time. S3A performance can thus
justify its use over classical assembler when a fast and sensible
profiling of a dozen up to a few hundred domains is needed.
Detection of antimicrobial resistance (Jia et al., 2017), annotation of
specific types of pathogenicity (Gussow et al., 2016) and searching
for indicators of a particular biochemical reaction (Tagliabue et al.,
2017) are a few examples.

Xander, the other targeted assembly tool we assessed, shows a
reduction in running time which is comparable to the one achieved
with S3A when up to a hundred domains are considered. However,
in our evaluations, S3A showed better performances. In addition,
one of Xander limitation is the specification of the profile models,
which has to be done by the user, individually for each domain. This
impairs the use of richer domain libraries, such as the one from
MetaCLADE, which can greatly improve the annotation.

We should highlight that our strategy of graph construction is
very general: any kind of string annotation can be provided as an in-
put to our assembler. This could easily results in further improved
running times, where the ‘costly’ step of HMM annotation (per-
formed sequentially on all protigs), could be replaced by an efficient
indexing and clustering of the protigs.

In a different path, the manner by which the Overlap-Layout
graph is built allows multiple domain annotations, such that a
unique graph is built for the whole range of domains. An improve-
ment of our method would be to handle multiple overlapping do-
main annotations, such that every edge could hold weights for
different domains. We believe that this would improve the sensitivity
of the weight given to the graph edges and that are used during the
graph traversal. For long protigs, it will also allow to reconstruct
cases of domain co-occurrence. This is promising in a targeted as-
sembly context, as it should both allow an even faster assembly,
while permitting the detection of more precise functions, based on
multiple domains.

A limitation of our approach is its dependency on the edge
weights, which are used both for the graph pruning and for the tra-
versal. While trying to hold a generic threshold independent on the
protig length, the optimal threshold could vary depending on the
type of species from which the reads were sequenced. In particular,
the longest matching substring length metric is sensible to sequenc-
ing errors in the read tips. Applying an error correction tool before
annotation, a practice common for de novo assembly, could im-
prove the robustness of the lmsl and ip parameters for S3A.
Moreover, while a smaller lmsl threshold can increase the number of
sequence assemblies, it can also lead to increase incorrect domain
identifications, due to the erroneous assembly of domain hits identi-
fied in unrelated sequences, highlighting a resulting function which,
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in reality, is not present. However, results on different datasets/
sequencing technologies show that S3A keeps a very high level of
performance, even when default threshold values are changed.

Finally, it is worth mentioning that our data analysis highlights
the importance in defining challenging datasets for critical assess-
ments of metagenome interpretations that include new difficulties
linked to domain length, by varying the proportion of domains with
different lengths contained in the datasets.
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