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Although medicinal natural products and their derivatives have shown promising effects in
disease therapies, they usually suffer the drawbacks in low solubility and stability in the
physiological environment, low delivery efficiency, side effects due to multi-targeting, and
low site-specific distribution in the lesion. In this review, targeted delivery was well-guided
by liposomal formulation in the aspects of preparation of functional liposomes, liposomal
medicinal natural products, combined therapies, and image-guided therapy. This review is
believed to provide useful guidance to enhance the targeted therapy of medicinal natural
products and their derivatives.
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INTRODUCTION

Traditional Chinese medicine (TCM) and other herbal medicines have been used in various therapies
for thousands of years (Cook et al., 2013). Especially, TCM has been accepted widely in East Asian
countries (China, Korea, and Japan) and Southeast Asia countries because of many promising effects
against diseases including cancer, infections, murrain, and so on. The key is a wide spectrum of
bioactive natural products in the fruit, leaf, flower, root, stem, rhizome, and bark parts of medicinal
plants, bacteria, and even special parts of animals, such as alkaloids, polysaccharides and terpenoids,
exhibiting anti-inflammation, anti-tumor, anti-hepatic fibrosis, immunosuppression and other
effects (Atanasov et al., 2021; Shao et al., 2021). Therefore, natural product has become one of
the most important sources of drug discovery. However, they often suffered drawbacks that restricted
their applications in disease treatment. First of all, the low solubility and stability in physicochemical
environments (blood, body fluid, and low pH in digestion) and rapid blood clearance whereas it is
compulsory to retain efficient drug concentration in the therapy. For those hydrophilic natural
products, although the solubility is good, they were probably secreted out by the quick renal clearance
(Varma et al., 2009). Second, the side effects, i.e., the potential toxicity to unwanted sites, and low bio-
availability, occur when the delivery and treatment lack targeting due to multiple biological barriers,
such as blood–brain barrier or blood–tumor barrier (Blanco et al., 2015). Thirdly, for the treatments,
such as anti-cancer and anti-microorganism, drug-resistance to a single therapy often besets
pharmacists. Finally, the modification of the molecule of natural product to solve the problems
is a relatively more difficult, cost- and time-consuming task. Therefore, in clinical, suitable drug
formulation emerges as an alternative solution.

As one of the first drug delivery systems, liposome formulation has been used universally in
clinical trials and clinics (Gregoriadis, 1976). The nanoparticles consisting of natural/synthetic lipid,
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drug, additives, and surface modification moiety, have shown
excellent advantages in drug delivery: 1) The physical
compartment of the lipid bilayer protects the natural product
and other cargos from erosion under physiological environments.
It also reduces the risk of drug exposure to non-lesion sites. 2) The
nano-size, good stability, and multifunctions enhance the
targeted delivery and controllable drug release (Jain and Jain,
2018). The enhanced permeability and retention (EPR) effect
enhances the tumor-targeting delivery of nanoliposome.
Furthermore, the lipid membrane promotes cell uptake by
endocytosis. 3) The big capacity for hydrophobic and
hydrophilic cargoes (e.g. drug and contrast agents) is suitable
for combined therapies and image-guided therapy to enhance the
therapeutic effects, reduce side effects, and drug resistance. 4) The
natural lipid has good biocompatibility.

In past decades, liposome has exhibited an excellent nano-
platform for natural products in drug delivery. A comprehensive
review is compulsory to summarize the achievements and reflect
on the problems as useful guidance for future development.

CONSTRUCTION OF LIPOSOMAL
SYSTEMS FOR MEDICINAL NATURAL
PRODUCTS
Structure and Preparation Methods
In liposome, an aqueous core is entrapped by a lipid bilayer
(Figure 1). Therefore, the liposome becomes an ideal carrier for
hydrophobic (aqueous core) and hydrophilic (lipid bilayer)
payloads, respectively. To resist the self-aggregation and body
clearance mechanism, PEG modification on the surface has
become a routine strategy. To realize the targeted delivery and
therapy, functional modifications have been introduced to the
liposome surface or embedded in the bilayer for active-targeted
delivery and triggerable release.

The liposome is constructed by several strategies such as thin-
film hydration, ethanol injection method (Jaafar-Maalej et al.,

2010), active drug encapsulation (Gubernator, 2011). Besides
typical liposome with bilayer lipid, multilayered liposomes
sometimes have better stability and performance in the
sustained release (Jeon et al., 2015).

Cholesterol normally plays a compulsory component to
stabilize the liposome (Nakhaei et al., 2021); however, it might
induce pulmonary hypertension (Szebeni et al., 2000).
Ginsenoside Rh2 conjugated to liposome (Rh2-lipo), not only
replaces the cholesterol and PEG to stabilize the liposome and
prolong its half-life in the blood circulation, but also acts as an
active-targeting ligand, and chemotherapy adjuvant (Hong et al.,
2020a).

Although lipids are essential for almost all liposome
construction, lipid-free liposome has also been reported,
depending on the amphiphilic nature of the drug with both
hydrophilic and hydrophobic groups. For example, hydrophilic
resveratrol was conjugated to hydrophobic norcantharidin (a
derivative of cantharidin). The resveratrol-norcantharidin
liposomes were prepared by ethanol solution injection and
sonication method, and then spontaneously transformed
to a tadpole-like structure after 24 h due to the small
hydrophobic moiety and bulky NCTD moiety (Yan et al.,
2016). This formulation not only improved the drug
encapsulation, but also increased the toxicity in zebrafish
embryos, compared with free monomer. This strategy helps
to deliver natural products by combining hydrophilic and
lipophilic molecules.

The payloads of liposomes included hydrophilic or
hydrophobic natural product molecules, nanoparticles, and
macromolecules (Rahman et al., 2012) as sub-container of
natural products.

Functional Liposomes
Traditional liposomes often have limitations in the low stability in
physiological environments against self-aggregation and fast
body clearance, low efficiency in targeted delivery, and
controllable release. Hence, besides normal lipid as the major
components regulating their size, stability and rigidity, additional
functional lipids are essential for various purposes, such as PEG-
lipid, ligand-lipids, antibody-lipid, unsaturated lipid, and
thermo-sensitive lipid.

Long Circulation Liposome
As previously mentioned, PEGylated liposomes containing PEG-
lipid are commonly used in clinical and other trials due to the
increased water-solubility and the resistance to body clearance
(Allen et al., 1995; Sercombe et al., 2015; Deodhar and Dash,
2018). The hydrophilic side of PEG-lipid on the surface of
liposomes significantly increased the stability in water by
hydration, compared with conventional liposomes which tend
to aggregate in the aqueous phase. The sterically-stabilized
liposomes by PEGylated modification also reduced the
macrophages of the reticuloendothelial system (RES).

Activatable Liposomes
The activatable liposomes are capable of releasing cargoes in the
lesion upon the external stimulus, such as temperature, sonic

FIGURE 1 | Typical structure of liposome.
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radiation, light, pH, ROS, and enzyme, which are normally
responsible for site-selectively triggering the drug release.

For thermo-sensitive liposomes, the melting phase transition
temperature (Tm) of the lipids is the key to inducing the collapse
of liposome and drug release. An ideal Tm is above the
physiological temperature (37°C) of human body, which
maintains the liposome stability to avoid unwanted leakage.
However, it should not be too high to avoid the liposomes to
be broken. For example, a K237-modified thermos-sensitive
liposomes (K237-PTX-TSL) with DPPC of Tm (41.4°C)
released 72.45% of paclitaxel in 20 min (Fu et al., 2019a).

For pH-sensitive liposomes, the liposomes were destabilized
and released drugs (doxorubicin or paclitaxel) upon the pH-
sensitive lipid DOPE of liposomes changed under low
pH (Monteiro et al., 2018; Li et al., 2019). The free amine
groups on DOPE molecules would obviously change their
supramolecular organization when amine groups were acidified.

For light-/ROS-sensitive liposomes, upon light irradiation, the
liposomal photosensitizer Ce6 induced the generation of ROS
and oxidized the unsaturated lipid (egg yolk lecithin, PC-98T) to
trigger the carrier collapse and release the co-encapsulated drug
triptolide (Yu et al., 2021).

For sono-sensitive liposomes, it was believed that ultrasonic
induced thermal effect and mechanic stimulation to result in lipid
membrane pore and therefore release the drugs (doxorubicin and
others) (Patrucco and Terreno, 2020).

Active-Targeted Liposomes
Over-expressing receptors are usually validated as a biomarker of
many diseases, which have played very important roles in the
drug delivery. The liposomes could target the lesion (e.g., tumor)
specifically with the aid of antibody-antigen or ligand-receptor
interactions.

Vascular endothelial growth factor (VEGF) monoclonal
antibody (mAb) was conjugated to liposomes encapsulating
paclitaxel, which selectively guided the delivery and
accumulation in the VEGF-overexpressing tumor and release
the chemotherapeutic agent within the tumor (Shi et al., 2015).

Ligand-conjugation on the surface of liposomes is another
strategy for active targeting to enhance therapeutic effects by
receptor-mediated endocytosis. Due to the diversities of
biological activities, many natural products have shown strong

affinities and specificity to the corresponding receptors, and
therefore endow the liposomes with excellent recognition, such
as glycyrrhetinic acid (Glycyrrhizin) (Mao et al., 2003; Mao
et al., 2007; Li et al., 2012a; Tian et al., 2014; Cai et al., 2016),
glycyrrhetinic acid derivative ligand 18-GA-Gly (Jin et al., 2017),
glycyrrhetinic acid plus galactosylate (Chen et al., 2017),
galactosylated-stearate (Li et al., 2018a), galactose (Guo et al.,
2011), and folate (Chen et al., 2016; Guo et al., 2022). For
example, glycyrrhetinic acid isolated from Glycyrrhiza glabra
was used to modify liposome for liver targeting (Tsuji et al., 1991;
Tian et al., 2014). Glycyrrhetinic acid-modified liposomes
encapsulating wogonin (GA-WG-Lip) have better inhibition
efficiency (IC50 2.292 μM) to HepG2, compared with
unmodified liposomes WG-Lip (IC50 3.344 μM). GA-WG-Lip
also improved cellular uptake and tumor recognition. The other
ligands also showed good targeting and were modified on the
liposome to deliver natural products, such as tLyp-1 (sequence
CGNKRTR) (Jin et al., 2018), transferrin (Leto et al., 2016), and
monosaccharide GalNAc with α configuration (Tn antigen) (Li
et al., 2021a).

The combination of active-targeting elements is a popular
approach to further enhance the delivery, e.g., antibody and
tumor lineage-homing cell-penetrating peptide (Lin et al., 2018).

Biomimic Liposomes
Liposomes are vulnerable to body clearance, while exosomes have
promising advantages including low immunogenicity, high
bioavailability and targeted delivery, and so on, because of the
similar structure of bilayer lipid, proper nanosize, and abundant
proteins/receptors on the surface (Zhao et al., 2020; Chen et al.,
2022). Exosome-liposome hybrid nanoparticles delivered
triptolide to cisplatin-resistant ovarian cancer (Li et al., 2022).
The CD47 and signal regulatory protein alpha (SIRPα) which
overexpressed on exosomes derived from tumor cells, helped
the nanoparticles to escape from the clearance of the
mononuclear phagocyte system (MPS). Triptolide could
be directly encapsulated into SKOV3-exosomes (SK-Exos)
(Liu et al., 2019).

Liposomal Medicinal Natural Products
We only picked up some typical examples from lots of liposomal
natural products for the demo (Table 1).

FIGURE 2 | Liposomal artemisinin and its analogs.
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Artemisinin, isolated from Artemisia annua L., was
discovered in 1972 to treat malaria by Youyou Tu who was
awarded the Nobel Prize in physiology or medicine (Figure 2)
(Isacchi et al., 2011a; Memvanga and Nkanga, 2021). It also
showed activities in chemotherapeutic drug for tumors and lupus
erythematosus (Mu and Wang, 2018). The sensitive
endoperoxide bridge is believed to be essential for its
antimalarial activity. However, this drug always suffers
problems in low stability, poor water-solubility, short-duration
effect, short half-life and high first-pass metabolism, and so on.
Compared with free drugs, both liposomal artemisinin
(conventional (A-L) and PEGylated (A-PEGL) liposomes),
obviously increased the pharmacokinetic parameters, such as
the peak concentration (Cmax), the area under the plasma
concentration versus the time curve (AUC0–24h), and half-life
(t1/2β) (Isacchi et al., 2011a). Two pH-responsive artemisinin
derivatives, ADP109 and AMPm109 were conjugated to
piperazine moiety (Zhang et al., 2013a). Due to the
modification, their water-solubility was enhanced at acidic pH,
which is responsible for the site-specific drug release from
liposomes. Liposomal artemisinin also improved its anti-
leishmanial potential, compared to its free form (Y. Want
et al., 2017).

Polyphenolic compounds are very common secondary
metabolites in plant against ultraviolet radiation and
pathogens (Figure 3) (Pandey and Rizvi, 2009). For example,
resveratrol liposomes showed protective effects on mitochondria
in substantia nigra cells of parkinsonized rats (Chen et al., 2021).
Liposomal honokiol has shown various biological activities (Niu
and Gao, 2009; Guillermo-Lagae et al., 2017; Ong et al., 2020; Li
et al., 2021b; Li et al., 2021c). Liposomal honokiol significantly
suppressed Lewis lung carcinoma overexpressing VEGF-D by
inhibiting the tumor-associated lymphangiogenesis and
metastasis (Wen et al., 2009). In 2017, Zhao et al.
comprehensively reviewed a variety of liposomal formations of
curcumin and its bio-application, which demonstrated its
limitation in the poor water-solubility, low bioavailability and
rapid body clearance and how liposome formulation significantly
improved the inhibition of cancer cells (Rahman et al., 2012; Feng
et al., 2017). The vitamin E TPGS-conjugated liposome
formulation of poor soluble bisdemethoxycurcumin (DBMC)
has significantly enhanced its stability, solubility, and
bioavailability (Wang et al., 2021).

Lactones are cyclic carboxylic esters, typically with 5- or 6-
membrane-ring, making them very active to be hydrolyzed or
attacked by nucleophiles (Figure 4). This poor stability makes it
difficult to tolerate physiological environments. Camptothecin
(CPT) isolated from Camptotheca acuminata (Camptotheca,
Happy tree) (Wall et al., 1966), which used in TCM or
Chonemorpha fragrans, commonly used in Ayurveda (an
Indian root medicine) (Govindachari and Viswanathan, 1972),
has been used to treat tumor as a topoisomerase inhibitor. Its
lactone form is active while the hydrolyzed/ring-opening form is
inactive. To improve its poor aqueous solubility, and avoid
hydrolysis or protein interactions, CPT was encapsulated into
liposomes, as well as its other analogs, such as topotecan,
irinotecan, lurtotecan, and belotecan (Emerson, 2000; Flaten
et al., 2013). For example, liposomal topotecan was used to treat
advanced malignancies and neuroblastoma (Zamboni et al., 2009;
Chernov et al., 2017). n-Butylidenephthalide (BP) isolated from
Angelica sinensis was encapsulated into a polycationic liposome
for the treatment of B16/F10 melanoma cells (Gao et al., 2018).
3,5-Dipentadecyloxybenzamidine hydrochloride (TRX-20)-
modified liposomes encapsulating triptolide significantly
improved the anti-inflammatory effects in the membranous
nephropathic model (Yuan et al., 2017). Due to the scaffold of
α-methylene-γ-lactone, parthenolide has high electrophilicity to
alkylate proteins and thus processes various bioactivities (Jin
et al., 2018; An et al., 2022). pH-sensitive liposomes PTL-Lips
encapsulating parthenolide have enhanced its antitumor efficacy
(Gao et al., 2020a).

Terpenoids are derived from a number of isoprenes and
possess functional groups (at least -OH), classified as
monoterpene, diterpenoids, sesquiterpenoid, triterpenoids, and
so on (Figure 5) (Ludwiczuk et al., 2017). Generally, they are
hydrophobic, which means low water solubility. Borneol, a
bicyclic monoterpene, isolated from Dryobalanops aromatica
Gaertn f. and Blumea balsamifera DC, has been used as a
messenger drug encapsulated in liposomes to help other drugs
penetrate physiological barriers, such as blood-brain barrier
(Zhang et al., 2020; Li et al., 2021d). Galactosylated-stearate
(Gal-s) modified liposome enhanced the targeted delivery of

FIGURE 3 | Liposomal polyphenolic compounds.

FIGURE 4 | Liposomal lactones.
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curcumol and the treatment of liver cancer cells (Li et al., 2018a).
Liposomal ganoderic acid has shown better antitumor effects by
inhibiting various signaling pathways (Rahman et al., 2019).
Liposomal formulation of betulinic acid enhanced the
antitumor effects and reduced systemic toxicity (Mullauer
et al., 2011; Zhang et al., 2016). Taxanes with a tetracyclic
diterpene, including paclitaxel (Taxol®) and its synthetic
analog docetaxel (Taxotere®) have shown antitumor activity
by inhibition of microtubules and cell division. The
temperature-sensitive liposomes (PTX-TSL) modified with
K237 peptide enhanced the cellular uptake and cytotoxicity of
paclitaxel against cancer cells and endothelial cells (Fu et al.,
2019a; Li et al., 2021a). N-acetylgalactosamine modified liposome
(Tn-Lipo-PTX) improved the targeted cytotoxicity to
HepG2 cells. Docetaxel (Taxotere) was specifically delivered to
hepatocytes by glycyrrhetinic acid-modified liposomes via
receptor-mediated endocytosis (Li et al., 2012a). Glycoside
normally contained a sugar bound to another functional group
via a glycosidic bond (Li et al., 2018b). For example, ginsenoside
(triterpenoid glycoside), isolated from genus Panax (ginseng), a
class of triterpene glycosides (Hong et al., 2019). The liposomes
Rh2-lipo derived from ginsenoside Rh2 have shown
multifunction in drug delivery, compared with conventional
liposomes (Hong et al., 2020b).

Natural alkaloids normally are basic, contain at least a
nitrogen atom, and exhibit diversified biological activity as the
secondary metabolites (Figure 6). Their free base form normally
has poor water solubility, while their salts are soluble in water
(Kukula-Koch et al., 2017). Morphine, isolated from Papaver
somniferum, has been universally used to ease the pain. However,
it is highly addictive because the high concentration accesses the
central nervous system, which normally occurs when the free
form is administrated. Liposome formulations prolonged the
analgesic effect and reduce addiction (Gómez-Murcia et al.,
2019). The formulation also significantly enhanced antitransit
effects of morphine (Pol et al., 1996). Matrine, isolated from
Sophora flavescens, used to treat hepatic diseases, has shown anti-
tumor activity with fewer side effects, compared with other
chemotherapeutic drugs. However, its low efficiency of tumor-
targeting delivery and moderate anti-cancer activity hindered its
further application. Liposomal matrine inhibited the growth of
brain glioma (Han et al., 2014). The RGD-modified liposomes
loading matrine (RGD-M-LCL) significantly improved the
tumor-specificity and suppressed the proliferation of Bcap-37,
HT-29 and A375 cells, compared with the freematrine (Liu et al.,
2010). Vincristine, an antitumor natural alkaloid isolated from
Catharanthus roseus, was encapsulated in liposomes (Marqibo®)
(Pathak et al., 2014). A ganglioside GM1 incorporated liposome
dramatically prolonged the retention time of vincristine and
therefore improved the therapeutic effects on the mice bearing
P388 tumor (Boman et al., 1994).

Flavonoids share the backbone of 2-phenyl-1,4-benzopyrone,
which normally exhibit fluorescence under UV irradiation and
poor solubility in water (Figure 7) (Panche et al., 2016).
Liposomal quercetin significantly improved the accumulations
in tumor and circulation time, and inhibited tumor growth (Yuan
et al., 2006). The antioxidant quercetin encapsulated in
liposomes also showed the potential to reduce the oxidative
damage to hepatic tissue caused by CCl4 (Mandal and Das,

FIGURE 5 | Liposomal terpenoids.

FIGURE 6 | Liposomal alkaloids.
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2005). Breviscapine (Scutellarin as the main component),
isolated from TCM Erigeron breviscapus, was extensively used
to treat ischemic cerebrovascular and cardiovascular diseases in
China, however, it suffered short circulation time (Zhong et al.,
2005; Zhou et al., 2014). The drug durations both in vitro and in
vivo were significantly prolonged by multivesicular liposome
formulation (Zhong et al., 2005). Compared with traditional
liposomes releasing 80% of payload within only 4 h in vitro,
multivesicular liposomes have shown a better sustained-delivery
system for breviscapine which extended the period to 5–6 days.
Baicalin (Chen et al., 2016; Xiang et al., 2020) has poor solubility
(91 μg/ml) in water at room temperature and oral bioavailability
(2.2%). The folate-conjugated liposome-encapsulated baicalin
has improved its cytotoxicity and cell uptake. Wogonin (WG),
isolated from Scutellaria baicalensis Georgi as a TCM treating
inflammation, has been explored with wide-spectrum therapeutic
effects, such as anti-tumor, anti-oxidant, anti-hepatitis B virus,
anticonvulsant and neuroprotective effects (Tian et al., 2014). The
wogonin liposome (WG-Lip) significantly improved the bio-
distributions, compared with wogonin solution. The
glycyrrhetinic acid-modified liposomes encapsulated wogonin
(GA-WG-Lip) further improved targeted delivery. The
cytotoxicity test against HepG2 cells and in vivo anti-tumor
efficacy also reflected the tendency.

Anthracyclines have a tetracyclic core with an anthraquinone
backbone connected to a sugar moiety by a glycosidic linkage
(Figure 8). They generally exhibit various anti-cancer effects by
inhibiting topoisomerase II and the synthesis of DNA and RNA.
For example, daunorubicin, and doxorubicin, isolated from
bacteria of the Streptomyces type, were encapsulated in
liposomes (DaunoXome™ and Doxil®) for cancer
chemotherapy (Schmidt et al., 1998; Piccaluga et al., 2002;
Abraham et al., 2005; Waterhouse et al., 2001; O’Byrne et al.,
2002). Liposomal formulation enhanced the circulation longevity
of idarubicin to improve antitumor activity (Dos Santos et al.,
2005). Temperature-sensitive liposomes t-L encapsulating
juglone guided the targeted therapy of HepG2 cancer cells
when they were exposed to hyperthermia and released juglone
(Zhao et al., 2016). Salvianolic acid B (Sal B) from Salvia
miltiorrhiza Bge exhibits a strong antioxidant and free radical-
scavenging activity to relieve oxidative stress (Isacchi et al., 2011b;
Lin et al., 2014). The water-soluble compound, sensitive to UV
irradiation and aqueous solutions, also suffers the limitations in
poor instability and oral bio-availability. Compared with free and

conventional liposomal Sal B, the PEGylated liposomes improved
the anti-hyperalgesic effect for a prolonged time.

Polysaccharides are polymeric carbohydrates composed of
repeating monosaccharide units linked by glycosidic bond,
from linear to highly branched polymeric. Liposomal
ophiopogon polysaccharide (OP) from Radix Ophiopogonis
Japonici (a TCM), significantly improved the immune-
enhancing activity of OP on Kupffer cells (Fan et al., 2014)
and non-specific/specific immune response in chickens (Fan
et al., 2015). The liposomes also activated mouse peritoneal
macrophages (Sun et al., 2016). Liposomal OP improved anti-
oxidative and immunological activities, compared with free form
(Fan et al., 2016). Liposome formulation also improved lycium
barbarum polysaccharides (LBP) (Bo et al., 2017) and
rehmannia glutinosa polysaccharide (RGP) (Huang et al.,
2016) as antigens for vaccine development. The liposomal
heparin spraygel demonstrated comparable efficacy in the
treatment of superficial venous thrombosis (Pleban et al.,
2008). The liposomal epimedium polysaccharide (EPS)
assisted in significantly improving the immune response to the
Newcastle disease vaccine (Gao et al., 2012).

Bioactive natural peptides play vital roles in many cellular
bioactivities and therefore are used to treat many diseases (Lau
and Dunn, 2018). However, it also has limitations in low oral
bioavailability and short half-life in plasma. Liposomal
formulation was developed for oral administration of insulin
(Değim et al., 2006). Hirudin, isolated from Hirudo spp., is a
naturally occurring peptide and is therefore used as an
anticoagulant to treat many diseases, e.g., diabetic nephropathy
(DN). However, the lack of lesion targeting may result in severe
side effects, such as hemorrhaging. The liposome significantly
enhanced the renal targeting delivery and accumulations,
compared with free hirudin, which demonstrated the relief of
the renal injury in the diabetic nephropathy rat model (Wang
et al., 2019).

Porphyrinoids represent a group of macrocyclic tetrapyrrolic
compounds with good photosensitivity, near-infrared (NIR)
absorption and high fluorescent quantum yield, which grants
the applications in photodynamic therapy (PDT), fluorescent
imaging, and photothermal therapy (PTT) (Figure 9) (Liu et al.,
2014). To solve their problems in poor water solubility and low
stability in physiological environments, liposomal formulation
significantly improved the delivery and uptake (Cheng et al.,
2021). The lipid medium also disperses them to reduce their

FIGURE 7 | Liposomal flavonoids.
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TABLE 1 | Liposomal natural products and their derivatives.

Drug Source Lipid composition Size/nm Bioactivity Ref

Artemisinin Artemisia annua L Free N.A. Cmax: 0.25 ± 0.08 μM; AUG0–24h: 0.132;
t1/2β: 0.38 h; CL: 63.11 ml/h

Isacchi et al.
(2011a)

P90G, CHOL 136.2 ±
42.27

Cmax: 1.11 ± 5.60 μM; AUG0–24h: 0.836;
t1/2β: 0.67 h; CL: 9.97 ml/h

PEG2000, P90G, CHOL 132.6 ±
8.78

Cmax: 1.04 ± 0.01 μM; AUG0–24 h: 0.899;
t1/2β: 2.02 h; CL: 9.20 ml/h

L-α-phosphatidylcholine, CHOL 79 ± 5 IC50: 6.0 ± 1.4 μg/ml for intracellular
Leishmania donovani amastigotes; IC50:
5.1 ± 0.9 μg/ml for infected macrophages

Y. Want et al.
(2017)

ADP109 Artemisinin Free N.A. IC50: 0.07 ± 0.01 μM to BT474 cells; IC50:
10 ± 3 μM to MDA-MB231 cells

Zhang et al.
(2013a)

EPC 70 ± 20 IC50: 0.08 ± 0.01 μM to BT474 cells; IC50:
7 ± 2 μM to MDA-MB231 cells

AMPm109 Artemisinin Free N.A. IC50: 1.3 ± 0.8 μM to BT474 cells; IC50: >>
100 μM to MDA-MB231 cells

Zhang et al.
(2013a)

EPC 50 ± 20 IC50: 1.3 ± 0.4 μM to BT474 cells; IC50: >>
20 μM to MDA-MB231 cells

Baicalin Scutellaria Scutellaria
baicalensis Georgi

HSPC, CHOL, F-PEG-CHEMS 68.4 ± 3.6 IC50: 58.3 ± 3.3 μg/ml to HeLa Cells Chen et al. (2016)
HSPC, CHOL, PEG-CHEMS 70.9 ± 1.4 IC50: 76.1 ± 4.6 μg/ml to HeLa Cells
HSPC, CHOL 87.6 ± 1.6 IC50: 78.8 ± 4.2 μg/ml to HeLa Cells
Free N.A. IC50: 64.6 ± 3.8 μg/ml to HeLa Cells

BDMC Turmeric D-α-tocopherol polyethylene glycol
1000 succinate (TPGS or vitamin E TPGS),
CHOL, mixlecithin

75.98 ±
5.46

Effective analgesic activity due to
prolonged latency time, and the
significantly decreased level of uric acid

Wang et al. (2021)

Betulinic acid White birch Egg phosphatidylcholine, egg
phosphatidylglycerol

1000–1500 Efficiently inhibited human colon and lung
tumors in nude mice

Mullauer et al.
(2011)

Borneol Dryobalanops aromatica
Gaertn f., Blumea
balsamifera DC

Phospholipid, CHOL 167.1 BO upregulates drug effect and
synergistically help the BA to promote the
recovery of the brain by inhibiting neuronal
cell damage and apoptosis

Zhang et al. (2020)

Breviscapine Erigeron breviscapus HSPC: CHOL, Pluronic P85 118.8 ± 4.9 Significantly increased absorption in
Caco-2 cells and oral bioavailability in rats

Zhou et al. (2014)

PC, PG, CHOL, triolein or tricaprylin 17,900 bre-MVL significantly prolonged the
retention both in vitro and in vivo
compared with those of bre-TL.

Zhong et al.
(2005)PC, CHOL 540

BP Angelica sinensis LPPC 200–280 Liposomal BP showed higher cytotoxicity
to B16/F10 melanoma cells than free BP
by arresting cell cycle at G0/G1 phase

Gao et al. (2018)

Camptothecin
(CPT)

Oriental tree,
amptotheca acuminata

Single/two/three components of EPC,
DOTAP, DPPG, DLPC, DMPG, DOPC,
DOPE, DMPE-DTPA, DPPC, DMPC,
CHOL

30–35 Liposomal CPT improved the circulated
time in mouse, compared with free CPT.

Flaten et al. (2013)

Chlorophyll Chimonanthus
salicifolius

Soybean lecithin, CHOL 21.7 ± 6.0 Significantly improved the water solubility
of lipophilic chlorophyll and its NIR
fluorescence

Chu et al. (2012)

Curcumin Turmeric Free N.A. EC50: 1.9 and 1.5 μM to colon and lung
cancer cells, respectively

Feng et al. (2017)

EggPC, CHOL, DSPE-PEG ~420 EC50: 0.96 and 0.90 μM to colon and lung
cancer cells, respectively

EggPC, CHOL, DSPE-PEG (βCD-C) ~420 EC50: 3.25 and 2.9 μM to colon and lung
cancer cells, respectively

Curcumol Rhizoma zedoariae Yolk lecithin, CHOL <200 nm Gal-s modified liposome enhanced the
targeted delivery and treatment to liver
cancer cells

Li et al. (2018a)

Daunorubicin Streptomyces peucetius DSPC, CHOL 45 Improved plasma half life and uptake by
tumor

O’Byrne et al.
(2002)

Docetaxel Glycyrrhiza glabra L.
(licorice)

Soybean phospholipids, CHOL ~90 nm GA-modified liposomes enhanced
hepatocytes-target cellular uptake by
receptor-mediated endocytosis

Li et al. (2012a)

Doxorubicin Streptomyces peucetius HSPC, CHOL, MPEG-DSPE <100 AIDS-related Kaposi’s sarcoma; ovarian
cancer resistant to paclitaxel and platinum

Waterhouse et al.
(2001)

EPS Epimedium Soybean phospholipid, CHOL, tocopherol 200 The liposomal EPS significantly improved
the immune response to Newcastle
disease vaccine

Gao et al. (2012)

(Continued on following page)
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TABLE 1 | (Continued) Liposomal natural products and their derivatives.

Drug Source Lipid composition Size/nm Bioactivity Ref

Ganoderic acid Lucid ganoderma P90G 150–180 Liposomal ganoderic acid has shown
better antitumor effects by inhibiting
various signaling pathways

Rahman et al.
(2019)

Ginsenoside ginseng EYPC, CHOL 60.54 ±
1.78

The three ginsenoside-modifications
enhanced the cellular uptake mediated by
GLUT carriers

Hong et al. (2019)

52.02 ±
1.42

99.02 ±
2.55

Hirudin Hirudo spp DSPC, BC 191.49 ±
3.67

Inhibited the expression of VEGF and
TGF-β1 in the rat kidneys

Wang et al. (2019)

Honokiol Magnolia species PC, cholesterol, PEG4000 130 ± 20 Liposomal honokiol significantly
suppressed Lewis lung carcinoma
overexpressing VEGF-D by inhibiting the
tumor-associated lymphangiogenesis
and metastasis

Wen et al. (2009)

Idarubicin — DSPC, DSPE-PEG2000 100 ± 30 Enhanced the circulation longevity of
idarubicin to improve antitumor activity

Dos Santos et al.
(2005)

Juglone Juglans mandshurica DPPC, CHOL 187 ± 12 The temperature-sensitive liposomes
significantly inhibited HepG2 cell growth
and proliferation upon exposed to
hyperthermia

Zhao et al. (2016)
220 ± 32

LBP L. barbarum Soybean phospholipids, CHOL 121.5 ± 0.2 The LBPL-OVA vaccine formulation
enhanced immune responses

Bo et al. (2017)
121.13 ±

0.37
Matrine Sophora flavescens HSPC, CHOL, DSPE-mPEG2000, DSPE-

PEG-MAL, cRGD-SH
97.59 ±
1.93

RGD-M-LCL significantly improved the
tumor-specificity and suppressed the
proliferation of Bcap-37, HT-29 and
A375 cells, compared with matrine alone

Liu et al. (2010)

Morphine Papaver somniferum HSPC, mPEG-DSPE, CHOL 120.45 ±
10.53

Prolong analgesic effect and reduce drug
addiction

Gómez-Murcia
et al. (2019)

OP Ophiopogonis japonicus Soybean phospholipid, CHOL 245.3 Liposomes significantly improved the
immune-enhancing activity of OP on
Kupffer cells

Fan et al. (2014)

Soybean phospholipid, CHOL 245.3 Liposomes significantly improved the
immune-enhancing activity of OP against
Newcastle disease virus on chicken

Fan et al. (2015)

Soybean phospholipid, CHOL 245.3 Liposomal OP significantly activated
mouse peritoneal macrophages

Sun et al. (2016)

Soybean phospholipid, CHOL 245.3 Liposomal OP significantly enhanced the
antioxidative and immunoregulatory
activities of OP in ICR mice

Fan et al. (2016)

Paclitaxel Taxus chinensis Free N.A. IC50: 42.38 ± 2.4 and 14.71 ± 1.37 nmol/
L to SKOV-3 cells and HUVECs,
respectively

Fu et al. (2019a)

DPPC, DSPG, MPPC, DSPE-PEG 80.2 ± 3.9 IC50: 31.19 ± 2.02 and 11.51 ±
1.13 nmol/L to SKOV-3 cells and
HUVECs, respectively

DPPC, DSPG, MPPC, DSPE-PEG, DSPE-
PEG-K237

88.3 ± 4.7 IC50: 13.61 ± 1.81 and 5.54 ± 0.95 nmol/
L to SKOV-3 cells and HUVECs,
respectively

DSPE-PEG2000-Tn, DPPC 74 ± 0.36 IC50: 1.93 nM to HepG-2 cells Li et al. (2021a)
Parthenolide Tanacetum parthenium SPC 118.6 ± 0.2 PTL-Lips enhanced the antitumor efficacy Gao et al. (2020a)
PPa Terrestrial and marine

plants, insect fluid
DPPC, CHOL, DSPE-mPEG5k 100 Significantly improved the water solubility,

prolong blood circulation and the bio-
distribution in mice

Zhou et al. (2019)

PpIX Living cells PC 124 ± 0.85 IC50: 0.53 ± 0.19 µM to Hela cells Przybylo et al.
(2016)

RGP R. glutinosa Soybean phospholipid, CHOL, Tween-80 170.83 ±
2.08

The positive modulation effects on
dendritic cells

Huang et al.
(2016)

193.57 ±
1.89

Resveratrol Polygonum cuspidatum
decoction pieces

Soybean lecithin, CHOL 146–585 Liposomal resveratrol showed
neuroprotective effects onmitochondria in

Chen et al. (2021)

(Continued on following page)
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aggregation and self-quenching for better photo-sensitivity.
Pyropheophorbide acid (PPa), a degraded product of
chlorophyll, has been encapsulated into liposome for tumor
PDT (Zhou et al., 2019). Under 690 nm-laser irradiation,
liposomal PPa significantly suppressed tumor growth. The
formulation of protoporphyrin IX (PpIX) improved its

internalization and bio-distribution in HeLa cells (Przybylo
et al., 2016). The liposomes have significantly improved the
water solubility of lipophilic chlorophyll and its NIR
fluorescence in sentinel lymph node mapping (Chu et al., 2012).

Betainylated cholesterol (BC), Egg phosphatidylcholine (PC),
Phospholipon 90G (P90G), Polyethylene glycol (PEG2000),
L-a-Phosphatidylcholine extracted from eggs (EPC),
phosphatidylglycerol (PG), Polyethylene glycol complex
(LPPC), 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine
(MPPC), 1,2-Distearoyl-sn-glycero-3-phospho-(10-rac-glycerol)
(DSPG), 1-Myristoyl-2-palmitoyl-sn-glycero-3-
phosphatidylcholine (MSPC), 1,2-distearoyl -sn-glycero-3-
phosphoethanolamine-N-[PEG(2000)] (DSPE-mPEG2000),
Malei-(ethylene glycol)]-1,2-dioleoyl-sn-glycero-3-
phosphoethanolamine (DSPE-PEG-MAL),
Dipalmitoylphosphatidylcholine (DPPC), Cholesterol (CHOL),
3-Succinyl-30-stearyl glycyrrhetinic acid (18-GA-Suc),
Cholesteryl hemisuccinate (CHEMS), Hydrogenated soybean
phosphatidylcholine (HSPC), Egg yolk lecithin (EYPC),
Distearoyl phosphatidylcholine (DSPC), Monomethoxy
polyethyleneglycol 2000-distearoyl phosphatidylethanolamine
(mPEG-DSPE), Hydrogenated soy phosphatidylcholine

TABLE 1 | (Continued) Liposomal natural products and their derivatives.

Drug Source Lipid composition Size/nm Bioactivity Ref

substantia nigra cells of Parkinsonized
rats

Sal B Salvia miltiorrhiza Bge PEG2000(18:0/18:0), P90G, CHOL 140.0 ± 6.5 The PEGylated liposome improved the
antihyperalgesic effect by prolonged time

Isacchi et al.
(2011b)

Topotecan Synthetic analog of
camptothecin

Sphingomyelin, CHOL 100 ± 20 The formulation enhanced the half-life in
plasma

Chernov et al.
(2017)

Triptolide Tripterygium wilfordii TRX-20, HSPC, PEG5000-PE 117.9 ± 1.4 Significantly improved the anti-
inflammatory effects in membranous
nephropathic model

Yuan et al. (2017)

Vincristine Catha-ranthus roseus DSPC, CHOL 100 Prolonged retention time dramatically
improved the therapeutic effects on mice
bearing P388 murine leukemia

Boman et al.
(1994)

Wogonin Scutellaria baicalensis
Georgi

Free NA IC50: 16.248 mg ml−1 to HepG2 cells Tian et al. (2014)
Soybean phospholipids, CHOL 87.4 ± 4.8 IC50: 3.344 mg ml−1 to HepG2 cells
Soybean phospholipids, CHOL, 18-
GA-Suc

90.5 ± 2.2 IC50: 2.292 mg ml−1 to HepG2 cells

FIGURE 8 | Other liposomal natural products.

FIGURE 9 | Liposomal porphyrinoids.
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(HSPC), Methoxy polyethylene glycol (MPEG), Distearoyl
phosphatidylethanolamine (DSPE)

Liposomal Natural Product Extract
Owing to the multi-components of natural products, TCM is
believed to treat disease by multi-targets interactions, which is
especially suitable for drug-resistant therapy. However, it is
difficult to clearly and comprehensively demonstrate the key
concerns of drug discovery, such as pharmacokinetics and side
effects, although many signs of progress have been made to
analyze their components, biological targets, metabolites, and
signal transduction by applications of modern analytic methods
for enzyme, gene and the interactions between them (Su et al.,
2007). Although a single drug molecule with clear structure and
pharmacokinetics is the mainstream of modern drug discovery,
TCM or other herbal medicines containing a complicated
mixture of natural products with unclear components and
mechanism, have obtained many surprising achievements in
various therapies for a long time, which are really hard to refuse.

Thus, to minimize the possible risks and maximize the
therapeutic effects, liposomal formulation of the extracts or
ingredients has been applied (Bilia et al., 2018). The extract of
schisandra chinensis fructus (SCF, a TCM) from Schisandra
chinensis (Turcz.) Baill was encapsulated in β-cyclodextrin (β-
CD) and then liposome. By analyzing three major bioactive
lignans (Schisandra lignans: Schisandrin (SD), schisantherin
(ST), and c-schizandrin (SZ)), this formulation enhanced liver
uptake (Ding et al., 2019). The liposomal formulation of
Aphanamixis polystachya leaf extract showed better
performance in the behavior of mice dementia model than the
extract (Shariare et al., 2020). The liposomes have high
encapsulation efficiency of poor water-soluble pollen extract
and therefore improved the bioaccessibility (Hızır-Kadı et al.,
2020). Using unpurified soybean phospholipids, the nano-
liposomes encapsulating Orthosiphon stamineus ethanolic
extract significantly improved the intestinal absorption and
anti-oxidation effects (Aisha et al., 2014).

MULTIFUNCTIONAL LIPOSOMES FOR
DISEASE TREATMENT

Due to the flexibility in the surface modifications and big capacity
for hydrophobic and hydrophilic cargoes, liposome has proved to
be an excellent multifunctional platform for combined therapies
and image-guided therapy. It may further improve the systematic
therapeutic effects, compared withmonotherapy by themedicinal
natural products alone.

Synergistic Combined Therapies
Single molecular treatment usually has a maximally tolerated
dose, which probably limits the therapeutic effects. Furthermore,
to survive against the treatment, cancer or pathogen has high
probability to develop resistance as an “acquired” ability by the
fast drug-clearance response and self-evolution, which usually
occurs in single therapy, such as chemotherapy (Vasan et al.,
2019), radiotherapy (Willers et al., 2013), immunotherapy (Bai

et al., 2020), PDT (Casas et al., 2011), and so on. It is worthy to
mention that resistant cancer or pathogen will become more
aggressive and refractory. To solve the problems, combined
therapy has shown promising therapeutic effects. The different
drugs in the co-delivery liposomal system could simultaneously
and synergistically block the distinct pathways involved in the
survival of the targets, which makes the targeting cancer or
pathogen more sensitive to the treatments. Therefore, the dose
and side-toxicity of individual drugs might be reduced, as well as
the possibility of drug resistance due to less exposure to the drugs.

Combined Chemotherapies
The chemotherapeutic drug suppresses cell proliferation and
induces cell death by inhibiting cell survival activities.
Combined chemotherapies obviously enhance the therapeutic
effects and defeat drug resistance.

To treat drug-resistant malaria infection, artemisinin was co-
encapsulated with curcumin into a liposomal system (Isacchi
et al., 2012). In another case, stearylamine liposomal monensin
was combined with free artemisinin to afford enhanced
antimalarial effects which were significantly affected by
stearylamine and length of PEG-lipids (Rajendran et al., 2016).

When ginsenosides (Rh2, Rg3, and Rg5) was combined with
paclitaxel (PTX), ginsenoside functioned as not only a
chemotherapy adjuvant but also a functional membrane
material to stabilize liposome and assist active-targeting (Hong
et al., 2019). This multifunctional additive helped liposomal
system to offer a novel platform for drug delivery.

Paclitaxelwas encapsulated in thermosensitive liposomes, and
modified with a therapeutic peptide K237 (sequence:
HTMYYHHYQHHL) which inhibited the bonding between
VEGF and KDR, and the proliferation of human endothelial
cells (Fu et al., 2019a). The combined therapy of paclitaxel and
k237 enhanced cell uptake and cytotoxicity against cancer cells
and endothelial cells.

tLyp-1-conjugated liposomes encapsulating parthenolide and
ginsenoside CK enhanced the antitumor activity and reduced the
side effects, compared with individual drugs (Jin et al., 2018).

Cisplatin is a first-line chemotherapeutic drug for cancer
therapy. However, it is highly debatable because of the severe
side effects/toxicity and drug resistance. In the combined therapy
of EMT-6 and B16F10 tumor models, although less dose of free
cisplatin, liposomal curcumin has improved the antitumor effects
and reduced toxicity (Hamano et al., 2019). The combination of
liposomal honokiol with cisplatin improved antitumor activity
by enhanced induction of apoptosis and inhibition of
angiogenesis in A549 lung cancer xenograft model (Jiang
et al., 2008). The combination has also been applied to
cisplatin-sensitive (A2780s) and -resistant (A2780cp) human
ovarian cancer models, which showed significant inhibition
(84–88%) and prolonged the survival life (Luo et al., 2008).

A synergistic therapy of lung cancer treatment was achieved by
a cocktail of betulinic acid, parthenolide, honokiol, and
ginsenoside Rh2 in a liposomal delivery system (Jin et al.,
2020). Additionally, the combined therapies were relatively
safer, compared with the treatment by cisplatin which
exhibited obvious kidney damage.
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Although the combination of daunorubicin and cytarabine
was the standard for acute myeloid leukemia (AML) in the past
decades, a liposomal formulation (CPX-351, Vyxeos™) of the
combination was newly approved by the US Food and Drug
Administration (FDA) for therapy-related acute myeloid
leukemia (t-AML) or AML with myelodysplasia-related
changes (AML-MRC), which improved the effects to the
subgroups with the reason unclear (Chen et al., 2018).

Liposome co-delivered not only the cytotoxic natural products
with other drugs for anti-proliferation (e.g., anti-tumor, anti-
malaria, and so on), but also natural products for promoting
proliferation. For example, due to the roles in promoting
endothelial cell repair and capillary blood circulation,
liposomal heparin was further combined with ibuprofen in
“nano-spray gel” which exhibited significant effects in wound
healing for frostbite (Vaghasiya et al., 2019).

Chemotherapy with miRNA Therapy
Liposomes improved the targeted delivery and protected the
unstable miRNA from the degradation induced by
physiological environments and RNA enzymes (Rupaimoole
and Slack, 2017; Fu et al., 2019b).

Bioinspired nanoparticles hybridizing CD47-expressing
exosomes and cRGD-modified liposomes, encapsulated
triptolide and miR497 to treat cisplatin-resistant ovarian
cancer (Figure 10) (Li et al., 2022). After the NPs were
delivered and accumulated in tumor cells by cRGD guidance
and EPR effects, the acid-sensitive carriers encapsulating calcium
phosphate (CaP), released the cargoes in the low pH tumor

microenvironments. Meanwhile, CD47 helped the carrier to
escape from the immune attack. The released triptolide and
miR497 initiated the cancer cell apoptosis by multiple pathways.
Firstly, triptolide efficiently promoted the polarization of
M2 macrophages to M1 form. Secondly, triptolide
upregulated cellular GSH and down-regulated ROS. Thirdly, it
was believed that triptolide and miR497 synergistically inhibited
PI3K/AKT/mTOR signaling pathway. In general, the combined
therapies improved the antitumor effects and defeated the drug
resistance.

Chemotherapy with PDT
In presence of light, oxygen and photosensitizer, PDT damages
the targets with reactive oxygen species (ROS), exhibiting distinct
advantages in almost non-invasion, low dark toxicity and low
drug-resistance. Liposome has shown the excellent ability to
combine PDT with chemotherapy and other therapies (Cheng
et al., 2021).

A photosensitive liposomal system TP/Ce6-LP,
encapsulating natural product triptolide as a
chemotherapeutic agent and Ce6 as a photosensitizer, was
applied for hepatocellular carcinoma therapy (Figure 11) (Yu
et al., 2021). Firstly, upon NIR irradiation (650 nm laser),
Ce6 converted oxygen to ROS (1O2) to photo-oxidize the
unsaturated lipid egg yolk lecithin (PC-98T) and then
induced the structure collapse of liposome, which was
responsible for the photo-activatable release of triptolide.
Second, ROS also executed PDT to cooperate with
chemotherapy. Third, the formulation increased the water

FIGURE 10 | The preparation of miR497/TP-HENPs and the mechanism of combined therapies: chemotherapy with miRNA therapy. Triptolide (TP).
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solubility of triptolide, and avoided leakage in the delivery,
and enhanced the tumor accumulation by EPR effect and
laser focusing. Therefore, the system TP/Ce6-LP greatly
improved the antitumor efficacy and notably reduced its
system toxicity.

Chemotherapy with Photothermal Therapy (PTT) and
Hyperthermia Therapy
By converting light energy to heat energy, PTT increases the
target’s temperature to induce cell death, with non-invasion and
non-resistance. This therapy relies on the distributions,
conversion efficacy, and absorbed wavelength of the
photothermal agent. However, hyperthermia therapy replaces
the photothermal agent and light irradiation with an external

heating instrument. Thermosensitive liposomal system was often
fabricated as a drug-release platform by incorporation of special
lipid with a suitable phase transition temperature (Tc) above the
physiological temperature 37°C.

Nanomagnetic liposomal system ICG-PTL-Lips@MNPs
encapsulated parthenolide as a chemotherapeutic agent,
indocyanine green (ICG) as a photothermal agent and
magnetic Fe3O4 nanoparticles for the targeted and chemo-PTT
(Figure 12) (Gao et al., 2020a). First, the magnetic liposomes
were directed to tumor sites by an external magnetic field. Second,
laser irradiation (808 nm) promoted the system to release the
cargoes by photothermal effect. Third, the synergistic
combination of chemotherapy and PTT enhanced the
antitumor efficacy and reduced the side effects.

FIGURE 11 | The preparation of TP/Ce6-LP and the mechanism of combined therapies: chemotherapy with PDT.

FIGURE 12 | The preparation of ICG-PTL-Lips@MNPs and the mechanism of combined therapies: chemotherapy with PTT.
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Thermosensitive liposomes (F7-TPT-TSL) co-loading two
therapeutic agents topotecan (TPT) and F7 were fabricated
with DPPC (Tc 41°C) and other lipids for the combined
therapies (Figure 13) (Du et al., 2020). After administration of
the liposomes and delivery to tumors, the tumor was heated for
30 min with a 42.5°C copper column to induce the drug release.
The system significantly improved the antitumor effects and
reduced systemic toxicity.

Chemotherapy with Radiotherapy
As one of the traditional antitumor therapies in the clinic,
radiotherapy adopts a high dose of radiation to damage the
DNA of cancer cells, leading to killing or shrinking tumors.
However, it is hard to treat metastatic foci which is normally
too tiny to be detected. The damage to surrounding normal tissue
is unavoidable.

In the combined therapies, liposomal honokiol as a
chemotherapeutic agent sensitized the tumor cells to
radiotherapy (Hu et al., 2008). The combined therapies
delayed the tumor growth (8.7 days) and significantly
improved the survival time, compared with single treatments.

Chemotherapy with Chemodynamic Therapy (CDT)
and Starvation Therapy
Multifunctional liposomes GOD-PTL-Lips@NMPs encapsulating
parthenolide and glucose oxidase, were modified with Fe3O4

magnetic nanoparticles and chitosan (a linear polysaccharide) for
combined therapies (Figure 14) (Gao et al., 2020b). First, the
nanoparticles were delivered to tumor tissue by EPR effects and
magnetic targeting. Second, after cellular uptake, due to the
protonation of -NH2 group, chitosan induced the liposomes to
collapse and release the cargoes. Third, Fe3O4 magnetic

FIGURE 13 | The preparation of F7-TPT-TSL and the mechanism of combined therapies: dual chemotherapies with hyperthermia therapy.

FIGURE 14 | The preparation of GOD-PTL-Lips@MNPs and the mechanism of combined therapies: chemotherapy with starvation and CDT.
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nanoparticles not only guided the delivery by the magnetic field, but
also catalyzed the Fenton reaction for CDT. Fourthly, glucose oxidase
(GOD) consumed glucose to starve the targeted cells and generated

H2O2 to enhance CDT. Fifthly, parthenolide as a chemotherapeutic
agent not only induced cell apoptosis, but also consumed GSH to
enhance CDT.

FIGURE 15 | (A) Imaging contrast agents. (B) FLI of BGC-823 tumor-bearing mice after i.v. injection of DiR-labeled C-lipo and ginsenoside liposomes (C-lipo, Rh2-
lipo, Rg3-lipo, and Rg5-lipo). Reproduced (Adapted) under the terms of the Creative Commons Attribution (CC BY-NC 4.0) (Hong et al., 2019). Copyright 2019,
Theranostics. (C) SPECT imaging of SCCHN tumor-bearing nude rats after i.v. injection of 99mTc-Gd-liposomes. Reprinted (adapted) with permission (Li et al., 2012b).
Copyright 2012, American Chemical Society. (D) MR images of after i.v. injection of sonosensitive gadoteridol- and doxorubicin-loaded liposomes. Reproduced
(Adapted) under Creative Commons Attribution License (CC BY) (Shi et al., 2015). Copyright 2020, Patrucco and Terreno; (E) PA images after i.v. injection of free ICG
and DOX@GdMSNs-ICG-TSLs. Reprinted (adapted) with permission (Sun et al., 2018). Copyright 2018, American Chemical Society. (F) PET Images of 4T1 tumor-
bearing mice with low 89Zr-NRep uptake (mouse A, left) and high 89Zr-NRep uptake (mouse B, right) after i.v. injection. Reproduced (Adapted) under Creative Commons
Attribution License (CC BY) (Pérez-Medina et al., 2016). Copyright 2016, Mulder and Reiner et al. (G), PET-CT imaging of a B6CBAF1 mouse after i.v. injection of [52Mn]
Mn-DOXIL. Reproduced (Adapted) with permission (Gawne et al., 2018). Copyright 2018, Royal Society of Chemistry. The yellow arrow indicated tumors. Red
arrowhead indicated the outside reference standard.
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Image-Guided Therapy
Personalizedmedicine required that the treatment was performed
according to the personalities of the patients. By co-delivery of
therapeutic and imaging contrast agents, multifunctional
liposome as a theranostic platform allowed various diagnostic
tests to guide therapy and evaluate the therapeutic outcome. As a
review recently summarized, liposome-based imaging
approaches have visualized the fate of liposomes in vivo, such
as computed tomography (CT), magnetic resonance imaging
(MRI), positron emission tomography (PET) imaging,
photoacoustic imaging (PAI), and FLI (Xia et al., 2019).

FLI has high sensitivity and resolution. Long wavelengths of
dye’s absorption and emission, such NIR region, could
significantly improve tissue penetration. Before encapsulated in
liposomes, a fluorescent probe derived from paclitaxel (PTX) by
chemically conjugation to a NIR fluorescent dye DiR
(Figure 15A) (Shi et al., 2015). DiR-labeled liposomes
modified with ginsenosides, clearly visualized their in vivo
distributions at different time points in BGC-823 tumor-
bearing mice (Figure 15A) (Hong et al., 2019). The images
showed that ginsenosides had guided the liposomes
encapsulating paclitaxel (PTX) to tumor site, compared C-lipo
group with Rh2-, Rg3-, and Rg5-lipo groups (Figures 15A,B).

Single-photon emission computed tomography (SPECT)
reconstructs the 3D information of the target by detecting
gamma rays from radionuclide. 111In-labeled liposomes
encapsulating 111In and CPT were delivered to an HT-29
tumor-bearing mouse (Figure 15A) (Flaten et al., 2013). The
combination of SPECT images showed that the liposomes mainly
accumulated in the liver at 2 h postinjection and the intestine
slowly developed to be the second-highest site during 20 h. In
another case, SPECT image showed a high accumulation of
99mTc-Gd-liposomes in the tumor at 44 h post-injection
(Figures 15A,C) (Li et al., 2012b).

MRI is a popular technique for medical checking imaging in
the clinic by detecting protons in water and fat molecules in the
body. To improve the sensitivity, contrast agents are often
administrated. A temperature-sensitive liposome-encapsulated
doxorubicin and gadoteridol [Gd(HPDO3A)(H2O)] as a
paramagnetic T1 contrast agent of MRI (Figure 15A) (de
Smet et al., 2010). MRI also monitored the release process of
doxorubicin and gadoteridol in tumor from thermal- and sono-
sensitive liposomes, and the therapeutic outcome (Figures
15A,D) (Patrucco and Terreno, 2020). In an earlier study,
MRI was applied to the therapy by liposomes encapsulating
doxorubicin and an old contrast agent MnSO4 (Viglianti
et al., 2004). In another case, Fe3O4 nanoparticles served as
T2 contrast agents of MRI and were encapsulated in
liposomes to visualize the combined therapies of parthenolide
and other therapeutic agents (Gao et al., 2020b).

PA imaging is a non-toxic, non-invasive technique with
excellent penetration and high spatial resolution, by
converting light into heat and acoustic signal. PA imaging
visualized the bio-distributions of liposomes encapsulating
ICG as photothermal agent and doxorubicin, and the
synergistic therapeutic effects of chemotherapy and PDT
(Figures 15A,E) (Sun et al., 2018).

Currently, PET is the only functional imaging technique to
afford metabolic information which is extremely suitable for
tumor and metastases diagnosis, while others only offer
anatomic information. It relies on the tracer containing the
positron-emitting radioisotopes, such as 18F, 52Mn, 64Cu, 89Zr
and so on. 89Zr-labeled liposomes facilitated the quantification of
the doxorubicin accumulation in tumors (Figures 15A,F)
(Pérez-Medina et al., 2016).

Compared with single imaging, dual-modal imaging has extra
advantages. For example, due to the limitation in only metabolic
information, PET is normally combined with MRI and CT for
anatomic information in clinic. PET-MRI clearly visualized the
location, morphology, and activity of the tumor before and after
treatment with liposomal doxorubicin (Figure 15A)
(Zimmermann et al., 2017). 52Mn-labeled Doxil® revealed the
long circulation and distributions in organs by PET-CT (Figures
15A,G) (Gawne et al., 2018) as well as 64Cu-liposome (Lee et al.,
2018). Similarly, SPECT-CT also offered the information on
distributions of liposomal doxorubicin and liposomal
vinorelbine, and validated the absence of competing effect
(Wu et al., 2017). 188Re-labeled nanoliposomes visualized the
treatment of doxorubicin in human colorectal adenocarcinoma-
bearing mice by SPECT-CT (Chen et al., 2010).

CONCLUSION AND PROSPECTIVE

The tunable size, biocompatible nature, triggerable cargo release,
surface modifications for targeted delivery, and physical
compartment make the functional liposome as an ideal carrier
for natural products and their analogs with higher efficiency and
less toxicity.

More and more natural products are isolated and identified
with abundant biological activities, due to biological evolutions
for survival advantage. Many of them have the potential to be
therapeutic agents, which can be encapsulated into
multifunctional liposomes for better therapeutic effects.

TCM has many positive results in therapy, although the
mechanism of most TCM still remained unclear, such as
upregulation of tumor-related T cells (Hoffman et al., 2020).
To reduce unexpected side effects, liposomal formulation is a
good option.

Liposome not only delivers nature products but also
biomacromolecules, such as DNA (Guo et al., 2018), RNA
(Hou et al., 2021), protein (Swaminathan and Ehrhardt, 2012),
and bacteriophages (Nieth et al., 2015) for therapies. Therefore, it
is the potential to improve the therapeutic effects by combined
therapy in cooperation with various drugs based on different
mechanisms.

Overall, the liposomal system still suffered limited efficiency in
targeted delivery to the lesion. For example, developing new
techniques to help the liposomal delivery to overcome
biological barriers, such as blood-brain barrier and blood-
tumor barrier, are also challenges in drug delivery. On one
hand, new materials such as cancer membrane, synthetic lipid,
blood cell membrane, have exhibited promising advantages in
better biocompatibility and targeted delivery. Furthermore,
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engineering strategy was applied to construct an intelligent platform,
such as a liposome-based robot (Inaba et al., 2018; Shoji and Kawano,
2020), bacterial motors (Zhang et al., 2013b; Dogra et al., 2016) and so
on. On the other hand, physical tool, such as focused ultrasound, has
improved the delivery efficiency of liposomal paclitaxel to mice brain
and tumor (Shen et al., 2017).

Although liposome-based molecular imaging has experienced
explosive development (Xia et al., 2019), such as FLI, MRI, CT,
PET, ultrasound imaging and PA imaging, developing new
imaging agents suitable for liposome-labeling, will further
promote medicinal nature products-involved image-guided therapy.

In general, liposomal formulation has experienced fast
developments in targeted therapy, biocompatibility, safety, and
so on. Undoubtedly, as a carrier of medicinal natural products
and their derivatives, it plays a very important role in the drug
formulation and will significantly promote drug discovery.
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