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Abstract: It is well known that the state of hunger can modulate hormones and hypothalamic neural
circuits to drive food-seeking behavior and consumption. However, the role the sensory cortex plays
in regulating foraging is much less explored. Here, we investigated whether acute fasting in mice can
alter an odor-guided foraging behavior and how it can alter neurons and synapses in the (olfactory)
piriform cortex (PC). Acute hunger enhances the motivation of a mouse to search for food pellets
and increases food intake. The foraging behavior strongly activates the PC, as revealed by c-Fos
immunostaining. The activation of PC is accompanied by an increase in excitation–inhibition ratio of
synaptic density. Fasting also enhances the phosphorylation of AMP kinase, a biochemical energy
regulator. Taken together, our results uncover a new regulatory brain region and implicate the PC in
controlling foraging behavior.
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1. Introduction

Hunger is a physiological state that induces homeostatic feeding in order to gain
energy. Decades of research have revealed a great deal on the hormonal and hypothalamic
control of food intake and metabolism [1–4]. The neuropeptide Y (NPY)/agouti-related
protein (AGRP)-expressing, pro-opiomelanocortin (POMC)-expressing and melanocortin
receptor-expressing neurons in the arcuate nucleus of hypothalamus are central to food and
appetite regulation [5,6]. Hunger activates the AGRP neurons and drives food intake [7–10].
Inhibition of POMC neurons, partly by AGRP projections, suppresses food intake [5,11,12].
While the hypothalamic control of hunger and feeding behavior is well documented, the role
of chemosensory signals from the environment in food foraging behavior and subsequent
intake is less clear. Increasing evidence suggests that sensory systems, particularly the
olfactory structures, play important roles in modulating foraging behavior. Hypothalamic
NPY was recently shown to mediate hunger-dependent attraction to food odors, but it is
unclear whether this signal affects sensory processing [13]. Deletion of olfactory sensory
neurons in obese mice induces weight loss and improves insulin resistance, suggesting
the sense of smell can influence global metabolism [14]. Furthermore, endocannabinoids
suppress neural activity of feedback axons originating from the olfactory cortex and enhance
odor detection and food intake [15]. Altogether, these studies suggest that the metabolic
state of an animal can exert an important influence on olfaction apart from feeding behavior.
Many of these studies assume that the modulation takes place in the olfactory bulb (OB),
but how hunger regulates circuits in the higher olfactory cortex that code for odor valence
and association remains unexplored.

The anterior piriform cortex (APC) is a primary sensory cortex one synapse down-
stream of OB, yet exhibits properties that resemble both a sensory and association cortex [16].
The layer 2 (L2) of APC contains a dense region of principal neurons (semilunar, SL, and
superficial pyramidal, SP) that form the major output of APC projecting to downstream
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areas, such as the entorhinal and orbitofrontal cortex and mediodorsal thalamus [17]. Our
group and others have shown that SL and SP neurons form two distinct circuits for repre-
senting information in the APC [18–22]. Since the APC sends feedback projections to OB
to modulate neural representation and learning [23,24], regulation of SL and SP neuronal
output will significantly impact activity in APC as well as OB.

What is the contribution of the piriform cortex (PC) to food-seeking behavior? Little is
known about how the PC contributes to foraging and food intake behavior in mammals.
The spatial tuning of posterior PC neurons may assist with odor-place learning and mem-
ory [25]. A role for nutrient, specifically amino acids, sensing has been proposed for the
PC [26,27], but this role is still being debated [28]. Sensory detection of food can rapidly
modulate the activity of AGRP and POMC neurons in the hypothalamus, but it is unclear
whether olfaction or other senses play a role in this regulation [29]. The state of hunger or
activation of AGRP neurons can strongly modulate some of the food cue response in the
insular cortex [30]. However, how neurons in PC are affected by hunger is unclear.

Here, we investigated the impact of acute fasting on mouse foraging behavior and
neural activity in the APC. We used a combination of food-search task (FST), immunofluo-
rescent staining for synaptic markers, and Western blot analysis of intracellular signaling
to examine how the state of hunger can influence foraging behavior and APC activity.

2. Materials and Methods
2.1. Animals

Adult C57BL/6J mice between 8 and 10 weeks old and of both genders were used in
this study. Mice were self-bred in Laboratory Animal Research Unit, City University of
Hong Kong, housed in groups and maintained on standard laboratory chow ad libitum.
Further, 24 h prior to the behavioral task, mice were deprived of food while maintaining
the water supply or continued with ad libitum food.

2.2. Food-Search Task (FST)

Nine Falcon tubes (50 mL) with 1 cm hole drilled at mid-length and at the top were
placed upside-down in a 500 mm × 500 mm × 500 mm white arena in 3 × 3 array of
150 mm apart under light. Each animal was allowed to habituate in the arena for 10 min.
After all animals were habituated, a food pellet was randomly placed in one of the tubes
and each animal was placed in the arena for exploration again. All habituations and tests
were recorded by a camera from the top. The arena and the tubes were cleaned with 70%
ethanol after each trial to eliminate social cues. A new piece of food pellet was also placed in
one of the tubes randomly before the next trial. The latency of which the animal sniffed the
food-pellet directly through the drilled holes was counted manually. The exploration time
of each animal in the proximity of all tubes was determined by ToxTrac animal tracking
software (Umeå University, Umeå, Sweden). The 50 mL Falcon tubes have a radius of
14 mm. A circle with 22 mm radius was constructed around each tube in the tracking
software (8 mm excess radius outside the tube), which corresponded to the length from
nose to centroid of the animals that indicate close interaction with the tubes. The ratio
of exploration time around the food-containing tube and the total exploration time was
expressed in percentage.

To study the effects of familiar odor on the food foraging activity, an almond was
placed in a different tube from the food pellet. After exploring in the arena for 10 min, mice
were fasted for 24 h and their foraging behavior was tested again. The positions of almond
and food were randomly allocated in all trials. The food recognition index in sated and
fasted states was defined by the ratio of the difference in exploration time between food
and almond and the sum of the two values ([tfood − talmond]/[tfood + talmond]).

To study the feeding behavior of animals in different states, each animal was placed in
another chamber containing pre-weighed chow in a Petri dish for 30 min after FST. The
content was weighed again after each trial and the difference in chow weight was calculated.
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2.3. Immunofluorescent Staining

Mice were sacrificed immediately after behavior task or one hour afterwards in the
case of c-Fos detection. Mice were deeply anesthetized with ketamine/xylazine mixture
(100 mg/kg ketamine and 50 mg/kg xylazine), perfused with ice-cold 1X phosphate-
buffered saline (PBS; pH 7.4; 4 ◦C), and fixed with 4% paraformaldehyde (PFA) in 1X
PBS. The whole brain was post-fixed overnight in 4% PFA, followed by cryoprotection
in 30% sucrose in PBS for 72 h at 4 ◦C. Brain sections of 50 µm thickness were cut with
cryostat (HM525 NX, Thermo Fisher Scientific, Waltham, MA, USA). Sections were washed
3 × 5 min with PBS, followed by blocking in 10% normal goat serum in PBS. For detection
of c-Fos, sections were double stained with rabbit anti-c-Fos and mouse anti-NeuN primary
antibodies (1:500, Abcam, Cambridge, UK) overnight at 4 ◦C. For detection of synaptic
markers, sections were stained by rabbit anti-VGlut1 (1:1000, Synaptic Systems, Göttingen,
Germany) or mouse anti-GAD67 primary antibodies (1:1000, EMD Millipore, Burlington,
MA, USA) overnight at 4 ◦C. Sections were washed 5× 5 min with PBS at room temperature
and incubated in Alexa Fluorochrome-conjugated anti-rabbit or anti-mouse secondary
antibodies specific to each marker (1:1000, Jackson Immunoresearch, West Grove, PA, USA)
and 4′,6-diamidino-2-phenylindole (DAPI, 1:10,000, Santa Cruz Biotechnology, Dallas, TX,
USA) for 2 h at room temperature in darkness. After washing with PBS for 5 × 5 min,
sections were mounted on slides in antifade mounting medium (Vector Laboratories,
Newark, CA, USA) and stored in a dark box at 4 ◦C. Samples stained for c-Fos and
NeuN were visualized by Nikon Eclipse Ni-E upright fluorescence microscope (Nikon,
Tokyo, Japan), whereas VGlut1 or GAD67-stained samples were imaged by Zeiss LSM 880
Confocal Microscope with ZEN imaging software (Zeiss, Jena, Germany). Images of APC
were acquired with a 4× or 40× objective.

2.4. Image Analysis

Images were imported to and analyzed in ImageJ (National Institutes of Health,
Bethesda, MD, USA) as 8-bit images. The areas of c-Fos and NeuN immunoreactivities in
L1, L2, and L3 of APC for different experimental conditions were quantified by the particle
analyzing tool. The ratio between c-Fos and NeuN signals was calculated and expressed in
percentage. For quantification of VGlut1+ or GAD67+ puncta density, a minimum threshold
was chosen for each sublayer across experimental conditions to exclude background and
include structure that appears punctate in ImageJ, while the maximal threshold was left
at the highest value (255 for 8-bit images). The number of puncta and area of the image
were determined by the particle analysis tool, which were expressed in ratio to obtain the
puncta density per square millimeter.

2.5. Western Blotting

Animals were sacrificed by deep anesthesia of ketamine/xylazine mixture. APC
was obtained by dissecting fresh brain tissue on ice and immediately snap frozen in dry
ice. Samples were homogenized in radioimmunoprecipitation assay (RIPA) buffer supple-
mented with 1:200 protease inhibitor cocktail, 1 mm sodium pyrophosphate, and 20 mm
sodium fluoride (all from Sigma-Aldrich, St. Louis, MO, USA), followed by centrifugation
at 15,000 rpm for 15 min at 4 ◦C. Protein concentrations were measured by protein assay
reagent (Bio-Rad, Hercules, CA, USA). A such, 30 µg of protein samples was resolved on a
10% sodium-dodecyl sulfate (SDS) polyacrylamide gel and the gel was transferred onto a
polyvinylidene fluoride (PVDF) membrane (Bio-Rad, Hercules, CA, USA). The membrane
was blocked by non-fat milk dissolved in 0.1% Tween-20 in Tris-buffered saline (TBS-T) for
one hour at room temperature, then probed with primary antibodies specific to p-AMPK
(T-172), AMPK, p-Akt (S-473), Akt, p-Erk1/2 (T202/Y204), Erk1/2 (all at 1:1000; all from
Cell Signaling Tech. Inc, Danvers, MA, USA), and β-actin (1:5000; Cell Signaling Tech. Inc,
Danvers, MA, USA) overnight at 4 ◦C. The membranes were washed in TBS-T briefly and
incubated with HRP-conjugated anti-rabbit (1:2500; Sigma-Aldrich, St. Louis, MO, USA)
or anti-mouse (1:5000; Sigma-Aldrich, St. Louis, MO, USA) secondary antibodies. After
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washing away excessive secondary antibodies with TBS-T, signals on the membranes were
detected by enhanced chemiluminescence reagent (Thermo Fisher Scientific, Waltham, MA,
USA) using the ChemiDoc imaging system (Bio-Rad, Hercules, CA, USA). Band intensities
were quantified in ImageJ (NIH, Bethesda, MD, USA). Each band showed in the representa-
tive blot was from an individual mouse. The band intensity of each phosphorylated protein
was normalized to that of the unphosphorylated state, then normalized to the sated group.

2.6. Statistical Analysis

Statistical analysis was performed using SPSS (IBM SPSS Statistics, Armonk, NY, USA).
Extreme outliers were removed from the data based on the descriptive statistics, defined by
values more extreme than first quartile (Q1) − 3 * inter-quartile range (IQR) or third quar-
tile (Q3) + 3 * IQR. Mild outliers defined by values more extreme than Q1 − 1.5 * IQR or
Q3 + 1.5 * IQR were removed if they were reasonable to be excluded and did not re-
duce sample size substantially. The normal distribution of each data set was checked by
Shapiro–Wilk test. Data with normal distribution and equal variances were analyzed by
one-way analysis of variance (ANOVA) and differences between three or more experi-
mental conditions were checked by post hoc Bonferroni multiple comparison. Normally
distributed data with only two experimental conditions were analyzed by Student’s t-test or
Paired t-test. Data that did not pass tests for normality and equal variances were analyzed
by independent sample Kruskal–Wallis test followed by Bonferroni multiple comparison
or Mann–Whitney U test if only two experimental conditions were present. Data were
presented in mean ± standard error of the mean (SEM). Thresholds for significance were
indicated as * p < 0.05, ** p < 0.01, and *** p < 0.001. All figures were prepared in Prism 8
(GraphPad, San Diego, CA, USA), Excel (Microsoft Corporation, Redmond, WA, USA), and
Illustrator CC (Adobe, San Jose, CA, USA).

3. Results
3.1. Acute Fasting Increases Food Search Behavior

To directly assess whether the state of hunger influences foraging behavior, we devised
an odor-guided behavior task, the FST. Adult mice were divided into the sated (food
accessible ad libitum) and fasted groups. The fasted mice lived in their original housing,
but food chow was removed for 24 h while water was still available (Figure 1A). Mice
were first habituated in the arena without any food pellet, then placed in the arena again
with food chow in one of the tubes. Since each tube was sealed at the bottom, food odor
could only escape through the two drilled holes at the higher positions and the animal
could not eat the pellet. During the habituation phase, both sated (n = 14) and fasted
mice (n = 17) spent little time examining the tubes. In contrast, both groups of animals
explored around each tube for a longer time during the test phase that contained food
in one of the tubes (Figure 1B). When food was present, both sated and fasted animals
took less time to identify the same tube compared to habituation (sated-habituation to
sated-FST: 170 ± 36 to 55.1 ± 11.9 s, p = 0.007, n = 14, 13; fasted-habituation to fasted-FST
to: 133 ± 25 to 34.7 ± 4.6 s, p = 0.017, n = 16, 15; Figure 1C). The exploration time towards
the food-containing tube also increased in both groups relative to their habituation phases,
with the fasted group showing a significantly larger increase. However, the exploration
time of fasted mice in FST did not differ significantly from that of sated mice in FST (sated-
habituation to sated-FST: 7.0 ± 1.2 to 29.0 ± 5.9 s, p = 0.044, n = 14; fasted-habituation to
fasted-FST: 6.9± 1.2 to 86.5± 11.9 s, p < 0.0001, n = 14, 17; sated-FST to fasted-FST: p = 0.059;
Figure 1D). The fasted mice spent a significantly higher percentage of time exploring the
food tube during the test phase (fasted-habituation to fasted-FST: 10.7 ± 1.5 to 29.8 ± 2.5 %,
p < 0.001, n = 16, 17; Figure 1E), as well as the sated mice in FST (sated-FST to fasted FST:
15.0 ± 1.6 to 29.8 ± 2.5 %, p < 0.001, n = 12, 17; Figure 1E). Tracking of the animal in the
arena revealed no difference in the distance travelled between habituation or test phase or
between sated and fasted groups, suggesting that the locomotor activity of these mice was
comparable (sated-habituation to sated-FST: 33.2 ± 1.6 to 29.2 ± 1.2 m, p = 0.225, n = 14, 13;
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fasted-habituation to fasted-FST: 31.5 ± 1.3 to 33.2 ± 1.0 m, p = 1.0, n = 16. 17; sated-FST
to fasted-FST: p = 0.20; Figure 1F). To further test the mouse’s preference for different
food-related odors, we placed an almond in another tube and compared the exploration
time between the familiar food chow and almond odor. We computed the food recognition
index, which was defined as (tfood − talmond)/(tfood + talmond). We found that fasted mice
(n = 10) showed higher food recognition index than their own sated state, suggesting that
the state of hunger increased the mice’s motivation to seek the food despite not being able
to access it (sated to fasted: 0.3 ± 0.1 to 0.6 ± 0.1, p < 0.001, n = 10; Figure 1G).
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Figure 1. Acute fasting enhances food-seeking behavior. (A) Schematic of the food-search task (FST).
Mice were first food deprived for 24 h, then subjected to 10 min of habituation in an arena with
nine empty Falcon tubes. After 10 min, their food foraging behavior in the same arena was tested
again, where one of them contained the target (food pellet). n = 14 and 17 for sated and fasted mice,
respectively. (B) Heatmap showing the time spent in different regions of the arena during habituation
or FST (representative experiment). Filled circle represents the food-containing tube. Mice spent little
time foraging in the absence of food pellet but spent longer time exploring the tubes when food was
added. (C) Quantification of the latency to explore the food-containing tube in FST, or the empty
equivalent during habituation. Both sated and fasted animals had shorter latency to explore during
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FST compared to habituation. (D,E) Quantification of the exploration time of food (D) and the
percentage to the total exploration time for all nine tubes (E). Both sated and fasted mice spent
longer time in the proximity of the food in FST and fasted mice had a higher increase in percentage
exploration time than sated mice in FST. (F) Distance travelled in the arena by sated and fasted
mice during habituation and FST. (G) Design of the arena to study the difference in recognition of
familiar food odor between sated and fasted mice and the quantification. An almond was placed in
another tube apart from the food pellet. Exploration time to the two types of food was studied and
food recognition index was calculated. After 24 h of fasting, the food recognition was tested again.
Mice had higher recognition towards food pellet upon fasting (n = 10). (H) Timeline for measuring
food consumed by animals and quantification. After FST, animals were placed in another chamber
containing pre-weighed food on a Petri dish for 30 min for free intake of food. Fasted mice consumed
more food than the sated mice (n = 16, 17 for sated and fasted groups, respectively). *, p < 0.05;
**, p < 0.01; ***, p < 0.001.

Our previous results demonstrated that acutely fasted mice showed a higher tendency
to attempt to procure food than sated mice, but do not inform whether they consumed more
food. We next assessed food consumption by providing the mice with food pellets and
allowed them to eat ad libitum following FST. Fasting greatly augmented the mice’s food
consumption (n = 16, 17, respectively, for sated and fasted) (sated to fasted: 4.0 ± 1.9 mg to
45.7 ± 6.9 mg, p < 0.001, n = 15, 14; Figure 1H). These results correlated with the enhanced
food seeking we observed (Figure 1C–G). Together, our results demonstrated that hunger
enhanced foraging behavior and food intake and also established the effectiveness of FST
in evaluating foraging behavior.

3.2. Foraging Activates the Anterior Piriform Cortex

Does searching for food involve sensory cortical areas, such as the APC? The APC is
a three-layered paleocortex with cellular architecture that is similar to the hippocampus,
with excitatory and inhibitory neurons arranged in specific layers. Layer 1 (L1) contains
mostly neuropils and GABAergic interneurons. L2 contains a dense layer of principal
neurons. Layer 3 (L3) contains sparsely distributed principal neuron somata and a variety
of GABAergic interneurons. To address whether APC neurons are involved in food sensing
and learning, we fixed and sectioned the APC for immunofluorescent staining of the
immediate early gene, c-fos, after the mice underwent FST. Without FST, there was virtually
no c-fos immunoreactivity in the APC across layers, suggesting the background neural
activity was low (n = 16 APC sections, from 4 mice). After performing FST, the APC showed
elevation in the ratio of c-fos-positive neurons in all three layers. However, there was no
detectable difference in c-fos activation between sated and fasted mice (n = 24 APC sections
from 6 mice for both groups; Figure 2A,B and Table 1). These results showed that following
active searching for food chow, the sensory cortex is activated, presumably by the odorants
emanating from it.
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(B) Ratio of c-Fos immunoreactive signal and NeuN immunoreactive signal across three APC layers
among different experimental conditions, expressed in percentage. Mice that performed the FST
showed marked activation of APC, as revealed by profuse expression of c-fos protein in various
APC layers. However, the ratio did not differ significantly between sated and fasted mice across
layers. n = 16–24 APC sections for each data set, obtained from 4–6 mice. **, p < 0.01; ***, p < 0.001.
L1, layer 1; L2, layer 2; L3, layer 3.

Table 1. Expression of c-Fos across APC layers of sated and fasted mice with or without performing FST.

Layer Contrast c-fos+ Neurons (% of NeuN+ Cells) p-Value n (APC Section)

L1
Normal to sated 0 to 2.8 ± 0.6 <0.001 13, 24
Normal to fasted 0 to 1.9 ± 0.4 0.001 13, 23

Sated to fasted 2.8 ± 0.6 to 1.9 ± 0.4 1.0 24, 23

L2
Normal to sated 0.1 ± 0.04 to 4.2 ± 0.4 <0.001 13, 22
Normal to fasted 0.1 ± 0.04 to 5.4 ± 0.6 <0.001 13, 23

Sated to fasted 4.2 ± 0.4 to 5.4 ± 0.6 0.941 22, 23

L3
Normal to sated 0 to 4.7 ± 0.3 <0.001 13, 20
Normal to fasted 0 to 4.5 ± 0.4 <0.001 13, 21

Sated to fasted 4.7 ± 0.3 to 4.5 ± 0.4 1.0 20, 21

APC, anterior piriform cortex; FST, food-search task.

3.3. Acute Fasting Induces Plasticity of Excitatory and Inhibitory Synapses in the Anterior
Piriform Cortex

What are the synaptic repercussions of FST-induced activation of APC? The complex
interactions of excitatory and inhibitory local circuits are the driving forces of neuronal
spiking activity. Activation of immediate-early genes, such as c-fos and associated tran-
scription factors, can induce long-term synaptic plasticity. We hypothesized that acute
fasting could alter the excitation–inhibition (E–I) balance in APC, thereby enhancing neural
activity. We stained for a commonly used excitatory presynaptic marker, VGluT1, and
a commonly used inhibitory presynaptic marker, GAD67. Prior to FST, the sated group
showed similar density of VGluT1+ puncta in all layers to the normal mice. By contrast,
FST in the fasted mice increased the density of VGluT1 synapses in all layers compared to
sated mice with or without FST (n = 10 sections from 5 mice for all groups; Figure 3A,B, and
Table 2). These results suggest that FST in the fasted mice can induce structural plasticity of
excitatory synapses in the APC.

Table 2. The puncta density of VGluT1+ synapses across APC layers.

Layer Contrast Puncta Density (×104/mm2) p-Value n (APC Section)

L1
Normal to sated 8.0 ± 1.0 to 6.7 ± 1.8 1.0 19, 13
Normal to fasted 8.0 ± 1.0 to 16.3 ± 1.0 0.02 19, 10
Sated to fasted 6.7 ± 1.8 to 16.3 ± 1.0 0.005 13, 10

L2
Normal to sated 8.0 ± 1.0 to 6.1 ± 1.1 0.617 19, 13
Normal to fasted 8.0 ± 0.8 to 13.2 ± 0.3 0.009 19, 10
Sated to fasted 6.1 ± 1.1 to 13.2 ± 0.3 <0.001 13, 10

L3
Normal to sated 9.6 ± 0.7 to 8.0 ± 0.4 0.757 19, 10
Normal to fasted 9.6 ± 0.7 to 15.7 ± 1.5 0.011 19, 10
Sated to fasted 8.0 ± 0.4 to 15.7 ± 1.5 0.001 10
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Figure 3. Acute fasting alters anatomical excitation at synapses. (A) Representative confocal images
of excitatory presynaptic marker VGluT1 in APC for normal animals that did not perform FST, sated
and fasted mice tested in FST. (B) Quantification of the density of VGluT1+ synaptic puncta in APC
layers among different experimental conditions. Acute fasting increased VGluT1+ synaptic density
compared to sated condition and normal mice. Density of VGluT1 did not differ between sated
and normal mice, except a slight decrease in layer 3 APC of sated mice compared to normal mice.
n = 13–19 APC sections obtained from 5 mice for each data set. (C) Representative confocal images
of inhibitory presynaptic marker GAD67 in APC for animals that did not perform FST, sated and
fasted mice tested in FST. (D) Quantification of the GAD67+ puncta density in APC layers among
different experimental conditions. Acute fasting did not alter the puncta density across APC layers.
n = 13–16 APC sections obtained from 5 mice for each data set. *, p < 0.05; **, p < 0.01; ***, p < 0.001.

In contrast to excitatory synapses, acute fasting did not change the density of GAD67
synapses in all layers. The density of GAD67 synapses in all layers was also similar
between sated mice with or without FST (n = 10 sections from 5 mice; Figure 3C,D and
Table 3). Together, these results suggested that there was an overall increase in the excitatory
synapses that changed the E–I balance in the APC following fasting.

Table 3. The puncta density of GAD67+ synapses across APC layers.

Layer Contrast Puncta Density (×104/mm2) p-Value n (APC Section)

L1
Normal to sated 6.6 ± 1.2 to 6.8 ± 1.7 1.0 16, 13
Normal to fasted 6.6 ± 1.2 to 6.6 ± 1.1 1.0 16
Sated to fasted 6.8 ± 1.7 to 6.6 ± 1.1 1.0 13, 16

L2
Normal to sated 7.3 ± 0.9 to 9.1 ± 1.2 0.50 15, 13
Normal to fasted 7.3 ± 0.9 to 6.8 ± 0.5 1.0 15, 16
Sated to fasted 9.1 ± 1.2 to 6.8 ± 0.5 0.21 13, 16

L3
Normal to sated 5.9 ± 0.9 to 7.6 ± 1.3 0.67 15, 13
Normal to fasted 5.9 ± 0.9 to 5.5 ± 0.6 1.0 15, 13
Sated to fasted 7.6 ± 1.3 to 5.5 ± 0.6 1.0 13
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3.4. Acute Fasting Enhances AMPK Phosphorylation and Decreases Akt Phosphorylation

Does the fasting-induced enhancement in neural activity require specific signaling
pathways? AMPK is a kinase that is linked to energy usage and homeostasis [31]. Activa-
tion of AMPK in C. elegans during hunger promotes foraging behaviors [32]. Moreover,
activation of AMPK in the hypothalamus critically drives feeding in mice [33,34]. However,
it is unclear whether AMPK and associated kinases in APC can be activated by feeding
states. We tested whether acute fasting could alter phosphorylation of various kinases by
performing Western blotting of APC samples from sated vs. fasted mice. Phosphorylation
of AMPK at Thr172 in the α subunit is one of the best characterized activating mechanisms
of this kinase [35]. Among the animals that performed FST, fasted mice showed increased
phosphorylation of AMPK at Thr172 compared to sated mice, after normalizing to total
AMPK (sated-FST to fasted-FST: 1.0 to 1.5 ± 0.2, p = 0.037, n = 3; Figure 4A,B). Akt can
phosphorylate AMPK leading to its inhibition, whereas caloric restriction can reduce its
inhibition on AMPK [35]. In the same samples, we found that acute fasting decreased
phosphorylation of Akt at Ser143, normalized to total Akt (sated to fasted: 1.0 to 0.6 ± 0.1,
p = 0.037, n = 3; Figure 4A,B). By contrast, fasting did not change ERK1/2 MAP kinase
phosphorylation, normalized to total MAPK (sated to fasted: 1.0 to 1.2 ± 0.1, p = 0.487,
n = 3; Figure 4A,B). These data corroborated with previous findings that activation of
AMPK is often inversely correlated with Akt phosphorylation/activation. Altogether, these
results showed that acute fasting can activate AMPK and alter phosphorylation signals
specifically for each enzyme in the APC.
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Figure 4. Acute fasting enhances p-AMPK and decreases p-Akt in APC. (A) Representative blot
image for the expression of (p-)AMPK, (p-)Akt, (p-)Erk1/2, and β-actin. Thus, 30 µg of total protein
from individual APC samples was used in each lane (n = 3 mice per group; each lane represents
one individual mouse that performed FST). (B) Quantification of p-AMPK (T172)/AMPK (left),
p-Akt (S473)/Akt (middle), and p-Erk1/2 (T202/T204)/Erk1/2 (right) ratio. Acute fasting enhanced
phosphorylation of AMPK and decreased that of Akt compared to sated condition. *, p < 0.05. AMPK,
AMP-activated protein kinase; p-AMPK, phospho-AMPK; Akt, protein kinase B; p-Akt, phospho-Akt;
Erk1/2, extracellular signal-regulated kinase 1/2; p-Erk1/2, phospho-Erk1/2.

4. Discussion

The state of hunger can induce changes in hormonal status and neuronal circuitry in
the brain to drive foraging behavior. Although much is known about how hypothalamic
circuits can directly influence food procurement and intake, little is known about how
sensory perception influences these behaviors [36]. Here, we show that acute fasting (24 h)
enhances food searching behavior and activation of APC. This enhanced food exploratory
activity is accompanied by changes in excitatory synaptic density and kinase activation in
the APC. Altogether, these results suggest that neuronal and synaptic plasticity in the APC
could enable enhanced foraging in the state of hunger.
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Hunger is a robust homeostatic state that induces negative valence signals in neural
circuits to promote food search and consumption [37]. Although hunger is difficult to
quantify, consummatory behavior, such as food intake, or appetitive behaviors, including
food hoarding and food foraging, are relatively universal indicators of hunger among
animal species [38]. Here, we show that acute fasting induces behavioral changes that are
consistent with enhanced foraging and food intake behavior. We show that fasted animals
exhibit shorter latency to locate the hidden food pellet, spend longer time in the proximity
of food, and discriminate the food better than in the sated condition. This promotion of food
seeking upon fasting is associated with APC and its plasticity, for instance, an increase in
expression of an immediate-early gene, c-Fos, and an increase in excitatory synaptic density
after fasting and FST. Most neurons in APC are principal neurons and they often have very
low firing rates, both basally and upon odor stimulation [39]. This could be an explanation
for the very low expression of c-fos before FST (Figure 1). Stimulus-transcription coupling,
which involves activation of immediate-early genes upon stimulation, is conducive to long-
term potentiation and depression in sensory processing [40]. After fasting and subsequent
FST, we observed a significant increase in excitatory synaptic density, suggesting that
structural plasticity of direct OB input and/or recurrent connections underwent long-
term plastic changes. On the other hand, we did not observe a change in inhibitory
synaptic density in APC after acute fasting, possibly because an increase in the presynaptic
excitatory markers is a more rapid response than changing inhibitory expression (Figure 5).
Although c-Fos activation is correlated to an increase in excitatory synaptic density, we do
not know the causal mechanism. Two scenarios are possible: (1) c-fos activation leads to
excitatory anatomical plasticity or (2) the enhanced excitatory synaptic density facilitates c-
fos activation following FST. Further experiments are required to distinguish these scenarios.
Western blotting shows that FST enhances phosphorylation and activation of AMPK in
the fasted state. This is consistent with the literature, in that, in the energy-deplete state,
AMPK is phosphorylated and activated [41]. As AMPK regulates diverse phenomena, such
as glucose and lipid metabolism, inflammation and protein synthesis, it will be interesting
to examine how fasting-induced activation of AMPK may affect these processes in APC.
Although we identify APC activation following the behavioral task FST, we did not show
that APC is causally linked to the enhanced foraging behavior. Future studies involving
pharmacological, chemogenetic, or optogenetic manipulation of the APC will illustrate the
functional role of APC in these state-dependent changes.

How can modulation of APC activity regulate appetite and foraging? The AGRP
neuron is a major neuron type carrying the orexigenic signal in the hypothalamus and its
activation alone could potently augment food intake [9]. Sensory stimuli, such as sight
or smell, can rapidly reset the activity in AGRP and/or POMC neurons that leads to a
decrease in hunger [29,37,42]. While it is increasingly clear how the neurons and circuits
in the hypothalamus drive hunger-dependent food intake, much less is known about the
nature and role of upstream sensory signals in modulating the feeding circuit. It is possible
that olfactory information (learned or naïve) can arrive at the hypothalamus via multiple
synaptic connections or changing the cognitive process that leads to a change in appetite.
For instance, the outputs of APC relay to mediodorsal thalamus that is involved in cognitive
flexibility may facilitate animals in choosing the best food reward [43]. In addition, hor-
monal signals, such as leptin, ghrelin and insulin, can modulate neural activity of various
neurons in the hypothalamus [44]. Simultaneously, olfactory regions have been reported
to express receptors for metabolic hormones and changed structurally with metabolic sta-
tus [45,46]. It is possible that hormonal regulation of APC synapses and neuronal activity
lead to activity changes in downstream brain regions, such as mediodorsal thalamus or
insular cortex. More characterization studies on APC plasticity by hunger hormones are
worth conducting to understand state-dependent changes in higher olfactory regions.

It has recently been shown that olfaction alone is not essential for high-fat diet-induced
devaluation of standard diet, rather the consumption of high-fat diet [47]. In their study,
mice fed with high-fat diet for a short period of time consumed less food chow, even when
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they were deprived of food overnight. Similar behaviors were observed in their anosmic
animal model with ablated OB. Our results that hunger modulates neural activation and
excitatory synapses in the APC are not in conflict with Boone et al.’s report, as they were
only exposed to standard chow throughout the study and developed high familiarity
towards it. Nevertheless, palatable food generally stimulates food-seeking and intake
behavior. For instance, olfactory detection of peanut butter can enhance the long-term
consumption of food chow [48]. Taken together, our study showed that acute fasting
increases food foraging and intake in mice, accompanied by activation of APC that is
important in odor perception and association. We believe that our findings will illuminate
how biochemical and synaptic changes in APC can be involved in metabolic disorders and
provide a basis for designing therapeutics for these disorders.
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