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We demonstrate an integrated approach to the study of a transcriptional regulatory cascade involved
in the progression of breast cancer and we identify a protein associated with disease progression.
Using chromatin immunoprecipitation and genome tiling arrays, whole genome mapping of
transcription factor-binding sites was combined with gene expression profiling to identify genes
involved in the proliferative response to estrogen (E2). Using RNA interference, selected ERa and
c-MYC gene targets were knocked down to identify mediators of E2-stimulated cell proliferation.
Tissue microarray screening revealed that high expression of an epigenetic factor, the E2-inducible
histone variant H2A.Z, is significantly associated with lymph node metastasis and decreased breast
cancer survival. Detection of H2A.Z levels independently increased the prognostic power of
biomarkers currently in clinical use. This integrated approach has accelerated the identification of a
molecule linked to breast cancer progression, has implications for diagnostic and therapeutic
interventions, and can be applied to a wide range of cancers.
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Introduction

Cancer is caused by the accumulation of genetic mutations
combined with changes in the epigenetic state of affected cells.
These changes result in the initiation and progression of
tumors, which can be described, in part, by the gene
expression profiles of the cancer cells in question, a unique
gene expression ‘signature,’ reflecting the activation or
suppression of biological pathways important in generating
the cancer phenotype (Perou et al, 1999; Sorlie et al, 2001; van
de Vijver et al, 2002; Sotiriou et al, 2003). Importantly, gene
expression profiling of tumors produces gene lists that do not
necessarily contribute to a measured clinical distinction, such
as the presence or absence of distant metastases. In fact, the
lack of overlap in gene lists from different studies is an

indication that, while capable of predicting patient survival,
the lists are only weakly informative with regard to mechan-
isms of oncogenesis. Many genes with statistical significance
in a gene expression signature will not serve as viable
candidates for the development of prognostic assays or
anticancer treatments (Ein-Dor et al, 2005; Fan et al, 2006).
Use of genomic screening techniques to explore cancer cell
physiology must therefore be followed by hypothesis testing to
validate the genes that are important for accurate prognosis
and to determine which are involved in the initiation and/or
progression of disease.

Estrogens (E2) are steroid hormones that play critical roles
in the initiation, development, and metastasis of breast and
uterine cancers (Yager and Davidson, 2006). The E2 response
in breast cancer cells is predominantly mediated by the
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estrogen receptor-a (ERa), a ligand-activated transcription
factor. ERa regulates transcription of target genes through
direct binding to its cognate recognition sites, known as
estrogen response elements (EREs), or by modulating the
activity of other DNA-bound transcription factors at alternative
DNA sequences (Bjornstrom and Sjoberg, 2005). The proto-
oncogene c-myc is upregulated by ERa in response to E2
(Dubik and Shiu, 1992) and encodes a transcription factor,
c-MYC (henceforth MYC), which regulates a cascade of gene
targets whose products mediate cellular transformation
(Ponzielli et al, 2005). Synergy between MYC and ERa at a
subset of E2-responsive promoters has been reported, suggest-
ing a cooperative role between ERa and MYC in breast cancer
progression (Cheng et al, 2006).

Endocrine therapy, often effective for ERa-positive breast
tumors, impairs the hormone–receptor complex or inhibits E2
production. Unfortunately, a significant fraction (B20–50%)
of ERa-positive breast tumors fails to respond (EBCTC, 1998),
or eventually develops resistance, to antiestrogen treatments
(Schiff et al, 2005). The lack of integrated and comprehensive
approaches to study pathways regulated by E2 has delayed our
understanding of the progression to hormone resistance in
cancer.

Using an E2-dependent breast cancer cell model, MCF7
cells, we employed an integrated genomic approach that
combined E2-stimulated gene expression profiling and gen-
ome-wide transcription factor-binding site detection for two
essential transducers of the E2 response, ERa and MYC. Recent
reports have similarly identified ERa-binding sites and E2-
activated gene expression in this cell model (Frasor et al, 2003;
Carroll et al, 2005, 2006; Laganiere et al, 2005). However,
integration of genomic screening data must be followed by
functional and clinical studies to develop useful tools for
diagnosing and treating cancer. Therefore, validation of direct
transcription factor-regulated gene targets, using gene-specific
knockdown in cell proliferation assays, was followed by
clinical correlation using primary cancer specimens with
associated data regarding patient outcomes. We demonstrate
that hormone-stimulated MYC enhances production of an
epigenetic factor, histone variant H2A.Z, the expression of
which correlates with increased probability of metastasis and
decreased patient survival. This integrated systems approach
is potentially applicable to the study of other oncogenic
pathways.

Results

Genome-wide identification of ERa- and
MYC-binding sites in MCF7 cells

Recent studies have performed location analysis for ERa in
MCF7 cells although MYC-binding sites have been identified
only in selected cell types (such as lymphoma or leukemic cell
lines), and not using whole genome arrays (Fernandez et al,
2003; Mao et al, 2003; Cawley et al, 2004). To validate
previously reported data, and to generate MCF7-specific MYC-
binding profiles, tiling microarrays spanning the entire
nonrepetitive human genome were used to perform an
unbiased search for direct targets of ERa and MYC. To
recapitulate the phenotype of E2-dependent tumors, MCF7

cells were stimulated to proliferate with E2 before chromatin
immunoprecipitation (ChIP).

We identified a total of 1615 ERa-bound regions (Po1e�5)
throughout the human genome (Supplementary Table 1). The
distribution of ERa-binding regions ranged from proximal
(o1 kb) to the nearest transcription start site (TSS) of a gene to
over 500 kb from the closest TSS (Figure 1A). Similarly, we
detected 311 MYC-bound regions across the human genome in
MCF7 cells (Supplementary Table 2). The distribution of MYC-
bound loci in relation to annotated TSSs is depicted in
Figure 1B. A total of 62.4% of ERa-bound regions detected in
our study were confirmed in an independently derived data set
using similar methods (Carroll et al, 2006) (common sites are
indicated in Supplementary Table 1).

We examined ERa- and MYC-binding regions for the
presence of predicted transcription factor-binding motifs and
detected statistically significant enrichment of canonical EREs
(AGGTCAnnnTGACCT) in ERa-bound regions and E-boxes
(CACGTG) in MYC-bound regions (Supplementary Figures 1–
3). Although we observed strong enrichment of EREs within
ERa-bound regions of the genome, a significant proportion of
ERa-bound regions may not contain a recognizable canonical
ERE (Supplementary Figure 3).

It is known that ERa may exert effects at non-ERE-contain-
ing chromatin targets through protein–protein interactions
with DNA-bound transcription factors, including the Fos and
Jun family complexes (i.e. AP-1) (Webb et al, 1999; Cheung
et al, 2005). Consistent with this observation, AP-1 sites were
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Figure 1 Genomic distribution of ERa- and MYC-binding sites. The
distributions of 1615 ERa- (A) and 311 MYC- (B) binding sites in E2-stimulated
MCF7 cells relative to known genes. Where multiple genomic probes indicated a
transcription factor-bound region, the center of each ERa- or MYC-binding region
was designated as the bound position. Within annotated genes, binding sites
were classified as follows: within 50 untranslated regions (50 UTR), within coding
sequences (CDS), within 50-most intron or the first intron, within other introns, and
within 30 untranslated regions (30 UTR). ERa or MYC binding in intergenic
regions was further classified based on the distance to the nearest annotated
gene (0–10, 10–50, and 450 kb).
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found to be highly enriched in ERa-bound regions (Supple-
mentary Figure 1). We confirmed significant enrichment of
binding sites for the forkhead transcription factor FOXA1
(Supplementary Figure 1). These data are consistent with a
recently proposed model in which a subset of ERa regulatory
regions are first targeted for transcriptional regulation by
FOXA1 (Carroll et al, 2005; Laganiere et al, 2005). Additionally,
we discovered significant enrichment of binding sites for the
GATA factor, CREB1, and MSX1 (Supplementary Figure 1).
Similar computational analyses were performed for MYC-
bound regions and significant binding site enrichment was
detected for CREB1, CTCF, AP-2g, Sp1, and ERa (Supplemen-
tary Figure 2).

We compared binding motif enrichment in ERa-bound
regions with and without predicted EREs. We found that
AP-1-, Forkhead-, GATA factor-, and CREB1-binding motifs
are significantly enriched in ERa-bound regions with and
without EREs (at a P-value cutoff of 0.01; data not shown).
Interestingly, the MYC-binding motif (E-box) is only signifi-
cantly enriched in ERa-bound regions containing EREs
(P¼1.27E�04) but not at loci without EREs (P¼5.90E�01;
data not shown). C/EBPb and MSK1 sites are enriched in
regions without EREs (P¼5.10E�03 and P¼2.10E�03, respec-
tively) but not in regions containing EREs (P¼6.97E�01 and
P¼7.59E�02, respectively; data not shown). These results
provide hypotheses regarding alternative gene regulatory
mechanisms at ERa-bound loci depending on the presence or
absence of an ERE motif at these loci. For example, ERa
localization to sites containing C/EBPb- or MSK1-binding
motifs may principally occur via tethering to C/EBPb or MSK1,
or to associated cofactors. By contrast, ERa and MYC may
preferentially bind target sites that contain both EREs and
E-boxes, consistent with the significant colocalization of
ERa- and MYC-binding regions identified by ChIP-Chip
(Supplementary Figure 4). This observation is consistent with

recent claims that MYC can synergize with ERa at E2-
responsive promoters and suggests that these factors may
physically interact to stabilize the transcriptional apparatus
(Cheng et al, 2006).

To further predict combinatorial interactions between
transcription factors, pairwise transcription factor-binding
motif enrichment in ERa- or MYC-bound loci was assessed.
The results demonstrated significant co-occurrence of EREs
and E-boxes in both ERa- and MYC-bound regions and
suggested new relationships, such as ERE plus NF-kB-binding
motifs in ERa-bound regions and E-box plus CREB1 motifs in
MYC-bound regions (Figure 2). Together, these data suggest
that some ERa- and/or MYC-bound loci represent diverse cis-
regulatory modules wherein multiple transcription factors
may converge with ERE-bound ERa and/or E-Box-bound MYC
to exert gene regulatory functions.

Distribution and cross-species conservation of
ERa- and MYC-binding sites

We examined the genome-wide patterns of ERa and MYC
binding to determine whether these factors tend to be localized
similarly within or near annotated genes. Both factors are
symmetrically distributed 50 and 30 of TSSs (Figure 3A),
suggesting that the orientation (50 versus 30) of response
elements with respect to the TSS of promoters does not
determine in vivo binding and may not influence transcription
factor function. However, ERa-binding sites were relatively
uniformly distributed from 10 kb downstream to 10 kb up-
stream of TSSs, whereas MYC bound more proximally, with
peak binding observed within 1 kb of target TSSs (Figure 3A).
These results demonstrate that MYC displays a binding
preference for core promoters or promoter-proximal regions.
We observed that a high proportion (77.7%) of ERa-bound
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targets were located greater than 10 kb from the nearest TSS
(Figure 3B), whereas 23.8% reside greater than 100 kb from
any annotated TSS in human genome.

We examined the evolutionary rates of regulatory regions
bound by ERa and MYC and found that these differ. ERa-
binding regions sustained relatively high sequence conserva-
tion between human and mouse or human and rat (about 75
million year divergence times) as compared to alignments of
genomic background, whereas MYC-binding regions did not
show sequence conservation above background levels
(Supplementary Figure 5). The evolutionary conservation
of ERa-bound sites supports their putative roles as functional
cis-regulatory elements.

Interestingly, in primate genomes, those regions closer to
gene start sites, in which many MYC sites predominate, appear
to undergo more rapid evolution (Keightley et al, 2005). Our

results indicate that mutation accumulation has reached
saturating levels between humans and rodents for MYC-bound
loci, whereas evolutionary comparisons are still informative
for ERa-bound regions.

Integrated analysis of expression data with
ERa- and MYC-binding regions

It is likely that only a subset of cis-regulatory elements are
transcription factor-bound and/or functional in a given cell
type under a given cellular milieu (Harbison et al, 2004).
Combining gene expression data in the presence and absence
of an activated transcription factor with data from transcrip-
tion factor localization identifies the activated or repressed
genes that are likely to be direct targets (Gao et al, 2004).

We measured gene expression changes in MCF7 cells after 4,
12, and 24 h of E2 treatment (Figure 4 and Supplementary
Table 3). Gene expression profiling was combined with direct
ERa-binding site localization to reveal that 5.1% of ERa-
binding sites were within 10 kb of the TSS of any E2-responsive
gene (Supplementary Table 4), consistent with the observation
that ERa often binds far from target TSSs (Figures 1A and 3B).
Nevertheless, these results revealed significant enrichment of
receptor binding near regulated genes when compared to
expectations generated by a random distribution model
(Po5.4e�6). When we considered ERa-binding sites within
200 kb of any TSS, we found that 39% were in the vicinity of an
E2-responsive gene (Po4.1e�12). The 61% of ERa-binding
sites that were greater than 200 kb from any E2-responsive TSS
may be regulating genes from extreme distances, may be
regulating genes that are not currently annotated or may be
inactive in MCF7 cells.

A systems-level analysis of E2 targets was performed by
combining global protein–protein interaction data with our
data from ERa and MYC location analyses and our measured
E2-dependent changes in gene expression (Figure 5) (Peri et al,
2003; Stark et al, 2006). Several interesting modules involved
in cellular proliferation were identified within the E2 signaling
network. Enrichment for modules related to nucleic acid and
protein metabolism is highlighted (Figure 5). The complete set
of pairwise interactions of proteins involved in the E2 signaling
cascade is presented in Supplementary Table 5. Presented in
this way, the data suggest new functional relationships between
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primary and secondary responders in the E2 cascade, possibly
influenced by protein–protein interactions. Here we discuss our
findings generated by this systems-level analysis, focusing on
E2 signaling cascade connections that we uncovered within the
cell cycle, within other major cellular signaling modules, and
associated with chromatin remodeling.

Multifaceted estrogen-mediated regulation of the
cell cycle

To better understand E2-mediated signaling networks, we
measured the associations of ERa and MYC gene targets with

hundreds of a priori defined gene sets (such as signaling
pathways and cancer gene signatures) available in databases
including Gene Ontology (GO) (Ashburner et al, 2000), KEGG
(Kanehisa et al, 2006), BioCarta (www.Biocarta.com), and
GeneMAPP (Doniger et al, 2003) (Supplementary Table 6). The
list of all transcription factor-bound sites corresponding to
E2-regulated genes is provided in Supplementary Table 4,
which indicates, for each E2-responsive gene, the distance to
the nearest transcription factor-bound locus. Our working
definition of a cis-regulatory element corresponding to a given
E2-responsive gene (criteria Po0.01 for at least one time point
performed at least in triplicate; see Supplementary informa-
tion) was limited to a transcription factor-bound locus within

MYC binding

E2 regulated only

ERα binding

MYC binding and E2 regulated

MYC binding and ERα binding

ERα binding and E2 regulated

Protein synthesis

Protein degradation

DNA synthesis
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Figure 5 A protein–protein interaction network of E2 signaling targets. (A) Overview of the protein–protein interaction network of E2 signaling targets. The nodes
represent target genes that are E2-regulated, or harbor ERa-binding sites within 50 kb of their TSSs, or harbor MYC-binding sites within 20 kb of their TSSs (see color
legend). The node size correlates with the degree of node connectivity. The edges denote protein–protein interactions derived from Human Protein Reference Database
(HPRD) (Peri et al, 2003) and the BioGRID database (Stark et al, 2006). The network was visualized using Cytoscape (Shannon et al, 2003). (B, C) Expanded views of
representative modules in the protein–protein interaction network of E2 signaling targets. Modules or highly connected subnetworks are identified with MCODE (Bader
and Hogue, 2003). The modules shown in panels B and C are functionally related to key cellular processes involved in nucleic acid and protein metabolism.
Enhancement of these functional modules may be necessary for rapid cellular growth and proliferation stimulated by E2 in breast cancer cells.
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200 kb of the TSS for that gene. Our analysis indicates
widespread E2-mediated direction of biochemical pathways
relevant to cell survival and proliferation.

We found that ERa directly regulated genes in all phases of
the cell cycle and that MYC directly regulated a different but
overlapping set of factors (Supplementary Figure 6). We
detected significant overlap with over 800 cell cycle genes
previously described in HeLa cells (164 out of 888, Po1e�16)
(Whitfield et al, 2002) (Table I). Accordingly, when our E2-
responsive gene list was compared to GO categories, we found
significant enrichment for terms directly connected to cell
cycle progression, including ‘M phase of mitotic cell cycle,’
‘nuclear division,’ and ‘DNA replication and chromosome
cycle’ (Supplementary Table 6).

Prior work has focused on E2-mediated control of the cyclin
D1–CDK4/CDK6 complex during G1 and on the activity of the
cyclin E–CDK2 complex in the G1/S transition (Doisneau-
Sixou et al, 2003; Caldon et al, 2006). Our genomic studies
confirmed direct transcriptional activation of CCND1 by ERa
and confirmed CDK4 as a direct target of MYC (Supplementary
Figure 6). However, we also observed novel targets such as the
significant downregulation of CDK6 mRNA after E2 treatment
(Supplementary Table 3). Lower levels of CDK6 in breast
cancer cells compared with normal mammary epithelial cells
have been reported, and ectopic expression of CDK6 surpris-
ingly inhibits proliferation of mammary epithelial cells (Lucas
et al, 2004). We also observed upregulation of members of the
E2F transcription factor family and of their heterodimerization
partner TFDP1 (Supplementary Figure 6), and our results
suggest direct transcriptional regulation of TFDP1 by ERa and
MYC and regulation of E2F6 by ERa.

E2 similarly regulates the transition of G2 to M. CDC2 was
significantly upregulated by E2 and ERa binding near CDC2
was detected. E2-stimulated expression and ERa binding were
also detected for BUB1, which is involved in spindle
checkpoint function, and E2-regulated gene expression was
observed for spindle checkpoint genes BUB3, MAD2L1,
CDC20, PLK1, PLK4, KNTC2, and STK6 (Supplementary
Table 3). Mitotic checkpoint defects have been suggested to
explain conditions of chromosomal instability (Kops et al,
2005) although mutations in those checkpoint genes are
relatively uncommon in human tumors (Olesen et al, 2001).
Interestingly, elevated expression of MAD2L1 and BUB1 has
been correlated with advanced tumor status and poor clinical
outcomes in breast cancer (van ‘t Veer et al, 2002) and
neuroblastoma (Hernando et al, 2004). Levels of many mitotic
checkpoint proteins are also higher in breast cancer cell lines
than in normal mammary epithelial cells (Yuan et al, 2006).
Similarly, we found that the gene for d-tubulin (TUBD1),
a component of centrioles and the mitotic spindle, is
upregulated by E2 and the gene has nearby binding sites for
both ERa and MYC. Vinca alkaloids and taxanes, which target
a- and b-tubulins, are effective therapies limited by
widespread toxicities to normal cells. To date, no targeted
therapy has been developed for d-tubulin.

Finally, the ras-related nuclear protein (Ran) gene is
stimulated by E2 and targeted by ERa (Supplementary Table
4 and Supplementary Figure 7). RAN plays a central role in
spindle assembly, nuclear envelope reassembly after mitosis,
and directs the flow of proteins into and out of the cell nucleus.
These results demonstrate that E2 affects the cell cycle at
multiple levels.

Table I E2-regulated genes periodically expressed during cell cycle progression, and ERa- and MYC-bound loci

Cell cycle phase Gene symbols

Upregulated
G1/S ACYP1, CEP57, CHAF1B, E2F1, E2F2, FANCG, FLAD1, FLJ13912, GMNN, HELLS, ITGB3BP, MCM4, MCM5, MCM6,

MGC24665, NFKBIL2, NSUN5C, PCNA, Pfs2, PMS1, POLD3, RECQL4, SFRS7, SLC25A36, SSR3, TLOC1, ZMYND19
S ASF1B, ATAD2, BRIP1, C1orf73, C8orf1, CCDC14, COL7A1, DCC1, DHFR, DNA2 L, EZH2, FLJ12788, FLJ25416, FUSIP1,

HIST1H4C, HSPB8, KIAA1794, LASS6, MLF1IP, PHIP, PRIM1, PRIM2A, RAD51, RFC4, RHOBTB3, RRM2, SH3GL2,
SLC38A2, TOP2A, UBE2T

G2 BCDIN3, BRD8, BUB3, C12orf32, C1orf155, C20orf129, CBX5, CCNA2, CDC2, CDC25C, CDCA2, CDCA8, CHEK2,
DKFZp762E1312, FLJ10038, FLJ22624, H2AFX, hCAP-D3, HIPK2, KIF11, KIF22, KIF23, KIFC1, KNTC2, MELK, MND1,
NY-SAR-48, RGS3, SMC4L1, STIL, TMPO, TTF2, TUBD1, UBE2C, WDR68

G2/M ANLN, AURKA, BMP2, BUB1, C15orf23, CCNB2, CDCA1, CDCA3, CENPA, CENPE, CEP55, CIT, CKS2, CNOT10, CTCF,
DEPDC1, DLG7, ECT2, EPR1, FAM64A, GTSE1, HCFC1, HN1, NEK2, NUSAP1, PRR11, RAD51C, RNF141, SHCBP1, SPAG5,
TPX2, TRIP13, USP16, YWHAH, ZMYM1

M/G1 AMD1, ANP32E, AOC2, CBX3, CCND1, CDKN3, DKC1, GATA2, HIF1A, HSPA8, HSPC196, ILF2, MORF4L2, NUCKS1,
NUDCD2, NUP37, PBK, PLK1, RAN, SLC39A10, STAG1, TROAP

Downregulated
G1/S HIST2H2AA
S ABCC5, EGFL5, FLJ13231, KIAA1370, RRM1, SLC9A3, ZNF217
G2 CDKN2C, FLJ20699, KCTD9, LOC284219
G2/M N4BP3
M/G1 AKAP13, PLK2

ERa targets
c-MYC targets
Common targets

The table identifies 164 E2-regulated genes (149 upregulated and 15 downregulated) in MCF7 cells, which were identified as periodically expressed genes during cell
cycle progression in HeLa cells (Whitfield et al, 2002). These genes are further grouped based on each cell cycle phase (G1/S, S, G2, G2/M, and M/G1). Genes containing
ERa- or MYC-binding sites are indicated in blue and green, respectively. Common targets for both ERa and MYC are labeled in red. A significant fraction of the cell cycle
genes (49 out of 164, Po3.2e�9) identified in our study contain binding sites for ERa and/or MYC within 200 kb of the TSS, supporting substantial and direct
transcriptional control of the cell cycle apparatus mediated by these transcription factors.

Genomic analysis of estrogen response in cancer
S Hua et al

6 Molecular Systems Biology 2008 & 2008 EMBO and Nature Publishing Group



Intersection of the estrogen cascade with cell
signaling pathways

Some of the pleiotropic effects of ERa signaling are due to
cross-talk with signaling pathways including those responding
to growth factors and/or involving MAPK, PI3K, and PKA
(Bjornstrom and Sjoberg, 2005). We investigated the extent of
cross-talk between ERa signaling and many other known
pathways curated in BioCarta and GenMAPP. Epidermal
growth factor (EGF) signaling and insulin-like growth factor
1 (IGF-1) signaling were among the top pathways to be
significantly enriched in our data set. Representative genes
responsive to E2 and harboring ERa- or MYC-binding sites
involved in these pathways are shown in Supplementary
Tables 4 and 6.

We identified a significant enrichment of E2 target genes in
the pathway of the mammalian target of rapamycin (mTOR)
(Supplementary Table 6). mTOR is a conserved Ser/Thr
kinase-activated protein important in the pathogenesis of
cancer, cardiovascular disease, and metabolic disorders (Choo
and Blenis, 2006). We detected ERa binding and significant E2-
stimulated expression of the gene for RHEB, a protein that
promotes TOR signaling. We detected both ERa- and MYC-
binding sites near the gene for the ribosomal protein S6 kinase
(RPS6KB1), a critical target of TOR signaling whose activity
leads to increased protein synthesis and cell proliferation.
Amplification of the region of DNA encoding this gene and
overexpression of this kinase are seen in some breast cancers
and are associated with poor prognosis and metastasis (van
der Hage et al, 2004). These results indicate that cross-talk
between E2-stimulated ERa and growth factor signaling
pathways occurs at multiple levels including the regulated
expression of genes essential for growth factor signaling.

Estrogen-regulated expression of chromatin
factors

Epigenetic alterations play critical roles in tumorigenesis and
cancer progression (Lund and van Lohuizen, 2004; Feinberg
et al, 2006). We identified targets of E2 involved in many
aspects of epigenetic regulation (Figure 6). Members of the
Polycomb group involved in transcriptional silencing, includ-
ing EZH2 and EED, both components of the Polycomb
repressive complex 2 (PRC2), were upregulated by E2
(Figure 6). In addition, E2 activated the expression of other
genes associated with PRC2 activity, including HDAC2,
DNMT1, and HMGB1. HDAC2 has been shown to interact
with EED in vivo and DNMT1 can be recruited to target genes
by interacting with EZH2. The Drosophila homologue of
HMGB1, Dsp1, plays an essential role in recruiting Polycomb
proteins to target chromatin. Although the specific targets of
Polycomb complexes in breast epithelial cells are largely
unknown, the overexpression of components associated with
PRC2 by E2 is intriguing because high levels of EZH2 have been
associated with increased cancer cell proliferation, tumor
invasiveness, and poor prognosis in breast cancer (Kleer et al,
2003).

Histone modifiers including HDAC3 and HAT1 were E2
responsive (Figure 6) and HAT1 harbors an ERa-binding site.
Two methyl-DNA-binding proteins involved in gene silencing,

MeCP2 and MBD3, demonstrated E2-regulated gene expres-
sion and MeCP2 was ERa-bound. E2 regulated the histone
chaperones CHAF1B, targeted by ERa, and ASF1B. CAF-1 and
ASF1B cooperate to deposit histones into newly synthesized
DNA at replication forks. The upregulation of these histone
chaperones and DNMT1, the principal maintenance DNA
methyltransferase recruited to DNA replication foci, may be
necessary to regulate epigenetic inheritance of histone
modifications and DNA methylation patterns in proliferating
MCF7 cells in response to E2. These gene products may
provide a novel epigenetic signature of cellular proliferation,
as recently suggested for CHAF1B (Polo et al, 2004).

Variant histones have been suggested to produce an
additional layer of epigenetic gene regulation. E2 enhanced
the expression of two H2A variants, H2A.X and H2A.Z, and
MYC-binding sites were detected for both genes (Figure 6). E2
also enhanced expression of several proteins involved in
regulating and/or maintaining higher-order chromatin struc-
ture, including heterochromatin protein HP1a, the boundary
element-binding protein CTCF, and the high-mobility group
proteins HMGB1 and HMGN1 (Figure 6), suggesting active
epigenetic reprogramming in breast cancer cells.

RNAi of ERa and MYC targets in MCF7 cells

We selected a subset of E2-inducible targets of ERa and MYC
for functional analysis and compared these to several genes
with no reported or detectable role in E2 signaling. RNAi
targets also included known oncogenes, transcription factors
and cofactors, and regulators of the cell cycle. RNAi-mediated
depletion of ERa resulted in marked reduction in MCF7
growth, demonstrating the essential role of this receptor in
the maintenance of these cells (Figure 7). RNAi-mediated

>1.50<–1.5

Within genes

50–200 kb

10–50 kb

0–10 kb

ChIP sites

Expression

E2 (h)

4 12 24

ChIP sites

ERα MYC

EED

MeCP2

MBD3

EZH2

HDAC2

HDAC3

HAT1

HP1α
HMGB1

HMGN1

DNMT1

PcG
 a

cti
vit

y

DNA m
et

hy
lat

ion

ASF1B

CHAF1B

H2A.X

H2A.Z

CTCF

Hist
on

e 
m

od
ific

at
ion

Hist
on

e 
ch

ap
er

on
es

Va
ria

nt
 h

ist
on

es

Chr
om

at
in 

str
uc

tu
re

Figure 6 Targets of E2 signaling participate in epigenetic regulation. Targets of
E2 signaling involved in epigenetic regulation of gene expression were observed.
These chromatin factors include the components in Polycomb group (PcG)
complexes, DNA methyltransferases and methyl-DNA-binding proteins, histone
modifiers, histone chaperones, variant histones, and proteins maintaining higher-
order chromatin structure. Gene expression changes upon E2 treatment are
color-coded (log2-transformed fold changes). Genes for which ERa or MYC
binding was detected (ChIP-chip sites) are indicated and the location of the
binding site relative to the TSS is depicted (see color legend).

Genomic analysis of estrogen response in cancer
S Hua et al

& 2008 EMBO and Nature Publishing Group Molecular Systems Biology 2008 7



depletion of MYC showed more modest effects on cell
proliferation. Impaired cell proliferation was observed after
RNAi of RAN, required for DNA synthesis and spindle
assembly, Supervillin (SVIL), which serves as a nuclear
receptor coactivator and an actin-binding protein, the tran-
scription factor FOXA1 (discussed above), the chromatin
factors GATA1 and GATA3, and the variant histone H2A.Z
(Figure 7).

Reduction in cell proliferation ranged from minor but
statistically significant effects to nearly complete loss of cell

growth. In most cases, the inhibition of cell proliferation was
observed in both E2-stimulated and vehicle-treated MCF7 cells
and some E2-dependent growth enhancement was preserved.
These results are consistent with our observation that
E2-stimulated proliferation is mediated by genes in multiple
pathways, in series and in parallel, such that elimination
of any single gene product may not entirely ablate the
proliferative response.

Histone variant H2A.Z as a novel epigenetic
marker of breast cancer progression

GATA3 and FOXA1 expressions have been shown to correlate
with breast cancer response to therapy and overall patient
survival (Lacroix and Leclercq, 2004; Mehra et al, 2005). We
reasoned that some of the gene targets that we identified may
similarly serve as useful prognostic tools. In particular, we
were interested in focusing on chromatin remodeling factors
because of the proposed role in epigenetic dysregulation in
cancer progression (Lund and van Lohuizen, 2004; Feinberg
et al, 2006). We therefore investigated the E2-stimulated gene
for histone variant H2A.Z which was bound by MYC in our
ChIP-chip assay and which demonstrated a statistically
significant effect on cellular proliferation in the RNAi screen
(Figure 7). Furthermore, H2A.Z has never been reported to
play a role in oncogenesis although previous studies have
implicated it in chromatin remodeling, genomic stability,
chromosome segregation, and gene transcription (Adam et al,
2001).

The H2A.Z gene promoter harbors two adjacent canonical
E-boxes (CACGTG) bound by MYC (Figure 8A). ChIP-PCR
confirmed that MYC is recruited to the H2A.Z promoter after
E2 treatment (Figure 8B), leading to increased gene and
protein expression in MCF7 cells (Figure 8C). Thus, H2A.Z is
induced by E2 partly via the activation of MYC.

We next interrogated a primary breast tumor-containing
tissue array representing over 500 unique samples (Figure 8D).
The intensity of H2A.Z immunostaining in these samples was
highly correlated with the presence of metastasis to lymph
nodes (Table II) and decreased patient survival demonstrated
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Table II High H2A.Z expression is an independent marker associated with decreased patient survival

Variable Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P-value Hazard ratio (95% CI) P-value

Nodal status o0.0001 o0.0001
Positive 2.31 (1.82–2.96) 2.03 (1.52–2.73)

Nuclear grade 0.0018 0.38
High (3/3) 1.52 (1.17–1.96) 1.14 (0.84–1.53)

H2A.Z expression 0.0004 0.027
High 1.73 (1.29–2.31) 1.44 (1.04–1.97)

E2 receptor status 0.060 0.63
Negative (0/3) 1.25 (1.00–1.59) 1.07 (0.81–1.42)

Progesterone receptor status 0.042 0.20
Negative (0/3) 1.28 (1.01–1.62) 1.20 (0.91–1.59)

HER2/neu status 0.19 0.052
Positive (2–3/3) 1.23 (0.90–1.65) 1.45 (1.00–2.06)

Tumor size (per cm) 1.15 (1.10–1.20) o0.0001 1.10 (1.04–1.16) 0.0010

CI, confidence interval.
Univariate and multivariate analyses of overall breast cancer patient survival were performed based on Cox proportional-hazards regression models. Hazard ratios with
95% CIs are indicated. Statistically significant observations (Po0.05) are in boldface.
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by the Kaplan–Meier survival analysis (Figure 8E). Similar
results were observed when H2A.Z protein levels were
analyzed using a newly established tissue microarray staining
and scoring technology (Camp et al, 2002), as well as when
measuring H2A.Z mRNA levels using an independent cohort
of 295 tumor samples from a published transcriptome study
(van de Vijver et al, 2002) (Supplementary Figure 7).

The predictive value of H2A.Z protein expression on breast
cancer survival was assessed by univariate and multivariate
analyses based on Cox proportional-hazards regression
models (Table II). Univariate analysis confirmed that high
expression of H2A.Z is significantly associated with shortened
overall survival. The multivariate analysis showed that H2A.Z
expression is retained as an independent predictor of survival
and provides significant prognostic information independent
of standard clinicopathologic measures. Because H2A.Z
expression remained significant in a multivariate analysis
with factors including lymph node status, grade, and tumor
size, it added prognostic information beyond what these
factors alone provide.

Discussion

This integrated analysis of genome-wide transcription factor-
binding sites combined with comprehensive gene expression
profiling data sets enabled the identification of direct gene
targets for ERa and MYC, both mediators of the E2 proliferative
response. Overlay of these data with protein–protein interac-
tion maps and GO annotation revealed enrichment for several
biological modules. RNAi, when combined with cell prolifera-
tion assays, enabled confirmation of functional contributors to
the E2-stimulated proliferative response. Complete genome
coverage enabled powerful bioinformatic analyses to detect
enriched sequence motifs within the identified regulatory
regions.

A significant fraction of ERa-binding sites (nearly 80%)
were located greater than 10 kb from any annotated TSS. Nye
et al (2002) demonstrated that ERa displays the ability to alter
large-scale chromatin structure when tethered or directly
bound to DNA (Nye et al, 2002). Together, these observations
imply long-range interactions between ERa regulatory regions
and target promoters, closely tied to higher-order chromatin
conformational changes (such as chromatin decondensation,
compaction, and territory formation). Some chromatin
changes are initiated by unliganded ERa (Apo-ERa) and may
maintain targets in a state that is poised for rapid gene
activation once stimulated by E2 (Metivier et al, 2004).

Large-scale processive/propagated changes in chromatin
structure (i.e. chromatin opening) have yet to be shown to
independently activate gene transcription in mammalian cells
but may potentiate additional gene activation events. Alter-
natively, distant binding sites may physically participate in
coregulator recruitment to target promoters via DNA linking or
looping (Bulger and Groudine, 1999). A recent study showed
that half of conserved noncoding elements with great
regulatory potential were located more than 250 kb away from
their associated genes (Vavouri et al, 2006). Long-range intra-
chromosomal, or recently characterized interchromosomal,

interactions may contribute to regulatory complexity in higher
eukaryotes (Spilianakis et al, 2005; Ling et al, 2006).

Importantly, our analysis shows that fewer than half of
chromatin fragments associated with ERa contain near-
consensus ERE sequences. This result suggests that the
majority of chromatin regions targeted by ERa consist of
cis-regulatory modules wherein ERa is tethered to DNA
by interacting transcription factors or binds to highly
variant EREs.

Our data extend the current understanding of E2-mediated
regulation of the cell cycle by significantly expanding the list of
direct and indirect targets of ERa and MYC whose products
participate in diverse cellular pathways relevant to cancer cell
proliferation and viability. We intend to pursue our character-
ization of newly defined gene targets of ERa and MYC with a
view to better characterizing the essential participants that
support oncogenesis, metastasis, and resistance to hormonal
therapy and chemotherapy. Our approach will continue to
include widespread functional analysis of candidate genes
using RNAi in proliferation assays; promising candidates can
then be tested using primary tumor samples from tissue arrays.

Blocking the ERa pathway with antiestrogens provides an
important therapy in the management of receptor-positive
cancers, including B70% of breast cancers. Unfortunately,
this therapy is hindered by the subsequent development of
tumors resistant to antiestrogen treatment, a process that
can involve an E2-autonomous MYC (Rodrik et al, 2005).
However, resistance to antiestrogens also appears to be
mediated via bidirectional cross-talk between liganded or
apo-ERa and participants in the intracellular signaling
cascades engendered by growth factor receptors such as Her-2/
neu (ERBB2) (Schiff et al, 2005). Previous studies suggest
that the full mitogenic effects of polypeptide growth factors
such as EGF, IGF-I, and TGF-a in some cells require the
presence of a functional ERa (Curtis et al, 1996). Our data
indicate an additional level of cross-talk between E2 and
growth factors: many genes for participants in growth factor
signal transduction cascades are directly regulated by ERa
and/or MYC (Supplementary Table 6).

Because of the heterogeneity of tumor gene expression
signatures (Pan et al, 2005), and the poor correlation between
tumor gene signatures and genes mechanistically essential for
tumorigenesis, it has been difficult to identify gene targets
that might enable the development of new cancer therapies
(Ein-Dor et al, 2005). Our integrated analysis of ERa and MYC
permitted rapid identification of the mechanism of H2A.Z
induction by E2 in breast cancer cells and motivated
quantitation of this chromatin protein in primary breast
tumors. H2A.Z is a novel target of E2 action in breast cancer
cells, correlates with aggressiveness of the tumor, and may
serve as an important prognostic marker when assessing
primary tumors as well as a target for directed therapy. The
observed association between H2A.Z overexpression and poor
clinical outcomes implies that a variant histone replacement
pattern is a marker for, and possibly a cause of, increased
tumor aggressiveness.

Although MYC stimulates H2A.Z expression (Figure 8A–C),
H2A.Z protein has been reported to downregulate the
expression of c-myc in a promyelocytic cell line in a process
that provokes RNA polymerase II stalling at the gene promoter
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(Farris et al, 2005). This effect is reversible upon replacement
of H2A.Z with the core histone H2A. These data suggest the
potential for feedback regulatory loops between MYC and
H2A.Z gene expression. H2A.Z was recently shown to mediate
localization of genes to the nuclear periphery in a process that
may confer memory of previous transcriptional states to
promote rapid gene reactivation (Brickner et al, 2007). In addi-
tion, H2A.Z participates in the CTCF-containing boundary/
insulator complex (Yusufzai et al, 2004). It is thus intriguing to
note that, in MCF7 cells, E2-stimulated expression and
ERa binding was detected for the CTCF gene, which, in turn,
regulates MYC gene expression and can inhibit apoptosis
(Docquier et al, 2005). Complex patterns of feedback
regulation, or dysregulation, between these players may help
dictate the proliferative phenotype in some breast cancer cells.
The factors that determine H2A.Z placement throughout the
mammalian genome are not well characterized.

Finally, GATA3 and ERa were recently shown to participate
directly in reciprocal positive regulatory loops (Eeckhoute
et al, 2007), and clinical studies indicate that GATA3 is a good
prognostic marker and predicts hormone responsiveness in
breast tumors (Mehra et al, 2005). The significant enrichment
of binding motifs of GATA family transcription factors in ERa-
bound regions supports a hypothesis of transcription factor
synergy in breast cancer cells. We found that a significant
number of GATA3-induced genes in human 293T cells (Usary
et al, 2004; Oh et al, 2006) are also direct targets of ERa
identified by ChIP (85 out of 295, Po1e�16; data not shown).
When knocking down GATA3 expression by RNAi, we
observed severe proliferation defects in MCF7 cells (Figure 7),
consistent with a role for GATA3 in regulating ERa production
and function.

GATA3 plays an important role in establishing long-range
chromatin changes during Th2 cell differentiation (Spilianakis
and Flavell, 2004). These observations suggest that GATA3 may
modulate ERa regulatory activity on a subset of genes essential
for cellular proliferation, possibly via modifying regional
chromatin. The power to detect cis-regulatory modules acting
at important genomic loci should pave the way to developing
new diagnostic and therapeutic strategies in oncology.

Materials and methods

Cell culture

MCF7 cells (ATCC) were grown as described (Carroll et al, 2005) and
cells were changed to E2-depleted, phenol-free media for 72 h before
E2 treatments.

Reverse transfection with siRNAs

Reverse transfection with Dharmafect (Dharmacon) was carried
out by using 50 nM of control or gene-specific siRNA in each well of
a 96-well plate and 5000 cells/well according to the manufacturer’s
protocol. Cells were treated with 1 nM E2 or vehicle for 24 h. Gene-
specific siRNA oligonucleotide sequences are listed in Supplementary
information.

Cell proliferation and BrdU incorporation assays

Cellular proliferation was measured using 5-bromo-20-deoxyuridine
(BrdU) incorporation into DNA of replicating cells. The BrdU assay

was performed using an enzyme-linked immunosorbent assay-based
chemiluminescent kit (Roche) according to the manufacturer’s
protocol.

Western blotting

Cell lysates in 1% SDS lysis buffer were quantified using the Micro BCA
Protein Assay Kit (Pierce), and 40 mg of total protein per well was
separated by SDS–PAGE, transferred to PVDF membranes, and probed
with antibodies against H2A.Z (Upstate, no. 07-594 at 1:5000) or
loading control b-actin (Abcam, ab6276 at 1:10 000). Secondary
antibodies (conjugated with horseradish peroxidase) were incubated
at a dilution of 1:3000, and blots were developed using Amersham ECL
Plust Western Blotting Detection Reagents according to the manu-
facturer’s protocol (GE Healthcare).

Gene expression profiling

Gene expression profiling and analysis were performed as described
previously (Rifkin et al, 2003). Briefly, total RNA was isolated using
Trizol (Invitrogen) according to the manufacturer’s instructions.
Poly-A mRNA was purified from total RNA and cDNAs were prepared
from 2 mg poly-A RNA and labeled using the Powerscript fluorescent
labeling kit (BD Biosciences) and monofunctional Cy3 and Cy5 dyes
(Amersham/Pharmacia) as per the manufacturer’s protocol. The
OHU21K human oligonucleotide array (Yale’s Keck Facility) was
hybridized at 641C in a hybridization buffer consisting of 2.83� SSC,
0.5 mg/ml polyadenylic acid (Sigma), and 0.18% SDS. The arrays were
washed and scanned in an Axon 4000 array scanner as described
previously (Rifkin et al, 2003). Each hormone treatment was
performed at least three times and hybridizations included dye swaps.
Data analysis using MAANOVA and WinABAGEL v.3.6 are described in
Supplementary information.

ChIP-chip experiments

MCF7 cells were E2-deprived for 3 days and then were treated with
10 nM E2 (45 min and 2 h for mapping ERa- and MYC-binding sites,
respectively) at 80% confluence. An E2 exposure for 45 min has been
demonstrated to produce maximal ERa binding to chromatin (Shang
et al, 2000; Carroll et al, 2005). B5�106 cells per ChIP were
crosslinked with 1% formaldehyde for 10 min at 371C and then
quenched with 125 mM glycine. The cells were washed with cold PBS
and scraped into PBS with protease inhibitors (Roche). Cell pellets
were resuspended in ChIP lysis buffer (1% SDS, 10 mM EDTA, 50 mM
Tris–HCl (pH 8.1)) and sonicated (Fisher Sonic Dysmembrinator). The
sheared chromatin was submitted to a clarification spin and the
supernatant then used for ChIP or reserved as ‘input’. Antibodies used
were anti-ERa (Ab-1, Ab-3, and AB-10; Lab Vision), anti-ERa (MC-20),
anti-MYC (N-262), normal rabbit IgG (sc-2027) (all Santa Cruz), and
mouse IgG (Upstate, no. 12-371). For ChIP-PCR assays, forward and
reverse primer sequences in the H2A.Z promoter were 50-GCTACA
TACCGAGGAGACTTCA-30 and 50-AGGGAAGAAACAGAGCGAGCTA-30.
For ChIP-chip, both ChIP DNA and input DNA were subjected to the
linker-mediated amplification and ChIP and input DNA samples were
further fragmented with DNase I and then end-labeled with biotin. The
resulting samples were hybridized to Affymetrix GeneChips Human
Tiling 2.0R Arrays as per the Affymetrixs ChIP protocol. Independent
biological triplicates were performed for each transcription factor and
for the control (input). Data analysis is described in Supplementary
information.

Tissue array immunohistochemistry

Detailed description of the multiple tumor tissue array design,
immunohistochemistry scoring, and data analysis is provided in
Supplementary information. Briefly, for immunohistochemistry, tissue
array slides were deparaffinized by rinsing with xylene, followed by
two washes with 100% EtOH and two washes with water. The slides
were then boiled in sodium citrate buffer (pH 6.0) for antigen retrieval.
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To block endogenous peroxidase activity, the slides were incubated
with 2.5% hydrogen peroxide in methanol for 30 min at room
temperature. The slides were then washed with Tris-buffered saline
(TBS), incubated in 0.3% BSA/1�TBS for 30 min at room temperature
to reduce nonspecific background, and then stained with antibody
against H2A.Z (Upstate, no. 07-594) at 1:5000 dilution in BSA/TBS at
41C overnight. The slides were rinsed three times in 1�TBS/0.05%
Tween 20. Bound antibody was detected by applying anti-rabbit
horseradish peroxidase-labeled polymer secondary antibody from the
DAKO EnVision kit. The slides were washed with 1�TBS/0.05%
Tween 20 and incubated for 10 min in 3,30-diaminobenzidine
in buffered substrate (Dako). Counterstaining was performed
with hematoxylin and slides were mounted with Immunomount
(Shandon).

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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