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Abstract: Coronavirus disease 2019 (COVID-19) has quickly become a worldwide health crisis.
Although respiratory disease remains the main cause of morbidity and mortality in COVID patients,
myocardial damage is a common finding. Many possible biological pathways may explain the
relationship between COVID-19 and acute myocardial infarction (AMI). Increased immune and
inflammatory responses, and procoagulant profile have characterized COVID patients. All these
responses may induce endothelial dysfunction, myocardial injury, plaque instability, and AMI.
Disease severity and mortality are increased by cardiovascular comorbidities. Moreover, COVID-19
has been associated with air pollution, which may also represent an AMI risk factor. Nonetheless,
a significant reduction in patient admissions following containment initiatives has been observed,
including for AMI. The reasons for this phenomenon are largely unknown, although a real decrease
in the incidence of cardiac events seems highly improbable. Instead, patients likely may present
delayed time from symptoms onset and subsequent referral to emergency departments because of
fear of possible in-hospital infection, and as such, may present more complications. Here, we aim to
discuss available evidence about all these factors in the complex relationship between COVID-19
and AMI, with particular focus on psychological distress and the need to increase awareness of
ischemic symptoms.

Keywords: COVID-19; acute myocardial infarction; cardiovascular risk factors; inflammation;
pollution; fear

1. Introduction

At the end of 2019, the new coronavirus SARS-CoV-2 was identified as the cause of an acute
respiratory infection and cause of a worldwide pandemic. At the moment, there are many unclear
issues related to the pathogenesis of the infection and the reasons underlying the extremely different
clinical course, from asymptomatic to severe clinical manifestations, often carried out in a very short
time period. The virus enters in several cell types, including cardiomyocytes following proteolytic
cleavage of its S protein by a serine protease, and binding to the transmembrane angiotensin-converting
enzyme 2 (ACE2) [1]. Moreover, whether it seems that pre-existing cardiovascular (CV) risk factors and
disease may increase COVID-19 susceptibility, it has been also observed that patients with CV disease
may experience more severe symptoms of infection [2]. In fact, the virus can worsen underlying CV
lesions, precipitate de novo acute CV events, such as acute myocardial infarction (AMI), and induce
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CV chronic damage [3,4]. Thus, while the focus may be on the pulmonary system, it is important to be
aware of the CV implications, which can be a significant determinant for complications and mortality
associated with this virus.

Nonetheless, despite these common features and interactive factors, a significant decrease in
patient admissions to intensive coronary unit (ICU) has been observed following containment measures,
suggesting that other determinants may reduce the capacity to quickly manage acute patients who are
simultaneously or not infected with COVID-19 [5–8].

Hence, we aim here to discuss how, besides common pathophysiological mechanisms linking
COVID to CV disease and favoring acute events, other factors (e.g., fear of contagion, difficulty in
contacting general practitioners, attention focused on COVID-19 patients, and a massive flow of
health information and disparate viewpoints) may account for the unexpected and paradoxical
decrease in AMI during lockdown, unlikely caused by a real decrease in the incidence of CV events.
These reflections will help us to face a possible second COVID-19 pandemic wave or other outbreaks.

2. Possible Causal Links between COVID-19 Infection and AMI

2.1. Inflammation

COVID infection may evoke a marked immune response and “inflammatory storm” (cytokine
release syndrome-CRS, with an elevation of different cytokine levels, including interleukin IL-6, -7, -22,
-17, chemokine ligand 2, and tumor necrosis factor α, TNFα), found associated with disease severity and
mortality [9,10]. Thus, patients with preexisting atherosclerotic lesions and chronic inflammation, then
infected with COVID-19, may be at higher risk of disease severity, clinical complications such as acute
coronary syndrome (ACS), and mortality, and may present conduction abnormalities, atrial fibrillation,
hypotension, left ventricular dysfunction, and elevation in brain natriuretic peptide (BNP) and cardiac
troponins [11–13]. Noteworthy, recently, some authors question the “inflammatory storm” in COVID-19
infection. In fact, if elevated IL-6 levels were found in severe COVID-19 patients, their levels resulted
lower than those usually observed in (non-COVID-19) acute respiratory distress syndrome (ARDS)
patients [14]. Moreover, critically ill patients with ARDS and COVID-19 infection showed lower
cytokine levels (IL-6, -8, and TNFα) when compared with patients with bacterial sepsis and similar
values with respect to other critically ill patients [15].

Nonetheless, in this context, it is crucial to remember that all these observations and comparisons
may be limited by the use of different assays/methods, still not adequately standardized.

2.2. Immune Status

Uncontrolled overactivation of T cells, which may present high concentrations of cytotoxic granules,
can drive injury to the immune system, similar to atherosclerosis and other CV conditions [16,17].

COVID-related inflammation also promotes a prothrombotic state (elevated D-dimer levels
are common in many hospitalized COVID-19 patients) that could further increase the risk of
microangiopathy in multiple organs and coronary thrombosis at sites of plaque disruption, and inhibit
the action of antithrombin, the protein C system, and the tissue factor pathway [18–20].

2.3. Comorbidities

2.3.1. Diabetes

Type 2 diabetes mellitus (TDM2) together with hypertension are common in COVID-19 patients,
with an incidence about two times higher in ICU/severe cases than their non-ICU/severe counterparts
and resulting in an elevated overall death rate [21,22].

Infection of Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) in TDM2 can
trigger the release of hyperglycemic hormones (e.g., glucocorticoids and catecholamines), but also
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hypoglycemia episodes (<3.9 mmol observed in about 10% of TDM2/COVID-19 patients, with increased
pro-inflammatory monocytes and platelet reactivity) [23–25].

It is still currently unknown whether hyper/hypoglycemia may alter virulence or, alternatively,
if the virus interferes with insulin secretion/glycemic control or development of acute complications
(e.g., ketoacidosis).

2.3.2. Obesity

A retrospective cohort study, which compared patients admitted for COVID-19 pneumonia in
the period between February 27th and April 5th, 2020, with patients admitted for a non-SARS-CoV-2
respiratory disease during the same period in 2019, evidenced a higher frequency of obesity among
SARS-CoV-2 patients, with a correlation between disease severity and increased body mass index [26].
However, this association, sometimes heralded by the media regardless of emotional consequences
on the audience, should be interpreted in a wider scenario. For example, elderly subjects may also
more frequently present diabetes and hypertension or obesity, and as such, may be more susceptible to
infection and to develop a more serious disease, requiring hospital admission and invasive ventilation.

2.3.3. Hypertension

It is still not surely assessed if hypertension increases susceptibility to COVID-19 infection.
Chinese and global data show prevalence rates of 15–40%, largely in line with the rates of high blood
pressure in the general population (30%), whereas other data suggest that hypertension is present in
13.4% of subjects with non-severe disease and in 23.7% of subjects with severe disease, and tripled
mortality risk [27,28]. It is important to consider that these findings may be greatly affected by the
higher prevalence of hypertension in elderly, which may have worse outcomes, a more severe disease
course, and higher mortality than in younger patients. Accordingly, there is no evidence of increased
susceptibility of hypertensive patients for COVID-19 when the association is adjusted for age and other
comorbidities [29].

2.3.4. Gender-related Effects

In these associations, besides aging, gender may play a role, although sex-disaggregated data for
COVID-19 in several European countries show a similar number of cases between the sexes, but more
severe outcomes in older men [30]. This gender-related effect could be attributable to differences
in the renin–angiotensin–aldosterone system (RAAS) system (e.g., ACE2 expression increased by
testosterone and reduced by estrogens), innate recognition, and biological response to virus, and may
differ according to sex hormone changes that also vary with aging [31].

2.4. Drug Effects in the Relationship between the Cardiovascular System and the COVID-19 Infection

Drugs currently evaluated for COVID-19 (e.g., chloroquine/hydroxychloroquine—malaria treatment;
tocilizumab—autoimmune disease; ribavirin/interferon alfa—hepatitis; lopinavir/ritonavir—HIV infection)
have important CV side effects and toxicities, therefore requiring caution in patients with comorbidities.

In patients treated with chloroquine/hydroxychloroquine (median of treatment duration 7 years),
conduction disorders were observed as the main side effects (85%), followed by ventricular hypertrophy,
hypokinesia, heart failure, pulmonary arterial hypertension, and valvular dysfunction, resulting in
irreversible damage or death (13% and 30%, respectively) after drug withdrawal [32]. Interestingly,
a few data suggested that these drugs are associated with significant QTc prolongation, and ventricular
arrhythmias, in patients with COVID-19 [33]. However, the issues of more adverse outcomes developed
after patients were treated with these drugs, whether the severity of COVID-19 infection was reduced
in such patients before being infected with COVID-19, the real effectiveness and safety of these
drugs, as well as the appropriate dose and duration of therapy, are all aspects which require more
in-depth investigation, given the still scarce evidence and the great heterogeneity of interventions and
indications [34,35].
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Beta-blockers, especially metoprolol, should be administered cautiously in patients under
chloroquine/hydroxychloroquine therapy, due to cytochrome-P450 isoenzyme CYP2D6 modulation
and decreased heart rate [36]. Ribavirin (that binds to the active site on the virus RNA-dependent RNA
polymerase) and lopinavir/ritonavir (inhibiting replication of viral RNA) may interfere with many CV
drugs (e.g., warfarin, rivaroxaban and apixaban, clopidogrel, statins) [37].

Moreover, in view of actual available results, if alone it seems to retain limited value against
COVID-19, its combination with interferon-α or lopinavir-ritonavir increases clinical efficacy [35].
Instead, no evidence of severe adverse events, long term survival, or quality of life has been shown
using aspirin or nonsteroidal anti-inflammatory drugs in COVID-19 patients, as stated by the World
Health Organization [38].

ACE-inhibitors (ACEIs) and angiotensin receptor blockers (ARBs), up-regulating ACE2,
could increase virus susceptibility. However, to date, there are no clear data linking the use of
these therapies with an increased risk of COVID-19 or disease severity. These drugs might even
increase the lung protective function of ACE2 by reducing angiotensin II through its conversion
to angiotensin [32]. Hence, as RAAS-inhibitors are a therapy cornerstone after AMI, where their
withdrawal may cause clinical instability (e.g., reinfarction) in high risk patients, there is currently no
justification for stopping ACEIs or ARBs in patients at COVID-19 risk [39].

The dipeptidyl peptidase 4 (DPP4) receptor appears to be another gateway for the virus, in addition
to ACE2. Increased DPP4 expression and activity are associated with TDM2, obesity, and metabolic
syndrome, all of which have been related to COVID-19 susceptibility and severity. For this reason,
it has been hypothesized that DPP4 inhibitors, known as gliptins, which vary in their interactions
with the active site of the enzyme, may have immunomodulatory and cardioprotective beneficial
effects in COVID-19 management [40]. However, the impact of other TDM2 drugs on the susceptibility
and outcomes of COVID-19, as well as COVID-19 therapies’ effects on glucose regulation, need to be
further investigated.

2.5. COVID-19, Acute Myocardial Infarction, and Air Pollution

Air pollution is a complex mixture of gases (including nitrogen dioxide—NO2;
carbon monoxide—CO; sulfur dioxide—SO2; and ozone—O3), and particulate components (PM10 and
PM2.5 with aerodynamic diameter ≤10 and ≤2.5 µM, respectively), which may vary depending on the
source, emission rate, and sunlight and wind conditions [41].

Short and long-term exposures to air pollutants (especially PM2.5, but also PM10 and NO2) have
been found to be related to an increased risk of segment elevation myocardial infarction (STEMI) [42,43].
Older people are generally considered to be more susceptible to the effects of air pollution because
of the gradual decline in physiological processes over time as well as the presence of underlying
cardiovascular risk factors (e.g., obesity, metabolic syndrome) or pre-existing coronary artery disease,
chronic lung disease, or heart failure [44,45]. Evidence of a gender-differentiated effect remains
uncertain and often not statistically significant, with a few studies suggesting stronger consequences
among females, while others reported a larger association for males [46–48].

An interesting question concerns the potential association between the transmission of SARS-CoV-2
and atmospheric pollutant levels [49]. A growing body of evidence has linked short-term exposure to
PM2.5 with mortality for total respiratory disease [50,51], and hospitalizations due to respiratory disease
and acute lower respiratory infection, including pneumonia, bronchitis, and bronchiolitis [52–54].
Furthermore, a significant association between daily hospital admissions and daily concentrations of
ambient O3, CO, NO2, SO2, and PM10 has been recently reported [55].

Epidemiological and experimental studies have shown that air pollutants can exacerbate the
susceptibility and severity of respiratory virus infections, eliciting a prolonged inflammation even in
young and healthy subjects [56–59]. Positive significant associations were found between air pollution
and SARS case fatality in the Chinese population during the SARS outbreak in 2002 [60], as well
as between the infection rate of respiratory syncytial virus in children and PM2.5, PM10, SO2, NO2,
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and CO [61]. Therefore, an interesting issue is whether atmospheric aerosol is able to increase the
susceptibility to COVID-19 through indirect systemic effects linked to pro-inflammation and oxidation
mechanisms of the lungs, immunological dysfunction, or genotoxicity [62].

Legal threshold PM10 exceedances (50 µg/m3 per day) in the Po Valley area, situated in North Italy,
and the high occurrence of COVID-19 cases have focused the attention on their possible correlation [49].
Similarly, high levels of air pollution in China are well-documented [63], and an analysis of 213 cities
in China indicated positive associations of short-term exposure to PM2.5, PM10, CO, NO2, and O3

with COVID-19 confirmed cases [64]. Two cross-sectional nationwide studies conducted in the United
States also reported an increase in COVID-19 mortality rate correlated to prolonged single exposure
to PM2.5 [65] and NO2 [66], and to long-term exposure to NO2 independent of long-term PM2.5

and O3 exposure. [66]. Furthermore, according an ecological macro-scale analysis carried out in
66 administrative regions in Italy, Spain, France, and Germany, five regions located in north Italy
and central Spain with the highest number of fatality cases for COVID-19 showed the highest NO2

concentrations [67].
Nonetheless, the role of air pollution on COVID infection diffusion and severity involves a complex

chain of factors (e.g., influence of air pollutants in microorganism transport, individual sensitivity to
pathogens) and consideration of confounding factors (e.g., population size and density, age distribution,
comorbidities, smoking habits, gender-related differences, hospital beds, number of individuals tested,
healthcare capacity, phase-of-epidemic, population mobility, sociodemographic and meteorological
factors, socioeconomic status, single and multi-pollutant models, different strategies for counting
COVID-19-related deaths) [68]. On the other hand, the confirmation of infection requires nucleic acid
testing of swabs. Hence, what we know is the number of lab-confirmed infections of tested subjects,
but this may cause errors in infection count due to lack of knowledge of the real total number of people
infected with COVID-19.

Further efforts are warranted also to overcome the intrinsic limit of the ecological design (not
suitable for drawing conclusions about the causal relationship), establish the causal determinants
of the epidemic as well as the confounding or modifying factors, and improve the strategy of data
communication, especially during a pandemic crisis that elicits stress and anxiety.

SARS-CoV-2 airborne transmission has been hypothesized; thus, the high agglomeration of air
pollutants could facilitate virus diffusion [62,69]. Indeed, SARS-CoV-2 RNA was detected in outdoor PM10,
and association with virus persistence in the atmosphere was supposed [70]. Nonetheless, SARS-CoV-2
vitality and its virulence, when adsorbed on particulate matter, are currently unknown [71,72], and the
viability of aerosolized SARS-CoV-2 has been demonstrated exclusively in laboratory and indoor
settings [73]. Conversely, the half-life of bioaerosol could be reduced in outdoor environments in
relation to specific temperature, humidity, and ultraviolet radiation conditions [62]. In this context,
the analysis of PM10 concentration and infections before the pandemic explosion showed that cities in
Piedmont had the most severe PM10 pollution events but lower infection cases compared to cities in
Lombardy (e.g., Brescia and Bergamo), suggesting the absence of a direct contribution due to PM10

transport for COVID-19 diffusion [71].
Hence, whereas evidence of a causal link between PM and respiratory and CV diseases is plausible

and it is believable that long-term air pollutant exposure may affect immune response and exacerbate
the conditions of chronically ill patients [59,74], whether atmospheric particulates may serve as carrier
of SARS-CoV-2 is still to be demonstrated by etiological studies based on short-term exposure in small
geographical areas or, preferably, on individual data [75,76]. However, as precautionary airborne
transmission measures are extremely cheap and can be easily implemented (e.g., effective ventilation,
germicidal ultraviolet light), they could be added without effort to the other planned precautions [77].

In any case, it will be interesting to explore if pollutants can interact with COVID-19 infection to
further increase the inflammatory cascade, a main culprit in the onset of acute CV events. Of interest,
a recent study proposed an exciting theory on the association between pollution, COVID-19, and its
impact on the high rate of infection and mortality, plausibly higher in more susceptible patients
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presenting pre-existing CV disease [78]. Since chronic exposure to PM2.5 in mice causes up-regulation
of pulmonary ACE expression and activity, in patients exposed to pollutants, viral entry could be
facilitated and increased viral load could result in depletion of ACE-2 receptors (through binding of
SARS-CoV-2 Spike protein to ACE2) and impairment of host defenses [79].

Moreover, in experimental models, NO2 exposure renders animals prone to cytomegalovirus
infection with a viral load 100-fold lower than in control mice and re-infection from viral sources more
common, effects that add up to the increase in oxidative stress and inflammation, and reduction in
macrophage function and NO2-related adaptive immune responses [79]. If similar effects may occur
also in COVID-19 patients remains to be clarified.

Therefore, this “dangerous liaison” between some pollutants and COVID-19 might conceivably
affect transmission, number of patients, severity of presentation, and number of deaths. In particular,
as both factors favor myocardial injury and trigger acute myocardial events, their interaction may
increase CV risk, especially in more vulnerable groups of patients, such as those with pre-existing
atherosclerosis (Table 1).

Table 1. Possible mechanisms by which air pollutants and SARS-CoV-2 may trigger myocardial damage
and acute myocardial events.

Air Pollution SARS-CoV-2

Inflammatory response: increased levels of C-reactive
[80], fibrinogen [81], and cytokines [82]. Severe systemic inflammation, cytokine storm [83].

Autonomic nervous system disruption [84]: heart rate
variability decrease [80], heart rate increase [85].

Myocardial injury (elevated troponins); binding of
SARS-CoV-2 to ACE2 antiviral drugs, corticosteroids,

and other therapies [86].

Enhanced thrombosis/coagulation [87], fibrinolytic
capacity inhibition [88]. Hypercoagulability, prothrombotic risk [89].

Oxidative stress, telomere erosion [90].

Myocardial oxygen demand supply mismatch:
increased cardiometabolic demand required with the

systemic infection and hypoxia caused by acute
respiratory failure [13].

Vasoconstrictor increase (e.g., endothelin) [91,92]. Left ventricular dysfunction, heart failure,
arrhythmias [93,94].

Atherosclerosis progression of and increased plaque
rupture vulnerability [95]. Increased susceptibility to plaque rupture [13].

Oxygen saturation reduction [96]. Endothelial dysfunction, oxidative stress [97].

3. COVID-related Fear and Distress

Fear, defined as “an unpleasant emotion or thought that you have when you are frightened or
worried by something dangerous, painful, or bad that is happening or might happen” (Cambridge
Dictionary), involves biological adaptive responses motivating a range of positive behaviors aimed
at reducing the risk (e.g., social distancing, hand hygiene), if not chronic or out of proportion.
In fact, the possible prospect of getting sick, the prolonged isolation and adverse economic effects,
the personal and family infection fear, the uncertainty of future and crisis duration, and the overload
of (mis)information may generate negative and harmful fear [98–100]. A study conducted in a large
Chinese general population detected an elevated stress level, anxiety, and depression (8.1%, 28.8%,
and 16.5%, respectively) during the COVID outbreak onset, and remained unchanged at the epidemic
peak, four weeks later [101]. Similarly, approximately 25% of 7143 Chinese students experienced
anxiety during the COVID-19 epidemic [102]. This symptom may be even increased in subjects with
CV disease and comorbidities, where mood alterations and/or lockdown may worsen lifestyle habits
and cause poor therapy adherence [103].

In addition, healthcare professionals may develop distress after facing stressful emergencies,
due to the risk of infection, overwork, isolation, and fewer family contacts that may negatively affect
their attention and decision making ability, indirectly worsening patient care [104–106].
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Psychometric tools have been developed and validated to evaluate COVID-19 fear [107,108].
The COVID-19 Peritraumatic Distress Index is a self-report questionnaire that investigates anxiety,
depression, specific phobias, cognitive change, compulsive behavior, physical symptoms, and social
context [6]. Data obtained in 52,730 subjects using this tool evidenced that nearly 35% of the Chinese
population suffered from psychological distress, in particular female participants [6].

The Fear of COVID-19 Scale (FCV-19S) is obtained by a questionnaire of seven items (total score
ranges between 7 and 35, a higher sum score indicating a higher COVID-19 fear), validated and applied
in different general populations (both Asian and European), which highlighted significant associations
of fear with stress, anxiety, and depression [99,109–111]. The presence of chronic disease is related to
COVID-19 fear, and females have significantly higher fear rates than males [112].

Nevertheless, these questionnaires have not yet been tested in CV patients. We administered the
FCV-19S questionnaire in 30 CV outpatients and compared these results with those published relating
to the general Italian population [111]. Preliminary results, which must certainly be confirmed in a
larger sample, suggested higher scores in CV risk patients for both emotional (item 4) and symptomatic
fear expression (items 3 and 6) (Table 2).

Table 2. Mean of the items of the Italian Fear of COVID-19 test, in a general population and in
cardiovascular outpatients.

General Population
(n = 294) [106]

CV Outpatients
(n = 45)

FACTOR 1—Emotional Fear
Reactions

1. I am most afraid of the
coronavirus. 3.4 3.5

2. It makes me uncomfortable to
think about the coronavirus 2.9 3.2

4. I am afraid of losing my life
because of the coronavirus 2.4 2.9

5. When watching news and
stories about the coronavirus on

social media, I become nervous or
anxious

2.9 3.0

FACTOR 2—Symptomatic
Expression of Fear

3. My hands become clammy
when I think about the coronavirus 1.5 2.1

6. I cannot sleep because I’m
worrying about getting the

coronavirus
1.6 2.2

7. My heart races or palpitates
when I think about getting the

coronavirus
2.1 2.4

In particular, AMI patients may underestimate symptoms and not promptly refer to hospital,
vanquishing recommended strategies based on intervention responsiveness and incurring complications
due to an evolving AMI.

4. AMI during COVID pandemic: Fall in Admission and Delayed Access to Hospital Care

Healthcare practitioners all over the world have noticed a significant “AMI fall” during the COVID
period. The number of emergency department visits in two major northern Italy referral hospitals
(21 February–6 April) showed an inverse trend with daily COVID-19 mortality [113]. In Austria,
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a reduction of 40% in AMI admission was observed during March 2020 [114]. Data collected in
the period January–March 2020 from nine high-volume USA centers, evidenced a 40% fall in the
number of cardiac STEMI catheterizations [115]. The decrease was significant for STEMI (26.5%) and
NSTEMI (65.1%), both in North Italy and in Central/South Italy [116]. Moreover, in a single large
center in northern Italy, data obtained in March 2020 compared to March 2019 showed a significant
reduction of 30% for STEMI, 66% for NSTEMI, and 50% for severe bradyarrhythmia [5]. These findings
were confirmed by our experience, as we assessed a significant decline in STEMI admissions to the
ICU-Cardiology Department of Ospedale del Cuore-Massa between 1 January and 10 June 2020,
with respect to data collected in the same period in 2019 (Figure 1, panel A). Notably, in relation to fear,
no patient with COVID-19 lab-confirmed infection was found between those admitted to our hospital,
all swab-tested, until 10 June 2020.

Figure 1. Comparison between 1 January–10 June 2019 versus 2020 segment elevation myocardial
infarction admissions to the Ospedale del Cuore-Massa.

These data are worrying considering the result obtained in a small number of Chinese AMI
patients (n = 7), which showed a great delay in the “symptom onset to first medical contact” time after
control measure implementation, when compared to 2018–2019 (5 h versus an hour and a half) [117].

Table 3 shows key time points in STEMI care in the COVID period compared to pre-/post- outbreak
periods (Ospedale del Cuore-Massa). Additionally, in our experience, the major difference was in the
time from “symptom onset to first medical contact”.

Table 3. Key time points (in minutes) in STEMI care (Ospedale del Cuore-Massa) before and after
COVID-19 outbreak.

1 January–
21 February

22 February–
3 June

4 June–
10 June

Symptom Onset to First
Medical Contact 110 (15–570) 133 (15–600) 208 (15–1280)

Door to Hospital
Arrival Time 95 (25–405) 94 (20–390) 83 (20–390)

Hospital Arrival to
Insufflation Time 46 (15–120) 38 (15–90) 48 (15–120)
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5. Discussion

The focus on the COVID-19 pandemic, which has significantly tested the health care system
globally, has let the guard down against psychological effects in the general population and people
with chronic diseases.

The heart–brain axis shows close interaction, as depression and anxiety are related to a higher
risk of CV events and mortality [118–122]. Nevertheless, in this COVID-19 period, psychological
load does not seem associated with CV disease exacerbation, but rather with a fall in hospital
admissions. In particular, incorrect communication may have generated the fear of possible in-hospital
contamination, avoiding regular checks, delaying the diagnosis of acute events, and referral to ICU
units (Figure 2).

Figure 2. Potential determinants in the relationships between SARS-CoV-2 infection and acute
myocardial infarction.

Global measures and media–health communication may have generated fear of possible in-hospital
contamination, avoiding regular checks by doctors, whereas consulting cardiologists and regular drug
intake can become difficult, delaying acute event diagnosis and worsening acute CVD consequences,
and causing subsequent delay in referral to an integrated critical care unit. Health workers, which are
potentially exposed to the pathogen and highly stressed, did not receive mental health assistance during
the pandemic, and this may indirectly affect care quality (Figure 2) [123]. Furthermore, patients may
suffer a lack of attention because contact with primary care professionals might be difficult due to
reduction in non-urgent activity. Accordingly, it has been observed that non-COVID-19 hospital
admissions significantly decrease during the outbreak, likely due, almost in part, to changes in health
care decisions and/or delays in hospital access [124]. Additionally, out-of-hospital deaths could be
increased, in numbers that are very complex to quantify, in terms of cardiac arrests, unexplained
deaths, heart failure, and other non-COVID clinical causes, beyond the cardiovascular one [125].
Health communication is a critical tool to handle uncertainty and fear, reduce risky behavior, as well
as encourage people to overcome the crisis [126]. Instead, inaccurate or unambiguous information
can increase distress and elicit harmful social reactions, such as discrimination, anger, and aggressive
behaviors [127]. The information about the putative relationship between environmental pollution
and COVID infection is an emblematic example, which may attract immediate attention towards a
recognized “enemy”, willingly identified as the co-culprit of the outbreak. In this case, the risks of



Int. J. Environ. Res. Public Health 2020, 17, 7371 10 of 17

oversimplification by inaccurate information—including the pitfall of meaningless correlation—should
be taken into account [68].

In this scenario, the cardiology community should attempt every effort to reduce possible
“collateral” damage through multiple actions:

• Attention to vulnerable subjects (e.g., elderly, frail people, patients at high CV risk);
• Correct information to patients on the delayed hospital access risks;
• Epidemiological monitoring;
• Strategies aimed to reduce distress;
• Workload for healthcare professionals based on health specialty;
• Multidisciplinary team including intensive care specialists, laboratorists, psychologists,

and cardiologists;
• Teleconsultations and telemonitoring to monitor high-risk patients;
• Electronic devices/apps to help patients in their personal disease management;
• Warning receipt in case of alarming data;
• Regular, clear, and reliable information on pandemic to patients.

6. Conclusions

The relationship between COVID-19 and AMI is supported by many clues (Figure 2). An increased
risk of AMI is likely related to COVID-19 infection, due to the inflammatory response and
hypercoagulability. Accordingly, abnormalities of cardiac troponins are the most common finding in
COVID-19-affected patients. Patients with pre-existing CV disease and CV comorbidities may exhibit
higher vulnerability to COVID-19 and a worse clinical outcome.

The relationship of air pollution with COVID-19 needs to be established, and together with
an adequate collection of health data, environmental and demographic information are crucial for
studying possible associations between exposure to atmospheric pollutants, diffusion, and severity of
COVID-19. Importantly, although PM and nitrogen oxides are recognized as exacerbating risk factors
for ACS, their levels were reduced due to the lockdown. In northern Italy, these decreases reached
values of up to 58% and 38%, respectively, for nitric oxide and NO2, whereas PM10 and PM2.5 showed
a smaller decrease since they are affected by secondary emissions even from long distances [127].
While it is plausible that the observed drop in concentrations of air pollutants may have contributed to
a reduction in hospital admissions for AMI, this hypothesis, and the risk quantification, remains to be
demonstrated by etiological design studies based on short-term exposure assessment.

Moreover, therapies under investigation for COVID-19 infection can have significant CV
side effects.

However, at this point, it is particularly important to assess the role of psychological issues, such as
distress and fear. In particular, it will be interesting to understand whether a patient’s fear may reduce
AMI presentation, provoking a delay in appropriate and timely revascularization in the short-term,
as well as long-term increased morbidity and mortality. Moreover, it is always possible that other
(also actually unknown) reasons may affect the decrease in the incidence of AMI during the lockdown.
As an example, it was recently hypothesized that increase in sleep duration in the time of COVID may
positively impact overall health and beneficially contribute to the observed AMI reduction [128].

In this context, every effort must be directed to clear and reliable information for general audience
patients, avoiding the spread of inconsistent or distorted news that can generate fear or false optimism.
As the pandemic continues, public campaigns to raise awareness of ischemic symptoms should be
reinforced, as the indirect effects of the COVID-19 pandemic on non-COVID diseases can be even more
catastrophic than the infection itself.
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