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Antisense transcription-dependent chromatin
signature modulates sense transcript dynamics
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Abstract

Antisense transcription is widespread in genomes. Despite large
differences in gene size and architecture, we find that yeast and
human genes share a unique, antisense transcription-associated
chromatin signature. We asked whether this signature is related to
a biological function for antisense transcription. Using quantitative
RNA-FISH, we observed changes in sense transcript distributions in
nuclei and cytoplasm as antisense transcript levels were altered.
To determine the mechanistic differences underlying these distri-
butions, we developed a mathematical framework describing tran-
scription from initiation to transcript degradation. At GAL1, high
levels of antisense transcription alter sense transcription dynam-
ics, reducing rates of transcript production and processing, while
increasing transcript stability. This relationship with transcript
stability is also observed as a genome-wide association. Establish-
ing the antisense transcription-associated chromatin signature
through disruption of the Set3C histone deacetylase activity is suf-
ficient to similarly change these rates even in the absence of anti-
sense transcription. Thus, antisense transcription alters sense
transcription dynamics in a chromatin-dependent manner.
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Introduction

The transcription of genomes is not limited to the transcription of

genes alone. Transcription is a universally pervasive and interleaved

process, with transcription events initiating from regulatory

sequences such as enhancers, divergently from gene promoters, and

on the antisense strand of genes (Tisseur et al, 2011; Lam et al,

2014; Mellor et al, 2016; Murray & Mellor, 2016). Nascent

transcripts at enhancers or around promoters can be used to recruit

(Battaglia et al, 2017) and activate (Bose et al, 2017) epigenetic

modifiers associated with chromatin and to activate neighbouring

genes in a cell type-specific manner (Werner et al, 2017). This may

explain why some chromatin modifications only appear after tran-

scription has initiated (Howe et al, 2017). In addition to transcripts,

co-transcriptional processes also influence chromatin modifications

in genomes. Transcription of many non-coding transcripts uses a

form of RNA polymerase II (RNAPII) that is depleted for conserved

features normally associated with efficient transcription elongation

including serine 2 phosphorylation of the C-terminal domain (CTD)

on the largest RNAPII subunit, the H3K36 methyltransferase Set2

and the elongation factor Paf1 (Murray et al, 2015; Fischl et al,

2017). One such class of non-coding transcripts contains the nascent

transcripts transcribed from the antisense strand of the gene, which

are often rapidly degraded by exonucleases (He et al, 2008; Neil

et al, 2009; van Dijk et al, 2011). Although antisense transcription

within genes is a consistent feature of eukaryotic genomes (Mellor

et al, 2016), it is not known whether it is simply a by-product of

gene transcription, whether there are consequences of antisense

transcription and, if so, whether these are conserved across species.

Much effort has been expended to determine the function(s) associ-

ated with antisense transcription. For a small number of yeast

genes, sense and antisense transcription appear to suppress one

another and/or be reciprocally regulated (Hongay et al, 2006;

Camblong et al, 2007; Houseley et al, 2008; Castelnuovo et al,

2013). However, there is no obvious global relationship between

sense and antisense transcription, as levels at the same gene are not

correlated genome-wide, either positively or negatively (Murray

et al, 2015) and a recent study found that, at the protein level, gene

expression is unaffected by lowering levels of antisense transcrip-

tion in the majority of the 162 genes studied (Huber et al, 2016).

As antisense transcription often proceeds into the sense promoter

of its associated gene (Xu et al, 2011; Mayer et al, 2015) and does

not appear to be contemporaneous with sense transcription

(Castelnuovo et al, 2013; Nguyen et al, 2014), we previously

hypothesized that antisense-transcribing RNAPII might indirectly

influence sense transcription by modulating the chromatin environ-

ment in the vicinity of the sense promoter. Thus, one round of
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antisense transcription would be sufficient to leave an epigenetic

signature and influence sense transcription. We identified in yeast a

chromatin signature at the sense promoter and in the early coding

region unique to genes with high levels of antisense transcription:

high levels of nucleosome occupancy leading to a reduced nucleo-

some-depleted region (NDR), high histone H3 lysine acetylation and

histone turnover, but low levels of histone H3 lysine 36 tri-methyla-

tion (H3K36me3), H3K79me3 and H2BK123 mono-ubiquitination,

amongst others (Murray et al, 2015). Some of these features have

been found associated with antisense transcription in mammals

(Lavender et al, 2016). Conservation of chromatin features associ-

ated with antisense transcription between yeast and mammals will

enable us to apply anything we learn in yeast about the mechanistic

consequences of antisense transcription more broadly. Here we

address the question of how antisense transcription influences sense

transcription using a stochastic model of transcription and quantita-

tive data from a single-molecule approach, RNA fluorescence in situ

hybridization (RNA-FISH). This allows for the best understanding of

the effects of antisense transcription on the dynamics of sense tran-

script production and processing at the individual cell level. We

model RNA-FISH data obtained from engineered constructs express-

ing high or low levels of antisense transcription, but the same level

of sense transcripts, thus mimicking the commonly reported situa-

tion where antisense transcription has little effect on steady-state

transcript levels. We show that antisense transcription decreases

rates of transcript production and processing while increasing tran-

script stability and, importantly, that these changes in transcription

dynamics are directly influenced by the antisense-dependent chro-

matin signature. As we reveal a remarkably conserved chromatin

architecture around the sense promoter and early transcribed region

of yeast and human genes with antisense transcription, despite large

differences in gene size, we suggest that the effect of antisense tran-

scription is likely to be conserved between yeast and human genes.

Results

A conserved arrangement of sense and antisense transcription
start sites in yeast and human genes

To address whether and how antisense transcription is conserved

across species, it was necessary to map genic transcription start sites

(TSSs) as either sense sites (sTSS), or antisense sites (asTSS),

depending on their orientation relative to their proximal gene, and

the extent of sense and antisense transcription downstream of these

TSSs (Fig 1A). As many antisense transcripts are unstable, we used

data from nascent transcript mapping techniques such as NET-seq

(Churchman & Weissman, 2011; Nojima et al, 2015), PRO-seq

(Booth et al, 2016) or GRO-seq (Core et al, 2008) to assess genome-

wide levels of transcription in Saccharomyces cerevisiae and HeLa

cells. To map TSSs, we used Cap Analysis of Gene Expression

(CAGE) data for HeLa cells (FANTOM Consortium et al, 2014),

pooling the polyadenylated and non-polyadenylated tag data from

nuclear, cytoplasmic and whole cell fractions, and TIF-seq for yeast

(Pelechano et al, 2013), supplemented with data from cryptic unsta-

ble transcripts (Neil et al, 2009) and stable unannotated transcripts

(Xu et al, 2009). From over 20,000 protein-coding genes, we identi-

fied 9,320 with a sTSS in HeLa cells. Of these genes, we found 2,468

(27%) with an internal asTSS; 1,008 (40%) of these asTSSs were

within 500 bp of the sTSS, with a median distance of 632 bp

(Fig 1B). Thus, a large fraction of active genes in HeLa cells show

evidence of a productive, antisense-oriented transcription start site

close to their promoter. We defined 5,222 yeast genes with a sTSS,

of which 1,529 (29%) had an asTSS. The median distance between

the sTSSs and asTSSs of yeast genes was 884 bp, 252 bp larger than

in humans (Fig 1C).

Strikingly, in humans, the asTSS aligned more closely to the 1st

exon–intron boundary than the sTSS, and with a much higher

frequency than expected if asTSSs are randomly re-distributed over

this region (Fig 1D). In fact, in 2,162 (88%) genes with antisense

transcripts, the asTSS is closer to the 1st exon–intron boundary than

it is to the sTSS. Using the same approach, we also found that the

asTSS aligned much more tightly with the 1st exon–intron boundary

than it did with the 2nd exon–intron boundary (Fig 1E) or to the 30

end (Fig 1F). In yeast, antisense transcription tends to initiate from

the vicinity of the 30 region of genes (Fig 1G; Xu et al, 2011) rather

than from introns (Fig 1H); 1,202 (79%) genes with an antisense

transcript had an asTSS closer to their 30 end than to their sTSS

(Fig 1G and I). Despite their distinct sites of origin in humans and

yeast (1st intron–exon boundary and 30 end, respectively; Fig 1D, G,

and I) and gene size (Fig 1J), the asTSS is at a similar median

distance to the sTSS in humans and yeast (632 bp compared to

884 bp), suggesting a conserved arrangement.

Higher nucleosome occupancy at promoters of genes with high
antisense transcription in yeast and humans

To examine how antisense transcription influences the chromatin

and sense transcription in the vicinity of the promoter, we assessed

three regions: 300 nucleotides upstream of the sTSS (the sense

promoter), 300 nucleotides downstream of the asTSS (the antisense

promoter) and the region between the two TSSs, which was broken

into an equal number of bins. We compared the upper and lower

quintiles of genes with an asTSS, giving us two groups of 494 genes

in humans, and 306 and 307 genes in budding yeast. Firstly, we

compared levels and distributions of sense and antisense transcrip-

tion in the three regions using NET-seq, GRO-seq or PRO-seq,

which are similar when comparing HeLa cells with yeast and the dif-

ferent techniques (Figs 2A, and EV1A and B). From this point, in

Figs 2B–E and 3, data are related to profiles for NET-seq, while the

PRO-seq and GRO-seq profiles are in Figs EV1 (relates to Fig 2) and

EV2 (relates to Fig 3). Next, we examined a genome-wide map of

nucleosome occupancy (MNase-seq). Both species had a NDR at the

asTSS and a marked increase in nucleosome occupancy in the vicin-

ity of the sTSS in genes with the highest levels of antisense tran-

scription (Figs 2B, and EV1C and D). This suggests that antisense

transcription may modulate promoter chromatin in both species

without necessarily altering levels of sense transcription in the vicin-

ity of the sense promoter (Figs 2C and D, and EV1E, F, and G).

Indeed, nucleosome occupancy and sense transcription may well be

disconnected (Nocetti and Whitehouse, 2016), despite the apparent

association between sense transcription and nucleosome depletion

at the promoter (Fig 2B). Nucleosomes also interact with one

another in local space, one component of the chromatin conforma-

tion in the nucleus (Hsieh et al, 2015). To see whether the anti-

sense-associated increase in nucleosome occupancy is related to the
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chromatin conformation, we used Micro-C data in yeast, which

identifies chromosomal contacts at the resolution of nucleosomes

(Hsieh et al, 2015). For the 5,222 yeast genes that had an associated

sense transcript as described above, we determined the level of gene

compaction, as defined by Hsieh et al (2015), normalized such that

it is independent of gene length. Strikingly, we found an inverse

association between intragenic contacts and antisense transcription.

Genes with an antisense transcript showed a significantly reduced

level of gene compaction, regardless of the level of sense transcrip-

tion (P = 1.2 × 10�65, P = 2.2 × 10�39, Wilcoxon rank sum test,

Fig 2E), suggesting that antisense transcription favours a looser

higher order structure. Varying sense transcription results in no

significant change in the level of compaction (P = 0.29, 0.42,

Wilcoxon rank sum test, Fig 2E).

A

B
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Figure 1. Antisense transcripts initiate at a similar distance from the sense TSS in yeast and humans, though from a distinct functional site.

A A schematic demonstrating how antisense TSSs (asTSSs) were defined in this study. Blue arrows represent possible sites of antisense transcript initiation, within the
region inspected for the presence of asTSSs, as defined by CAGE.

B The distribution of distances between sTSS and asTSS in HeLa cells, for those 2,468 genes which had both an upstream sTSS and an internal asTSS defined by CAGE.
Shown is the median distance between the sTSS and asTSS.

C The distribution of distances between the sTSS and asTSS in Saccharomyces cerevisiae (budding yeast), for those 1,529 genes that had both an overlapping sense and
antisense transcript, defined by TIF-seq.

D The position of the asTSS relative to the sTSS and the end of the 1st exon in HeLa cells, to demonstrate which of the two points the asTSS aligns to preferentially. This
position was defined as the distance between the sTSS and the asTSS, divided by the distance between the sTSS and the end of the 1st exon. The genes are the same
as those shown in (B). The dotted line represents the average distribution from a thousand simulations, in which asTSSs for each gene were randomly reassigned to a
base pair within the region shown.

E The position of the asTSS relative to the end of the 1st exon and the end of the 2nd exon, for those HeLa genes in (D) that also had a second exon.
F The distribution of distances between the 30 end of genes and asTSS in HeLa cells, for the same genes in (B).
G The position of the asTSS relative to the sTSS and the 30 end of the open reading frame of the 1,529 S. cerevisiae genes that have both an overlapping sense and

antisense transcript. The dotted line was generated as in (D).
H The position of the asTSS relative to the end of the 1st exon and the 30 end of the open reading frame of those S. cerevisiae genes in (G) that also have an intron.
I The distribution of distances between the 30 end of S. cerevisiae genes and asTSS in, for the same genes in (C).
J The distribution of lengths for human 1st exons, human genes, and yeast genes.
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Antisense transcription is associated with a similar unique
chromatin signature in yeast and humans

We next turned our attention towards histone modifications

(Fig 3, NET-seq; Fig EV2, PRO-seq and GRO-seq; Appendix Fig

S1). Levels of H3K36me3 and H3K79me3 were higher in the region

bounded by the sTSS and asTSS for those genes with high sense

transcription, in both species (Fig 3A; Ng et al, 2003; Pokholok

et al, 2005). Strikingly, however, these two modifications are

much lower in those genes with high levels of antisense transcrip-

tion, in both humans and yeast (Fig 3A). This is despite the fact

that the level of sense transcription is the same in the high/low

antisense classes (see Figs 2C and D, and EV1E, F, and G). That

these modifications should have reverse associations with sense

and antisense in both yeast and humans is intriguing, and suggests

there may be some fundamental difference to the two modes of

transcription that is shared across species. By contrast, levels of

H3K4me3 tended to be more evenly spread between the sTSS and

the asTSS in genes with high antisense transcription compared to

high sense transcription (Fig 3B). Levels of H3K4 lysine mono-

methylation (H3K4me1) tended to be lower with high sense or

antisense transcription showing that not all modifications have

reciprocal patterns with sense or antisense transcription. Finally,

levels of H3 acetylation are increased in the presence of antisense

transcription (Fig 3C), particularly in the region downstream of

the sense TSSs.

Taken all together, one can see that despite the vast differences

in size between yeast and human genes, they share a very similar

arrangement in terms of where their antisense transcripts initiate

relative to their coding-transcript start site, and in how antisense

transcription associates with numerous shared chromatin features.

We conclude that antisense transcription in the vicinity of the sense

promoter is associated with increased histone lysine acetylation

and nucleosome occupancy, and decreased histone H3K36me3,

H3K79me3 and chromatin compaction, and that this unique archi-

tecture is conserved between yeast and humans.

Is there a consequence of this widespread and conserved anti-

sense transcription initiating downstream from the sense promoter

for the genes in yeast and humans that have it? How might it be

changing gene behaviour? To address this, we developed a mathe-

matical model that describes the dynamics of transcription and

allows us to discriminate between transcriptional events at the sense

promoter, the nucleus and the cytoplasm. When compared with

experimental data, the model allows us to determine which

parameters of sense transcription production and processing are

affected by antisense transcription.

A stochastic model for transcription

Our stochastic model of transcription captures the production,

processing and destruction of a transcript (Fig 4A) and builds on

existing models of transcription (Raj et al, 2006; Zenklusen et al,

2008; Choubey et al, 2015). Within the model, a gene promoter is

allowed to switch between an active and inactive state stochasti-

cally, with an activation rate a and an inactivation rate b. In the

active state, transcription initiation occurs with rate c. As a result,

the “mean production rate”, that is the average rate of transcript

initiation, is given by ac=ðaþ bÞ.

Nuclear transcript processing, meanwhile, is modelled as a sum

of reactions representing the advancement of RNAPII across the

DNA as a series of stochastic jumps. The time to fully process a

nuclear transcript is distributed as a sum of N exponentials, corre-

sponding to gene length, with parameter k corresponding to elonga-

tion rate, CðN; kÞ. Our experimental protocol does not allow for the

separation of nascent and nuclear transcripts; therefore, in our

modelling framework, we do not differentiate between the two types

of transcripts. As a result, the parameter k is a conflation of both

elongation rate and nuclear export rate. We refer to this parameter

as the “nuclear processing rate”, representing the time for a tran-

script to go from initiation to export. Finally, transcripts are

assumed to degrade in the cytoplasm with a constant half-life,

decaying exponentially with degradation rate d.
We used this model to study the transcription dynamics of the

inducible yeast gene GAL1 (Fig 4B). The first strain (high AS)

contains an engineered form of the GAL1 gene that expresses a

stable antisense transcript as a result of insertion of the ADH1 tran-

scription terminator (GAL1::ADH1t; Murray et al, 2012, 2015). In

the second strain (low AS), a 6-bp AT rich sequence within the

inserted terminator region is scrambled (while retaining the overall

base composition), resulting in a significant reduction in levels of

the antisense transcript (Fig 4C), which is a consequence of reduced

levels of antisense transcription (Murray et al, 2015), but no change

in levels of sense transcripts (Fig 4D).

Two types of data were used to parameterize the dynamics of

transcription. Firstly, we obtained the rate of degradation of cytoplas-

mic sense transcripts (Fig 4E), relying on the galactose-inducible and

glucose-repressible nature of GAL1. We grew cells in galactose-

containing media, then recorded the decreasing concentration of

sense mRNA via Northern blot at multiple timepoints after cells

were moved to glucose-containing media. By fitting an exponential

curve to the data sets, we obtained the degradation rate d, which

gives the half-life via the formula: t1=2 ¼ ln2=d.
Secondly, we obtained the distribution of individual sense tran-

scripts in the nucleus and cytoplasm of cells using RNA-FISH

(Fig 4F). We probed cells grown in galactose-containing media for

2 h for the GAL1 sense transcript and counted the number of fluo-

rescent foci within the nucleus and cytoplasm. Individual dots were

assumed to represent at least one transcript, with the number of

transcripts at a given dot determined by dividing the intensity of the

dot by the median intensity of all foci. Several hundreds of cells

were considered for a given experiment, and the distributions of

nuclear and cytoplasmic transcript counts were obtained (Fig 4G).

The nuclear distribution gives an indication of mean initiation rate

relative to nuclear processing rate, or the fraction ac= aþ bð Þk. The
cytoplasmic distribution, correspondingly, tells us the mean initia-

tion rate relative to degradation rate, or ac= aþ bð Þd.
Using the measured degradation rate d, we find the parameters

that best fit the RNA-FISH data via the Kolmogorov–Smirnov test,

sampling 1,000,000 parameter sets via Latin Hypercube (McKay

et al, 1979) and sampling the 1,000 parameter sets with the best

Kolmogorov–Smirnov statistic. The parameters obtained by simula-

tion are then used to determine the mean initiation rate ac=ðaþ bÞ
and nuclear processing rate k. The 1,000 best parameter sets

obtained from the cytoplasmic data give a probability distribution

for the expected true value of the parameter. The nuclear data show

the likely corresponding ratio of mean initiation rate to nuclear
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Figure 2. Antisense transcription is associated with changes in chromatin structure in both yeast and humans, but not with changes to the level of sense
transcription.

A The average levels of sense and antisense transcription determined for both HeLa and Saccharomyces cerevisiae using NET-seq, HeLa using GRO-seq and
S. cerevisiae using PRO-seq. For each trio of panels, the left panel shows average levels around the sTSS, the right panel shows the average levels around the asTSS,
and the middle panel shows the average level within thirty equal sized bins within the region bound by the sTSS and asTSS. In all cases, levels of transcription on
the sense strand are shown in red, while levels on the antisense strand are shown in blue. Genes considered are those which contained an asTSS, as defined in Fig 1.

B The average levels of nucleosome occupancy determined for both HeLa and S. cerevisiae using MNase-seq. Panels are grouped in threes and show average levels as
in (A). The top panels compare two sets of genes—those with high levels of sense transcription (dark red), and those with low levels (pale red). The bottom panels
show those genes with high levels of antisense transcription (dark blue), and those with low levels (pale blue).

C, D Scatter plots comparing the number of sense and antisense NET-seq reads within the 300 bp window shown, in both HeLa cells and S. cerevisiae, for those genes
with both an sTSS and asTSS. Shown for both species is the Spearman correlation coefficient, rs.

E Boxplots showing the distribution of gene compaction in different sets of S. cerevisiae genes. Gene compaction was determined by summing the number of
intragenic contacts, measured by Micro-C, and dividing by gene length. On each boxplot, the central mark indicates the median, and the bottom and top edges of
the box indicate the 25th and 75th percentiles respectively. The whiskers extend to the most extreme data points. The numbers at the bottom of each box plot show
the number of genes in that group.
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Figure 3. Antisense transcription has similar associations with chromatin modifications in both yeast and humans.

A The average levels of H3K36me3 and H3K79me3 relative to levels of sense or antisense transcription in HeLa and Saccharomyces cerevisiae genes. For each trio of
panels, the left panel shows average levels around the sTSS, the right panel shows the average levels around the asTSS, and the middle panel shows the average level
within thirty equal sized bins within the region bound by the sTSS and asTSS. Genes considered are selected from those which contained an asTSS, as defined in
Fig 1. Shown in red are two sets of genes—those with high levels of sense transcription (dark red), and those with low levels (pale red). Shown in blue are those
genes with high levels of antisense transcription (dark blue), and those with low levels (pale blue).

B Average levels of H3K4me3 and H3K4me1, laid out as in (A).
C Average levels of H3K9ac and H3K27ac, laid out as in (A).
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processing rate. By projecting the probability distribution for the

mean initiation rate onto the linear relationship, we obtain a proba-

bility distribution for the nuclear processing rate (Fig 4H). Taking

the most likely value from the probability distribution, we obtain

the inferred parameter values for the given strain. The various steps

involved in generating rates for initiation of transcription (min�1)

and nuclear processing rate (min�1) are shown in Fig 4H. Therefore,

for any strain we can obtain the mean initiation rate, nuclear

processing rate and degradation rate, corresponding to promoter,

nuclear and cytoplasmic effects on sense transcript dynamics

(Fig 4).

Antisense transcription influences rates of sense transcription
initiation, transcript processing and sense transcript stability

We generated experimental data using the two strains in which

GAL1 was subject to different levels of antisense transcription

(Fig 4B). By obtaining transcriptional parameters in these two

strains, we were able to compare how antisense transcription influ-

ences sense transcription and transcripts. Strikingly, the stability of

the engineered GAL1 sense transcripts is higher with greater anti-

sense transcription (t1/2 = 13.53 vs. 20.26 min for low vs. high AS;

Figs 4E and 5A). Modelling of the RNA-FISH data reveals roles for

antisense transcription in controlling the rates of initiation and

nuclear processing of GAL1 transcription/transcripts; both parame-

ters were lower in the construct expressing higher antisense tran-

scription (Figs 5B, and EV3A and B). The mean production rate was

0.425 min�1 in the construct with low antisense transcription, but

0.256 min�1 in the construct with high antisense transcription. Simi-

larly, the nuclear processing rate (combining elongation and export

rates) was reduced from 2.33 to 1.54 min�1 in the presence of anti-

sense transcription. Thus, at the engineered GAL1 gene, antisense

transcription does not alter overall sense transcript levels (Fig 4D)

but does alter the dynamics of sense transcript production, process-

ing and turnover.

Next, we asked if the effect of antisense transcription on sense

transcription/transcript dynamics extends to other genes. We show

that the effect of antisense transcription on transcript stability is not

strictly limited to the engineered GAL1 genes used here (Figs 5C and

EV3C). Using four different sources of data, we compared the stabil-

ity of transcripts produced from 1,529 yeast genes with, and 3,693

without an antisense transcript (Wang et al, 2002; Churchman &

Weissman, 2011; Miller et al, 2011; Geisberg et al, 2014). Remark-

ably, we observed significant increases in stability for sense tran-

scripts produced from genes with an antisense transcript. Finally,

we produced and modelled RNA-FISH data for transcript distribu-

tions (Fig EV3D) for five genes with varying levels of antisense tran-

scription, modelled that data and expressed the elongation/export

rate as a function of mean production rate to account for inherent

differences in sense expression levels (Fig 5D). We observed a

decrease in transcript processing rate as levels of antisense tran-

scription increases, corroborating our observations at GAL1. Taken

together, these data suggest compensating changes in rates of sense

transcript production and sense transcript degradation as a result of

antisense transcription.

We asked how antisense transcription alters sense transcript

dynamics. It is possible that changes in transcript dynamics result-

ing from antisense transcription are a consequence of altered

patterns of histone modification. To this end, we sought to assess

whether experimentally modulating histone modifications could

recapitulate the effects of changing antisense transcription, focusing

on histone H3 lysine acetylation, as genes with high levels of anti-

sense transcription tend to be associated with increased histone

acetylation compared to genes with lower levels (see Fig 3; Murray

et al, 2015). Final levels of histone acetylation are influenced by

rates of acetylation and deacetylation. The histone deacetylase

complexes Rpd3L (containing Rpd3, Pho23 and Hos2), Rpd3S (con-

taining Rpd3 and Rco1) and Set3C (containing Set3 and Hos2)

decrease overall levels of histone acetylation, control transcript

dynamics at a small number of genes, but do not affect global gene

expression (Pijnappel et al, 2001; Kim et al, 2012, 2016; Weinberger

et al, 2012; Woo et al, 2017). We asked first which of these HDAC

complexes control histone acetylation dependent on levels of anti-

sense transcription and second whether one of these HDAC

complexes, by its effect on histone acetylation, might modulate the

same parameters as antisense transcription.

▸Figure 4. A stochastic model for transcription dynamics.

A Schematic of the model (see text for details).
B The engineered GAL1 expressing high or low antisense (AS) transcription (Murray et al, 2015). Purple line shows the position of the strand-specific probes used for

Northern blotting. Sense transcripts are in red, antisense transcripts in blue.
C Representative Northern blot showing levels of GAL1 antisense transcripts (black arrowhead) in the high and low antisense strains during the transition from glucose

(0 min) to galactose (GAL). RNA-FISH experiments are performed after 120 min in GAL. Samples were run on the same gel with the intervening lanes spliced out (as
indicated by the black vertical line). The positions of the 25S and 18S rRNAs are represented by short black horizontal lines. Ethidium bromide-stained rRNA is the
loading control.

D Quantitation of GAL1 sense transcripts levels as measured by Northern blotting in the high and low antisense strains, normalized to high AS levels. N = 9, error bars
are SD, P-value shown above the bar calculated by paired t-test.

E Representative Northern blot showing GAL1 sense transcripts (black arrowhead) and GAL10 lncRNA (asterisk) after transfer from GAL (0) to GLU for the time indicated
(min). From these data, the rates of degradation of the transcripts are calculated, after normalization to the GAL timepoint. Samples were run on the same gel with
the intervening lanes spliced out (as indicated by the black vertical line). The positions of the 25S and 18S rRNAs are represented by short black horizontal lines.
N = 9.

F Example of single-molecule RNA-FISH data showing two cells. DNA is stained with DAPI (blue) and single GAL1 sense transcripts in green. A bright nuclear focus is
present in the top cell, containing 2–3 nascent transcripts.

G The frequency of nuclear and cytoplasmic transcripts for 1,193 individual cells averaged across nine experiments is determined using an automated foci recognition
algorithm (blue bars). The red line shows the simulated distribution from the model in (A). Data shown are counts and fit for low AS GAL1 mRNA.

H Schematic showing how mean initiation rate and nuclear processing rates are obtained. The fit to nuclear RNA distribution dictates the ratio of mean initiation rate
to nuclear processing rate and the cytoplasmic rate determines the ratio of mean initiation rate to degradation rate. By fitting the degradation rate to the shutdown
data in (E), the probability distributions for mean initiation rate and nuclear processing rate are obtained outright.
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Figure 5. Transcription dynamics change with high antisense transcription.

A GAL1 sense transcript turnover rates from the engineered GAL1 with high (left) or low (right) antisense transcription. The red lines show the best fit for nine
experiments (see Fig 4E for details).

B Histograms showing the mean production rate (left), mean elongation/export rate (middle) and transcript degradation rate (right; error bars for degradation rates are
RMSE of linear regression fit to exponential model) for the engineered GAL1 genes expressing high or low antisense transcription.

C Transcript stability for sense transcripts from 1,529 genes with an asTSS (dark blue) or 3,693 genes without one (light blue). The frequency plot shows the majority of
transcripts have higher stability when expressed from genes with an antisense transcript.

D Elongation/export rate expressed relative to mean production rate for five endogenous genes ranked by levels of corresponding levels of antisense transcription in a
300 bp downstream of the antisense TSS as determined by NET-seq.
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SET3 deletion differentially influences levels of H3K9ac at genes
that differ by the presence or absence of antisense transcription

Acetylation of K4, K9 and K14 on histone H3 is higher at genes with

higher antisense transcription (Fig EV4A). Next, we asked whether

the change in histone lysine acetylation, following gene deletion of

specific HDAC components, is different when considering those

genes with or without an antisense transcript. Strikingly, following

deletion of SET3 and HOS2 (Set3C) and RCO1 (Rpd3S), those 3,693

genes without an antisense transcript show a significantly larger

increase in the level of acetylation than those 1,529 genes with an

antisense (P = 6 × 10�13 for set3D, Figs 6A and EV4A). Further-

more, the changes were observed at different regions of the meta-

gene, consistent with where Set3C and Rpd3S are proposed to

function (Kim & Buratowski, 2009; Li et al, 2009). Next, we asked

whether increased acetylation could be explained by increased anti-

sense transcription in the mutant strains. This was the case for the

rco1 mutant (Murray et al, 2015) and so it was excluded from this

study, but not for the set3 mutant (Fig EV4B). Thus, Set3C modu-

lates acetylation at genes with low antisense transcription suggest-

ing some redundancy in the effect of deleting SET3 and in the effect

of antisense transcription.

SET3 differentially influences levels of H3K9ac at GAL1 with high
or low antisense transcription

We investigated the effect of SET3 deletion in the presence or

absence of antisense transcription at the engineered GAL1. Impor-

tantly, Set3C does not affect the levels of the stable antisense tran-

script at engineered GAL1 (Fig 6B). That there is no change in

antisense transcription is confirmed by levels of transcription-asso-

ciated histone modifications H3K4me2 and H3K4me3 in the four

strains, which are low without antisense transcription and higher

with antisense transcription and, importantly, do not change when

SET3 is deleted (Fig EV4C).

Next, we asked how Set3C influences levels of H3K9ac at engi-

neered GAL1 with high or low antisense transcription (Fig 6C). High

levels of acetylated H3K9 in chromatin correlate with antisense tran-

scription (Murray et al, 2015). As expected, the construct with high

antisense transcription has higher levels of H3K9ac than the strain

with low levels of antisense transcription, despite both constructs

producing similar levels of the GAL1 sense transcript when induced

(Murray et al, 2015; Fig 6D). On deletion of SET3, we observe a

higher level of H3K9ac in the transcribed region in strains with low

antisense transcription (Fig 6C). This neatly reproduces what we

have observed genome-wide—that SET3 deletion has a greater effect

on acetylation levels in the absence of antisense transcription.

We conclude that the effect of SET3 deletion on levels of H3K9

acetylation at the engineered GAL1 gene is unlikely to result from

changes to antisense transcription, but from a direct effect on the

chromatin. We hypothesize that antisense transcription buffers

chromatin against the modulating effects of Set3C during sense tran-

scription. Thus, following deletion of SET3, we would expect the

transcription dynamics in the strain with low levels of antisense

transcription to resemble those in the strain with high antisense

transcription, assuming transcription dynamics are influenced solely

by the chromatin.

Altering levels of histone acetylation recapitulates the effect of
antisense transcription on sense transcription dynamics

RNA-FISH data (Fig EV4D) and degradation rates (Fig 6E) were

produced for SET3 deletion strains expressing the engineered GAL1

gene with either high or low levels of antisense transcription. The

experimental data were then modelled to estimate the parameters of

sense transcription dynamics (Figs 6F and EV4E). Consistent with

our hypothesis, deletion of SET3 in the strain with low levels of anti-

sense transcription decreased the mean production rate, decreased

the nuclear processing (elongation/export) rate and increased the

stability of the mature GAL1 sense transcripts, making the transcript

dynamics of the strain with low levels of antisense transcription

behave more like the strain with high antisense transcription. Global

levels of transcripts are buffered by opposing rate changes for

synthesis and degradation resulting in no overall change, as

observed previously (Dori-Bachash et al, 2011). We suggest that

antisense transcription reduces the sensitivity of genes to deacetyla-

tion by Set3C, and this influences transcription dynamics. Thus, at

GAL1, antisense transcription buffers gene expression against the

action of chromatin modifiers such as Set3C. We conclude that

sense transcription dynamics are variable and can be modulated by

histone modifiers, and therefore histone modifications, in the vicin-

ity of the promoter and early part of the coding region.

In summary, we show that antisense transcription has a

conserved spatial and chromatin architecture in both yeast and

human genes, focused around the sense promoter and early

transcribed region. Modelling with quantitative data reveals that

antisense transcription at the engineered GAL1 locus alters all

measurable aspects of sense transcription by decreasing the rates of

◀ Figure 6. Set3C alters transcription dynamics in an antisense-dependent manner.

A Strains lacking SET3 show a larger increase in H3K9ac, relative to WT levels, at 3,693 genes without antisense transcripts compared to 1,529 genes with antisense
transcripts.

B Quantitation of GAL1 antisense transcript levels from the high and low antisense constructs with or without SET3. N = 2, data points shown, error bars are SD,
P-values are shown above the bars calculated by paired t-test.

C Chromatin immunoprecipitation showing levels of H3K9ac relative to histone H3 in the strains with high or low antisense transcription in the presence or absence of
SET3. The positions of the primer pairs for RT–qPCR are shown in the schematic below. N = 3, data points shown, error bars are SEM.

D Quantitation of GAL1 sense transcripts from Northern blotting of the high and low antisense constructs with or without SET3. N = 3 error bars are SD, P-values are
shown above the bars calculated by paired t-test.

E GAL1 sense transcript degradation rates in SET3 (N = 9) and set3D (N = 2) strains with high or low GAL1 antisense transcripts.
F Histograms showing the mean production rate (left), mean elongation/export rate (middle) and transcript degradation rate (right) for the engineered GAL1 genes

expressing high or low antisense transcription in the presence or absence of SET3. Error bars for degradation rates are RMSE of linear regression fit to exponential
model.
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initiation and processing of the nuclear transcripts, and the cytoplas-

mic degradation rate. The effect of antisense transcription on sense

transcript dynamics is observed at other genes and can be mimicked

at GAL1 by simply increasing levels of histone acetylation in the

vicinity of the promoter.

Discussion

Antisense transcription is a widespread feature of both yeast and

human genomes. In this work, we use mathematical modelling to

provide insights into the consequences of antisense transcription on

chromatin architecture and sense transcript dynamics, and show for

the first time that antisense transcription alters rates of transcript

production and transcript degradation.

There is a tight, apparently counterproductive, coordination

between the processes of production and degradation, widely

observed in yeast and mammals (Das et al, 2017). For example,

mutants such as rpb4D, which display reduced rates of transcrip-

tion, compensate by reducing the rate of transcript degradation

(Schulz et al, 2014). The coordination of transcription and transcript

degradation is known to be influenced by promoter sequences, the

Rpb7 component of RNA polymerase II and many factors involved

in mRNA degradation (Enssle et al, 1993; Dori-Bachash et al, 2011,

2012; Sun et al, 2013). Assessment of steady-state mRNA levels in

mutants that influence these rates often leads to the conclusion that

these factors do not have much effect on gene expression, apart

from the associated stress response (O’Duibhir et al, 2014). This

would be entirely consistent with what we observe for antisense

transcription and the set3 mutant, which do not change steady-state

transcript levels at GAL1, but do change the epigenetic marks on the

associated chromatin, and in doing so, alter the transcription

dynamics. The set3D strain with low GAL1 antisense transcription

showed raised levels of H3K9ac at GAL1 similar to those observed

with high antisense transcription and a concomitant lowering of

sense transcript production, processing and degradation rates to

resemble those in strains with high antisense transcription (Fig 7).

Our model makes no assumptions about the mode of transcrip-

tion initiation ab initio and can accommodate genes with “bursty”

kinetics, as it allows for promoters to exist in both active and inac-

tive states, or a constitutive model of production, and so would be

applicable to analyse data from mammalian cells. Indeed, much

transcription initiation in yeast and mammals shows bursting kinet-

ics (Suter et al, 2011; Lenstra et al, 2016). In addition, our model

extends previous models, incorporating a stochastic elongation rate,

and as such, each gene displays a distribution of times from initia-

tion to termination. One interesting finding is that our model infers

a decrease in the rates of both sense transcription initiation and

elongation/export in the presence of antisense transcription, yet we

observe no difference in the NET-seq, GRO-seq and PRO-seq

average profiles between genes with high and low levels of

antisense. How could antisense transcription alter sense transcrip-

tion dynamics without altering these nascent transcription profiles?

These techniques offer a static, steady-state view of the locations of

engaged polymerase across a gene. A corresponding decrease in

initiation rate and elongation rate would result in the same number

of polymerases on a gene at steady state. Any differences in poly-

merase profiles clearly come as a result of a number of complex

interacting factors including physical blocks to transcription, the

activity of elongation factors and stochastic dynamics of polymerase

(Jonkers & Lis, 2015). Here we have analysed the production and

processing of functional mRNA. As such, we look at the effect of

antisense on the passage of the transcript through to the cytoplasm

and on the rates of productive initiation, meaning that we ignore

any initiation events that, for example, result in early termination.

By contrast, NET-seq and GRO-seq likely convey a more complex

story, in which the number of engaged polymerases does not corre-

spond directly to the resultant number of steady-state RNAs. This is

evidenced by the less-strong-than-expected Spearman correlations

between nascent transcription reads and RNA-seq reads either in

the 300-bp window downstream from the promoter (PRO-seq 0.52;

NET-seq 0.78) or across the whole gene (PRO-seq 0.61; NET-seq

0.79).

The effects of antisense transcription on the sense promoter and

promoter-proximal chromatin architecture are conserved between

yeast and humans, despite large differences in gene size. In addition,

antisense transcription initiates at a similar distance downstream

from the sense transcription initiation site in both systems, suggesting

that the effect of antisense transcription is focused on the promoter

and early transcribed region of genes. This is where most control can

be exerted over transcription dynamics, as the promoter and early

coding region chromatin can influence initiation and the elongation

phases of transcription, respectively. Moreover, we observe

conserved changes to the promoter and promoter-proximal chromatin

structure as the functional consequence of antisense transcription.

These changes include increased lysine acetylation and increased

nucleosome occupancy, which together could influence the residence

time of transcription factors bound to the promoter or the composi-

tion of RNA polymerase II leaving the promoter. At the promoter

itself, the altered chromatin features may also be reinforced by diver-

gent upstream non-coding transcription (Marquardt et al, 2014). In

support of a promoter focused function, we have recently shown that

RNA polymerase II shows variable enrichment with elongation

factors and that this a function of promoter sequences and associated

transcription factors (Fischl et al, 2017). Paf1 enrichment on RNA

polymerase II, for example, through its effects on the chromatin struc-

ture, affects how the encoded transcripts are decorated with RNA

binding proteins that control transcript export from the nucleus.

Could antisense transcription function in gene regulation? By

reducing production and increasing stability, as observed with high

antisense transcription, the same final transcript response level can

be achieved as with low antisense transcription, but the time taken

to reach these final levels differs, and this can be a regulatory

feature, for example, providing benefit in some bet-hedging strate-

gies (Snijder & Pelkmans, 2011) or if rapidly varying conditions are

expected. Indeed, antisense transcription has a proposed role in

fine-tuning levels of sense transcripts under different environmental

conditions (Xu et al, 2011) and its production can be regulated

(Conley & Jordan, 2012; Murray et al, 2012, 2015; Nguyen et al,

2014). Transcription elongation is not a smooth process from start

to finish, with RNA polymerase pausing heterogeneously across the

gene (Jonkers & Lis, 2015), and this is likely to influence the nuclear

processing rate. Changing the nuclear processing rate does not affect

the cytoplasmic distribution or the rate at which a cytoplasmic

steady state is reached. However, antisense transcription-dependent

changes to the nuclear processing rate could be tuning how much
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other pathways can affect a transcript. For example, decreasing the

elongation/export rate could make a gene more susceptible to

control by a factor that relies on stochastic events during transcrip-

tion or while a transcript is in the nucleus.

Why does Set3 modulate transcription dynamics predominantly

at low antisense genes? We see increased levels of acetylation at

low antisense genes when the integrity of Set3C is lost. Set3C

may antagonize the action of the SAGA lysine acetyltransferase,

as genes with high antisense show significantly more enrichment

for the Spt3 component of the SAGA lysine acetyltransferase

(KAT) complex (Murray et al, 2015), supporting a higher inherent

level of acetylation at high antisense genes in strains with Set3C.

This may be a reinforcing mechanism whereby once the levels of

acetylation on chromatin are high, more KAT will be recruited to

maintain these levels. A dynamic interplay between Set3C and

the KATs, modulated by differences in histone turnover and chro-

matin compaction, could explain the different characteristics of

high and low antisense genes and the particular sensitivity of low

antisense genes to loss of Set3C. Being able to modulate tran-

scription and transcript dynamics by manipulating the activity of

a chromatin modifying enzyme strongly supports antisense tran-

scription modulating the chromatin structure in the vicinity of

promoters and this in turn affecting transcription and transcript

fate. Pervasive transcription is not limited to the antisense strand

of genes as studied here, but is also abundant at enhancer

elements, at the 30 ends of genes and throughout gene-rich

A

B

Figure 7. Summary.

A Schematic outlining the influence of antisense transcription or SET3 deletion on levels of histone lysine acetylation (ac), steady-state transcript levels (3) and on the
rates of transcript production (1), processing and export (2) and transcript decay (4). Line width indicates levels (3) or rates (1, 2, 4) with increased rate represented by
extra lines.

B Relationship of the dependent variables to independent variables in our study. High antisense transcription is associated with a highly acetylated chromatin
environment, resulting in slower sense transcription kinetics, namely the initiation rate and elongation/export rate. We mimic this behaviour by deleting SET3,
increasing acetylation levels and we observe a reduction in initiation and elongation/export rates.
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regions of many different genomes including plants, yeast, fungi,

flies and worms (Ni et al, 2010; Kwak et al, 2013; Andersson

et al, 2014; Nojima et al, 2015; Booth et al, 2016; Krzyczmonik

et al, 2017; Ietswaart et al, 2017). In some cell types, non-coding

transcripts could facilitate RNAi-mediated degradation of the sense

transcripts which might make uncovering the associations we

have found in budding yeast, which lacks an RNAi system, more

challenging. However, the functional consequences of most non-

coding transcription are likely to be a result of the act of tran-

scription, and its effects on associated chromatin, rather than via

the transcript itself. In yeast, many non-coding transcription

events are performed by a distinct RNA polymerase II complex,

depleted for Paf1 and Set2 (leading to reduced Ser2 phosphoryla-

tion on the Pol2 CTD and reduced H3K36 methylation) amongst

other factors (Fischl et al, 2017), explaining in part the unique

chromatin environment associated with these events. Whether

enhancers also contain a chromatin environment, for example

high H3K27ac, dictated by non-coding transcription and how this

influences enhancer function are questions for the future, but

underscore the potential regulatory nature of non-coding tran-

scription, as distinct from the encoded transcripts. Indeed, it is

becoming clear that levels of pervasive transcription can be regu-

lated in genomes (Mellor et al, 2016).

Materials and Methods

Jane Mellor is responsible for all reagent and resource requests. Please

contact Jane Mellor at jane.mellor@bioch.ox.ac.uk with requests and

inquiries and see Appendix Table S4 for reagent details and

Appendix Table S5 for details concerning software and algorithms.

Yeast culture and genetic manipulation

Strains were streaked from glycerol stocks onto 2% agar YPD (1%

yeast extract (Difco), 1% bactopeptone, 2% glucose) plates and

grown (1–2 days, 30°C). Cell pre-cultures were then grown over-

night in 5 ml YPD at 30°C. This culture was used to inoculate an

appropriate volume of YPD culture at OD600 0.2 which was grown at

30°C, shaking at 200 rpm to OD600 0.45–0.5. To induce the GAL1

gene, cell cultures were centrifuged (900 g, 3 min) and then re-

suspended in YPG (1% yeast extract (Difco), 1% bactopeptone, 2%

galactose) pre-warmed to 30°C. Re-suspended cells were incubated

(30°C, 200 rpm) for the specified time(s) before harvesting by

centrifugation (900 g, 4 min). For the experiments to obtain the

GAL1 sense degradation rates, after 2 h in YPG, cells were trans-

ferred back to fresh YPD pre-warmed to 30°C and 15 ml of samples

was harvested at 0, 5, 10, 20, 30 and 60 min. Other experiments

were done at OD600 0.6–0.8.

Genetic manipulation of strains was performed using the

homologous recombination method (Longtine et al, 1998). For gene

deletion strains, PCR products were made containing the HISMX or

KANMX selection cassettes flanked at both ends by 40 bp of

sequence homologous to sequences either side of the region to be

deleted. Construction of the GAL1:ADH1t (high AS) and TATA

mutant (low AS) strains has been described previously (Murray

et al, 2012, 2015). Cells to be transformed were grown to log phase,

pelleted, re-suspended in 450 ll 100 mM LiAc/TE and incubated

(> 1 h, 4°C). 100 ll of cell suspension, 10 ll of PCR product, 10 ll
calf thymus DNA (Sigma D8661) and 700 ll 40% polyethylene

glycol in 100 mM LiAc/TE were incubated (30 min, 30°C) then

heat-shocked (20 min, 42°C). Cells were pelleted (5 min, 4,600 g),

re-suspended in H20 and plated onto appropriate selection media.

DNA was extracted from the resulting colonies, screened by PCR

and confirmed by sequencing.

Chromatin immunoprecipitation (ChIP)

Yeast grown to OD600 0.5 in 50 ml of YPD was transferred to YPG for

2 h before they were fixed in 1% formaldehyde in 45 ml PBS for

30 min at 22°C followed by addition of 125 mM glycine for 5 min.

Cell pellets were collected by centrifugation (900 g, 4 min) before

washing twice with 10 ml cold PBS. Cells were re-suspended in

500 ll cold FA-150 buffer (10 mM HEPES pH 7.9, 150 mM NaCl,

0.1% SDS, 0.1% sodium deoxycholate, 1% Triton X-100) and broken

using 1 ml glass beads on a MagnaLyser (Roche; 2 × 1 min runs,

2,500 g, 4°C). Sample volume was increased to 2 ml with FA-150

buffer before shearing of the fixed chromatin by sonication using a

biorupter (Diagenode, 30 min, 1 min on, 20 s off, medium setting).

Chromatin was cleared by centrifugation (9,400 g, 15 min, 4°C), and

50 ll was diluted to 200 ll with FA-150 buffer and incubated with

5 ll of the following antibodies as appropriate: H3, H3K4me2,

H3K4me3, H3K9ac (for details see the Appendix Table S4) in 1.5 ml

siliconized Eppendorf tubes for 15–20 h rotating at 4°C. Bound chro-

matin was immunoprecipitated for 90 min at 22°C with 50 ll protein
A-Sepharose pre-blocked with bovine serum albumin and sonicated

salmon sperm DNA. Beads and attached chromatin were pelleted

by centrifugation (640 g, 1 min) and washed with TSE-150 buffer

(20 mM Tris–Cl pH 8.0, 150 mM NaCl, 2 mM EDTA, 0.1% SDS, 1%

Triton X-100) for 3 min, TSE-500 buffer (20 mM Tris-Cl pH 8.0,

500 mM NaCl, 2 mM EDTA, 0.1% SDS, 1% Triton X-100) for 3 min,

LiCl buffer (0.25 M LiCl, 10 mM Tris-Cl pH 8.0, 1 mM EDTA, 1%

deoxycholate, 1% NP-40) for 15 min and twice with TE. After wash-

ing, chromatin was eluted from the beads for 30 min at 65°C with

elution buffer (0.1 M NaHCO3, 1% SDS). Addition of 350 mM NaCl

and incubation for 3 h at 65°C reversed the cross-links before treat-

ment of samples with RNase A for 1 h at 37°C and proteinase K over-

night at 65°C. DNA was purified using a PCR purification kit (Qiagen)

and eluted in 400 ll 1 mM Tris–Cl pH 8.0. Input DNA was diluted

accordingly. Real-time quantitative PCR (qPCR) was performed using

a Corbett Rotorgene and Sybr green mix (Bioline). Data [(IP—no anti-

body control)/input] were expressed as a percentage of the input and

normalized to levels of H3 where appropriate. The primers used are

listed in Appendix Table S1. All ChIP experiments were performed

≥ 2 times with independent biological samples.

RNA extraction

Fifteen millilitres of log phase yeast culture at a density of OD600

0.6–0.8 grown in the appropriate medium was pelleted (900 g,

3 min), re-suspended in 400 ll TES (100 mM Tris–HCl (pH 7.5),

100 mM EDTA (pH 8.0), 0.5% SDS) and 400 ll phenol:chloroform
(pH 4.7) and incubated (65°C, 20 min, 22 g). The mixture was incu-

bated (�80°C, 30 min). After spinning (15,900 g, 20 min, 4°C), the

upper layer was transferred to 10 mM NaOAc pH 5.5/ethanol and

incubated (�80°C, > 30 min). RNA precipitate was pelleted
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(15,900 g, 20 min, 4°C) and re-suspended in 100 ll H20. RNA

concentration was measured using a Nanodrop, and samples were

diluted to 1,000 ng ll�1.

Northern blotting

20 lg of RNA was separated on 1.1% formaldehyde FA gels for 3 h

and transferred to Hybond-N+ nylon membranes (Amersham) by

wet blotting overnight in 20× SSC. After fixing the RNA to the

membrane (2 h, 80°C), the membranes were blocked in PerfectHyb

Plus (Sigma H7033; > 2 h, 65°C). Radio-labelled strand-specific GAL1

sense and GAL1 antisense probes were generated using asymmetric

PCR with the primers listed in Appendix Table S2. After probe purifi-

cation with in-house-constructed Sephadex G-50 columns, the probe

was added to the tubes containing the membranes and hybridized

overnight at 65°C. Non-specifically bound probe was removed by

washing the membranes twice in 1× SSC/0.1% SDS and once in 0.2×

SSC/0.1% SDS, 0.1× SSC/0.1% SDS and 0.05× SSC/0.1% SDS for

20 min each at 65°C. Membranes were typically exposed to X-ray film

for 1 h–1 week. For quantification, images were acquired using a

FLA 7000 phosphorimager (GE Healthcare). Levels of the 18S and

25S rRNA species measured by ethidium bromide staining were used

as loading controls. All Northern blotting experiments were repeated

≥ 2 times with independent biological samples.

RNA fluorescence in situ hybridization (RNA-FISH)

Fifty millilitres yeast culture was grown in YPD to > 0.45 OD600

before transfer to YPG for 2 h. 50 ml of cells at OD600 0.6 was

pelleted (900 g, 4 min) and fixed with 4% (v/v) paraformaldehyde

in PBS (45 min, 80 rpm, 22°C). Fixed cells were washed twice with

10 ml FISH buffer A [1.2 M sorbitol, 0.1 M KHPO4 (pH 7.5)] and

re-suspended in 1 ml FISH buffer B (FISH buffer A, 20 mM ribonu-

cleoside vanadyl complex (VRC), 20 lM 2-mercaptoethanol). The

mixture was incubated (15–40 min) at 30°C with 15 ll lyticase

(25 U ll�1, Sigma) until > 70% of cells were spheroplasted, as

observed by microscopy. Cells were pelleted (900 g, 3 min, 4°C)

and washed with and then re-suspended in 1 ml FISH buffer B with-

out 2-mercaptoethanol. ~150 ll of cells was left to settle (30 min,

4°C) on poly-L-lysine treated coverslips. These were gently washed

with 2 ml FISH buffer A to remove unattached cells and incubated

(�20°C, > 3 h) in 2 ml 70% ethanol. Samples were rehydrated

twice with 2 ml of 2× SSC for 5 min at room temperature and

washed with 40% formamide in 2× SSC. For the hybridization,

0.5 ng of each probe, 10 lg of E. coli tRNA and 10 lg of salmon

sperm DNA were mixed and lyophilized in a SpeedVac. 12 ll of

40% formamide, 2× SSC, NaHPO4 pH 7.5 was added, and the probes

were denatured at 95°C for 3 min followed by the addition of 12 ll
of 2× SSC, 2 mg ml�1 BSA, 10 mM VRC. Hybridization was

performed overnight at 37°C in a parafilm-sealed chamber, where

the coverslips with the cells facing down were placed onto 22 ll of
the hybridization mixture. The coverslips were then subjected to a

series of washes: twice with 40% formamide/2× SSC (15 min,

37°C); once with 2× SSC, 0.1% Triton X-100 (15 min, 22°C); once

with 1× SSC (15 min, 22°C); and once with 0.05× SSC (15 min,

22°C). The Stellaris GFP probes were incubated overnight at 30°C,

then washed several times in a 10% formamide solution and stained

with a PBS solution containing DAPI. The coverslips were dipped

into H2O. Once dry, coverslips were mounted onto a microscope

slide using ProLong Diamond Antifade Mountant with DAPI (Life

Technologies), allowed to polymerize for 24 h in the dark and then

sealed with nail varnish. Cells were imaged using a DeltaVision

CORE wide-field fluorescence deconvolution microscope using a

100×/1.40 objective lens. 21–31 0.2 lm z stacks were imaged with

an exposure time of 0.01 and 1 s for DAPI and Cy3 channels, respec-

tively. All RNA-FISH experiments were repeated ≥ 2 times with

independent biological samples.

RNA-FISH probe design and synthesis

For GAL1, DNA probes of ~50 nt and ~50% GC content were

designed with five modified bases (amino-allyl dT) spaced by about

~10 nt included for the incorporation of the fluorophore (see

Appendix Table S3 for probe sequences). Modified DNA oligos

were custom ordered from MWG Eurofins. For the labelling of the

probes, a total of 5 lg was purified using the QIAquick Nucleotide

Removal Kit (Qiagen) and eluted with 40 ll of H2O. The probes

were then lyophilized in a SpeedVac, re-suspended in 10 ll of 0.1 M

sodium bicarbonate pH 9.0 and added to the dye-containing tube

(CyDyeTM GE Healthcare, Cy3 PA23001). The tube was vortexed

vigorously followed by a quick spin. The reaction was incubated

overnight at room temperature with low speed shaking. The probes

were purified using the QIAquick Nucleotide Removal Kit (Qiagen)

and eluted with 100 ll of elution buffer (supplied with the kit). The

concentration and efficiency of the labelling was measured using a

spectrophotometer. Probes were stored in the dark at �20°C. The

labelling efficiency was calculated as described (Zenklusen & Singer,

2010). The remaining genes were fused at their 30 ends to S65T

pFA6a-GFP sequence (Longtine et al, 1998), and the common GFP

sequence detected using 27 × 20 nt probes labelled with Cy3 fluo-

rophore obtained from Stellaris. The GFP probes were washed in a

PBS/DAPI solution and were mounted in ProLong Gold without

DAPI.

Yeast strains

All S. cerevisiae strains used in this study are listed in the

Appendix Table S6. All strains and genetic manipulations were veri-

fied by sequencing or PCR-based methods.

Mathematical modelling

RNA synthesis and degradation were modelled as described in the

main text. Four of the five parameters were sampled via Latin

Hypercube with 1,000,000 sampling points. The degradation rate

was sampled as described below. 10,000 cells were simulated for

500 min to reach steady state and the number of nuclear and cyto-

plasmic RNA recorded. The Kolmogorov–Smirnov statistic was used

as a goodness-of-fit metric to compare simulated results to raw data.

The best 10,000 parameter sets as judged by fit to nuclear and cyto-

plasmic RNA were then taken forward. For each strain, the modal

value of the histogram of the mean initiation rate (on * init/

(on + off)) was taken from the fits to the cytoplasmic data. The

values for the nuclear processing rate were then determined by

sampling data points from the ratio of mean initiation rate to

nuclear export rate giving the fits to the nuclear data. Again, 10,000
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parameters were sampled from the values determining the

nuclear distributions, following the mean initiation rate distribution

given by the cytoplasmic data.

Quantification and statistical analysis

Bioinformatic analysis

Identification of sense and antisense TSSs in yeast and
humans Cap analysis of gene expression (CAGE) data in HeLa

cells was obtained from the ENCODE repository on the UCSC

Genome Browser (Rosenbloom et al, 2010), and used to determine

genome coordinates of sense and antisense transcript start sites

(sTSSs and asTSSs, respectively). Data were pooled from nuclear

and cytoplasmic fractions, both polyadenylated and non-polyade-

nylated, and from whole cell extract, for which only polyadeny-

lated data were available. CAGE cluster coordinates, determined

with an HMM algorithm applied to the CAGE tag data, were

obtained from the same source. To determine TSS coordinates in

HeLa, we took the same approach presented previously by Conley

and Jordan (2012). Clusters were ignored if they contained less

than two overlapping CAGE tags, as it has been previously

reported that two or more overlapping tags represent validated

TSSs (Carninci, 2006; Faulkner et al, 2009). The TSS coordinate of

a given cluster was taken to be the base with the highest density

of mapped CAGE 50 ends. As an added step, TSSs were excluded

from all subsequent analyses if they contained less than three

NET-seq reads in a 200-bp window immediately downstream,

within the same orientation. To determine the sTSS of a given

protein-coding gene, we scanned within a region 500 bp upstream

of the left-most annotated TSS, and 500 bp downstream of the

right-most annotated TSS. In the case of multiple sTSSs, the one

with the highest CAGE density was taken to be the predominant

sTSS. asTSSs were determined by scanning between the sTSS and

the annotated transcript end site; again, the asTSS with the highest

CAGE density was considered the predominant asTSS in the case

of multiple candidates.

Budding yeast sTSSs and asTSSs were determined using tran-

script isoform sequencing (TIF-seq (Pelechano et al, 2013), using

the list of major transcripts provided, supplemented with the list of

cryptic transcripts from Neil et al (2009). For each gene, the sTSS

was derived from the sense transcript which had the highest

number of supporting NET-seq reads in YPD, and which completely

encompassed the open reading frame. The asTSS was taken as the

antisense transcript with the highest number of supporting NET-seq

reads, and which overlapped the open reading frame in the anti-

sense orientation.

To assess whether asTSSs were better aligned to the sTSS or the

end of the 1st exon in HeLa, we determine for each gene the distance

between the sTSS to the asTSS, and expressed it as a fraction of the

distance between the sTSS and the end of the 1st exon. We

compared the resultant histogram to a randomly generated distribu-

tion, in which the asTSS for each gene was randomly reassigned to

a base within the region shown in Fig 1D. This approach was

repeated in HeLa using the end of the 2nd exon in place of the 1st, to

assess whether asTSS showed preferential alignment to the 2nd exon

over the sTSS. It was also repeated in yeast, using the 30 end of the

open reading frame in place of the end of the 1st exon (Fig 1G).

Correlating sense and antisense transcription NET-seq data were

obtained in HeLa cells from Nojima et al (2015), specifically their

data obtained using an antibody against all forms of Pol II, phos-

phorylated and unphosphorylated. NET-seq data in yeast were

obtained from Churchman and Weissman (2011). To compare

sense transcription levels between genes with and without an

asTSS, we calculated the average number of NET-seq reads per

base pair within the 1st exon, and compared the distribution

between the two gene groups using a Wilcoxon rank sum test.

Correlations between the transcription levels of different sorts of

transcript were calculated by determining the Spearman correla-

tion coefficient between the numbers of NET-seq reads in the

300-bp windows shown in Fig 2C and D. The same approach

was taken with the GRO-seq (for HeLa) and PRO-seq data (for

yeast), obtained from Core et al (2014) and Booth et al (2016),

respectively.

Assessing ChIP levels around sense and antisense TSSs Genome-

wide levels of histone modifications and nucleosome occupancy

were obtained from the following sources: For budding yeast,

genome-wide levels of H3K36me3 and H3K79me3 were from

Kirmizis et al (2009) (GSE14453). Levels of H3K4me1 and

H3K4me3 were from Kirmizis et al (2007) (GSE8626). Levels of

H3K9ac and H3K27ac were from Weiner et al (2015) (GSE61888).

Nucleosome occupancy levels were from Kaplan et al (2009)

(GSE13622). Genome-wide levels of gene compaction, determined

using Micro-C, were from Hsieh et al (2015). Levels of H3K9ac in

deletion strains of various histone modifying enzymes were from

Weinberger et al (2012) (SRA051855.1). For HeLa cells, genome-

wide levels of H3K36me3, H3K79me3, H3K4me1, H3K4me3,

H3K9ac and H3K27ac were obtained from the ENCODE experiment

matrix. Nucleosome occupancy levels were from Kfir et al (2015)

(GSE65644). Levels of H3 histone modifications are not normalized

to levels of H3. We assessed average levels only in genes with an

asTSS, comparing the two quintiles with the highest and lowest

levels of antisense transcription (determined by NET-seq) in a 300-

bp window placed immediately downstream of the sTSS. We wished

to simultaneously assess levels upstream of the sTSS, downstream

of the asTSS and in the region between both TSSs. To account for

the varying distances between sTSS and asTSS, we broke this region

into a hundred bins, calculating the average ChIP level within each

bin.

Comparing gene compaction levels Gene compaction levels in

budding yeast were obtained from Hsieh et al (2015). Different gene

groups were compared as discussed in the Results.

RNA-FISH analysis

Software Image quantification was performed using custom

Matlab (MATLAB Statistics and Image Toolboxes Release 2015a,

The MathWorks, Inc., Natick, MA, USA) scripts based in part on

elements of FISH-quant (Mueller et al, 2013) and CellProfiler

(Carpenter et al, 2006), and utilizing MIJI (https://imagej.net/Miji)

and MIJ (http://bigwww.epfl.ch/sage/soft/mij/) to import data

from FIJI (Schindelin et al, 2012). The custom scripts allowed for

greater automization of the quantification process than is possible

with FISH-quant and the algorithms were tailored to our data.
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Due to slight differences in experimental protocol, including

model of microscope, between the data sets including the engi-

neered forms of GAL1 and the sets including GFP-tagged genes

parameters and methods for analysis also differed between these

groups. In the following description, the engineered constructs

expressing high or low antisense at GAL1 and with or without the

set3D mutation will be referred to as the GAL1 set and the GFP-

tagged genes (TIM17, ATP4, GCV3, URA4, HMS2) will be referred to

as the endogenous set.

Deconvolution and background subtraction Images were decon-

volved with a conservative deconvolution method and 10 cycles

(GAL1 set) or 15 cycles (endogenous set) using DeltaVision Softworx

software. DAPI and Cy3 channels for the images were processed

separately. Images were background-corrected with the following

procedure. The median of all pixel intensities for each channel and

each image, pmed, was found. This was chosen as it was observed to

generally be close to the modal value of the distribution. A measure

of the spread around this value was also found by constructing

a metric similar to the standard deviation from all pixels with inten-

sities less than or equal to the median intensity. The median plus

this spread value was taken to be the background value and

subtracted from all pixels, background = pmed + sqrt[(1/(Ni–1))

∑i((pi – pmed)
2)], where i runs over pixels with intensity less than or

equal to pmed, Ni is the number of pixels with intensity less than or

equal to pmed, and pi is the intensity of pixel i. Thus, the new inten-

sity of pj was pj—background where j runs over all pixels. Any pixels

that had negative intensity following this were set to 0.

Foci identification and thresholding Candidate foci in the FISH

(Cy3) channel were initially identified using Piotr’s Matlab toolbox

(https://pdollar.github.io/toolbox) nonMaxSupr function with a 1

pixel radius for detection. Images from each biological repeat and

strain were processed together. To distinguish foci from random

clustering of fluorescently labelled molecules, foci intensities were

compared between the strains under testing and a double knockout

strain, gal10-1DD, which has no sequences to which the FISH probes

should hybridize. In each experiment, histograms of all foci intensi-

ties as returned by the nonMaxSupr algorithm were constructed

(bin width 250 for the GAL1 set and 50 for the endogenous set,

normalized by probability). For each strain, a tentative intensity

cut-off was taken to be the first bin in which there was 10 times

more signal in the strain than the knockout (with manual adjust-

ment for obvious outliers). Within each experiment (which could

contain multiple strains), the final cut-off value was taken as the

mean of the tentative cut-off values. All foci with intensities less

than the cut-off value from a set were not considered in all further

analysis.

The deconvolution, background subtraction and foci identifi-

cation are performed by the supplied FindAndAnalyseFoci Matlab

function. This function should be run on all strains and the knock-

out from a single experiment before a threshold for valid foci is

determined. This threshold can then be found using the Deter-

mineCutoffs Matlab script.

Automated nuclei detection A separate script automatically identi-

fies nuclei and cells and quantifies the foci that fall within the

nuclear and cellular boundaries. The first step of the process is to

identify the nuclei in three dimensions using the DAPI channel. The

procedures followed here allowed for improved detection of individ-

ual nuclei that differed in brightness or were very close to neigh-

bouring nuclei. The DAPI channel of each image was scaled to the

minimum and maximum intensity pixels, that is pi = (pi – min(p))/

(max(p) – min(p)), where i runs over all pixels, min(p) and max(p)

denote the minimum and maximum pixel intensities of the set,

respectively. The scaled DAPI images then have a Gaussian filter

applied using Matlab function imgaussfilt3 with a smoothing-kernel

standard-deviation value of 2 for the GAL1 set and 2.5 for the

endogenous set. At this point, the analysis for the two sets diverged

considerably and so they are described separately. For the GAL1 set,

for each processed image, Otsu’s method for multiple thresholds,

Matlab function multithresh, was used to give six threshold levels

and the image was segmented into seven levels around these using

the Matlab function imquantize. The segmented images thus

contained pixels with values from 1 to 7. Each segmented image

was then restricted to a subsection of the available z stacks by

setting any pixels in z planes below or above certain values to zero,

to avoid any errors due to using overly blurred portions of the

image. For images with 31 z stacks, images were typically restricted

to include only pixels from z planes 12 to 22, inclusive, and for

images with 21 z stacks, images were typically restricted to z planes

from 2 to 20, inclusive. These values were manually adjusted in

some cases to allow for off centred focusing, but the same planes

were used for all images of a particular strain taken in a single

experiment.

The segmented levels were cycled through from the 3rd to the 7th

levels. For each level, a 3D logical image was formed from the pixels

with value equal to the value of the level. The z stacks were then

cycled through and all holes (areas with pixels with value 0 inside

areas with value 1) were filled, Matlab function imfill with flag

“holes”. Then, all 3D-contiguous regions (with 26 connectivity) of

pixel value 1 that had more than 6,000 or fewer than 50 pixels were

removed by setting all pixels in the region to zero, using Matlab xor

and bwareaopen functions. Any remaining 3D-contiguous regions

(26 connectivity) were then labelled using the Matlab function bwla-

beln. For levels lower than the final level, an identical procedure

was performed on the level immediately above, without the final

labelling step. Each labelled section was then cycled through, and if

there was no overlap with any non-zero valued pixels in the

segmented level above, it was deemed as a good candidate for a

nucleus and saved (the centroid was determined with the Matlab

function regionprops and flag “centroid”, and each coordinate was

rounded to the nearest integer). Any overlap with the level above

signified the existence of a superior candidate or superior candidates

in this region, and this potential nucleus was not saved. This

process was repeated until the final level in which no checking

against a higher level was possible.

Once all good nuclear candidates had been identified in this way,

any nuclei that were very close together were merged with the

following procedure. The Euclidean distances, measured in pixel

coordinates, between all centroid locations were calculated. A list of

all non-equal pairs of centroids that had a distance of less than or

equal to six between them was created. This was done by having

two nested loops: the outer loop cycled over the centroids from

i = 1 to (Nc–1) and the inner loop cycled over j = (i + 1) to Nc,

where Nc is the number of candidate centroids. Any i, j pairs from

ª 2018 The Authors Molecular Systems Biology 14: e8007 | 2018 17 of 21

Thomas Brown et al Modelling transcription dynamics Molecular Systems Biology

https://pdollar.github.io/toolbox


this loop with distance less than or equal to six were listed. If any

centroid appeared more than once in the list, this list was reordered

in ascending order of distances. The ordered list was then cycled

through in order and, starting with the i element of the pair, if this

centroid was repeated, all but this first appearance of this centroid

in the list was deleted, and then, the same test and deletion were

done with the second centroid of the pair. Then, all pairs of

centroids on the list were merged by taking the average of their

coordinates and rounding each coordinate to the nearest integer.

The distances between the new centroids were calculated, and the

process was repeated until no centroids that were within a distance

of six from another remained. This procedure prioritized merging

centroids that were closest together in the case that there were

multiple possible mergers.

For the endogenous set, the initial part of the nuclei detection was

much simpler. Each image was divided using two threshold levels,

Matlab function multithresh, and segmented into three levels with

imquantize. Each segmented image was restricted to only pixels from

z planes 1 to 20 inclusive. This amounted to either all of the planes or

all but the final plane for this set. New logical images were

constructed from the restricted pixels with value equal to the highest

segment value, 3. The z stacks of these images were then cycled

through, and holes were filled with imfill (flag “holes” as before).

Then, all 3D-contiguous regions (with 26 connectivity) of pixel value

1 that had more than 40,000 or fewer than 600 pixels were removed

by setting all pixels in the region to zero, using Matlab xor and bwar-

eaopen functions. The centroid for each labelled region was calcu-

lated using the function regionprops with flag “centroid”.

At this point, the analysis for the GAL1 and endogenous sets

reconverges in procedure. The list of centroids generated in one of

these ways was then used to generate 3D masks of the nuclei with

the following procedure. The centroids were cycled through and the

mean intensity of the 27 pixels, for the GAL1 set, or 125 pixels, for

the endogenous set, surrounding and including the centre pixel was

taken, using the filtered and z stack restricted DAPI signal. Logical

images were formed for each centroid by setting all pixels with inten-

sity greater than or equal to 0.65 times this mean value to unity and

all others to zero. The 26-connected 3D component from this that

overlapped with the centroid position was taken as the 3D nuclear

mask for this centre point. To avoid counting areas that were too

low intensity relative to the image, nuclei that had a mean intensity

of the 27 or 125 pixels less than 0.025 were rejected. Once this list

of nuclear masks had been created, a further filtering was done by

removing any nuclei that had a volume of fewer than 50 pixels for

the GAL1 set or 200 pixels for the endogenous set. For later analy-

sis, additional 2D nuclei masks were formed by taking the maxi-

mum of the 3D nuclei through the z stacks which due to the masks

being stored as logical images corresponds to the greatest extent in

the x and y coordinates that the nucleus has in any of the allowed

z stacks. At this step, the 2D nuclei were relabelled based on

connected components with eight connectivity (Matlab function

bwlabel) as it is possible for 3D nuclei to not touch but to overlap

when flattened in this way. For later classification of foci, these 2D

nuclear centres were extruded to fill the allowed z stacks.

Automated cell detection The 2D nuclei identified above were used

as seed points to identify cell outlines. Cell masks were identified

using the CellProfiler function IdentifySecPropagateSubFunction

from the MEX compiled file supplied with the developer’s version of

CellProfiler 1.0. Cells were identified with a combination of the DAPI

signal, FISH foci signal and autofluorescence of the cells observed in

the FISH channel. The IdentifySecPropagateSubFunction takes a

number of inputs: a set of seed points for cells; a 2D image with

varying intensity; a 2D logical image; and a regularization factor

which determines how to weight between the 2D images and

distance to the nearest seed points when determining cell bound-

aries. A regularization factor value of 0.0001 was used in all cases.

The 2D images with varying intensities were constructed by

combining processed DAPI and FISH channels in the following way.

For each channel of each image, the sum in the z direction was taken

to get a flattened image and the maximum and minimum intensities

observed in this image were found. Each pixel in the image was then

normalized as pi = (pi – min(p))/(max(p) – min(p)). For each

image, the normalized flattened channels were averaged, and then,

this average had a Gaussian filter applied (Matlab function imgauss-

filt with smoothing-kernel standard-deviation value of 2).

The 2D logical images were constructed starting in a similar way

by creating normalized and flattened images as above prior to the

averaging step. Each channel for each image had a Gaussian filter

applied; the DAPI signal used a smoothing-kernel standard-devia-

tion value of 5 and the FISH channel used a value of 2. Each filtered

channel for each image then had a threshold generated by taking

the lowest value from a three-level Otsu’s method thresholding

(Matlab function multithresh with three levels). Each of the filtered

channels for each image was then converted into a logical image

with pixels having an intensity less than the threshold being set to 0

and the rest being set to 1. The channels for each image were then

combined using the logical OR operation.

The nuclei and cells were then further processed to remove

anything touching a border of the image as cells touching the border

are likely to have part of the cell out of the image and using them

for data collection could bias the results. First any 3D-resolved

nuclei that touched the border in 3D were removed (Matlab function

imclearborder). Following this, any cell masks that were touching

the border were removed. Then, any 3D nuclei considered as being

too large (i.e. containing more than 3,000 pixels for the GAL1 set or

20,000 pixels for the endogenous set) were removed. The size-based

removal was done after cell detection as large detected nuclei often

corresponded to multiple nuclei close together and keeping these

causes the corresponding cells to be detected as one large cell,

which often aided in assigning the correct boundaries to nearby

cells. Then, any cells that did not overlap with any nuclei were

cleared and any nuclei that did not overlap with a cell were also

cleared. Finally, any cells that had two or more nuclei were

removed along with the corresponding nuclei. This case can happen

rarely when 3D nuclei do not touch but overlap when collapsed

onto 2D resulting in a merged nucleus. These were removed as it is

likely that there would be some cytoplasmic overlap also in this

case.

Foci classification and mRNA quantification Cells were first

divided into nuclear and cytoplasmic components. The nuclear

components were formed first by flattening the 3D-resolved nuclei

masks (taking the maximum over the z stacks) and then extruding

them to the allowed z stacks (the same z stack limits used when

restricting in the nuclei detection phase). The 2D cell masks were
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then extruded to the same allowed z stacks and had the nuclear

area within them set to zero, which gave the cytoplasmic compo-

nents. Foci whose centre pixel lay in the nuclear region where

classified as nuclear transcripts and foci whose centre pixel lay in

the cytoplasmic region were classified as cytoplasmic transcripts.

Any foci lying outside these regions were discounted from all

further analysis.

In order to quantify the foci in terms of RNA molecules, an inten-

sity value for all accepted foci was calculated by taking the mean of

the 27 pixels immediately surrounding and including the central

pixel (found by rounding each coordinate of the output of the

nonMaxSupr function to the nearest integer). For a strain and image

set from a single experiment, the median of these intensity values

was calculated and was taken to correspond to a single RNA mole-

cule. There is no reason that a FISH focus should contain only a

single RNA, especially in the nucleus, but we assumed that foci

most commonly contained a single RNA. Each focus intensity was

then converted into a corresponding number of mRNA molecules by

dividing by the median intensity and rounding to the nearest inte-

ger. Note that this can result in foci being classified as containing

zero RNA molecules and provides an additional filtering step similar

to the initial cut-off based on knockout strains.

The detection of nuclei and cells, and the quantification of foci is

performed by the supplied Matlab script DetectCellsAndQuan-

tifyFoci. This script should be run after the FindAndAnalyseFoci

function and DetermineCutoffs script as it uses the data generated in

the first script and the cut-off generated after averaging the deter-

mined cut-offs over an experiment. The cut-off must be manually

changed in the DetectCellsAndQuantifiFoci script before running.

Scripts and images are available from https://doi.org/10.17632/dhn

vj4xs5d.1.

Chromatin immunoprecipitation

Real-time quantitative PCR (qPCR) was performed using a Corbett

Rotorgene and SYBR green mix (Bioline). qPCR was performed in

triplicate for each sample and quantified using a standard curve.

Histone modification data [(IP—no antibody control)/input] were

expressed as a percentage of the input and normalized to levels of

histone H3 at each amplified region. Data are presented as averages

of ≥ 2 biologically independent experiments, with error bars repre-

senting the standard error of the mean.

Northern blotting

Raw images for quantification were captured using a FLA 7000

phosphorimager (GE Healthcare). Mean intensity of band was quan-

tified using Fiji/ImageJ. Normalized levels of RNA were obtained

from Northern blots. Data were tested for normality using a

Kolmogorov–Smirnov test; all P values were > 0.7 indicating no

evidence to suggest the data were not normally distributed. As such,

unpaired t-tests were used to compare levels of RNA between

strains across multiple experiments. Degradation rates were

obtained by fitting results across six timepoints to an exponential

using MATLAB fit function. Root mean square error was taken as

goodness-of-fit metric and correspondingly used as the standard

deviation of the estimator of the exponential decay term. To sample

degradation rates for the purposes of modelling, degradation rates

were sampled from a Beta distribution with maximum and mini-

mum values given by the 95% confidence intervals of the estimator

with standard deviation equal to the root mean square error of the

estimator.

Data availability

Images for RNA-FISH experiments, computer codes and all source

data are available from Mendeley https://doi.org/10.17632/dhn

vj4xs5d.1. Computer code is provided as Computer Code EV1.

Expanded View for this article is available online.
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