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Abstract: The introduction of various networks into automotive cyber-physical systems (ACPS)
brings great challenges on security protection of ACPS functions, the auto industry recommends to
adopt the hardware security module (HSM)-based multicore ECU to secure in-vehicle networks while
meeting the delay constraint. However, this approach incurs significant hardware cost. Consequently,
this paper aims to reduce security enhancing-related hardware cost by proposing two efficient design
space exploration (DSE) algorithms, namely, stepwise decreasing-based heuristic algorithm (SDH)
and interference balancing-based heuristic algorithm (IBH), which explore the task assignment, task
scheduling, and message scheduling to minimize the number of required HSMs. Experiments on both
synthetical and real data sets show that the proposed SDH and IBH are superior than state-of-the-art
algorithm, and the advantage of SDH and IBH becomes more obvious as the increase about the
percentage of security-critical tasks. For synthetic data sets, the hardware cost can be reduced by
61.4% and 45.6% averagely for IBH and SDH, respectively; for real data sets, the hardware cost can
be reduced by 64.3% and 54.4% on average for IBH and SDH, respectively. Furthermore, IBH is better
than SDH in most cases, and the runtime of IBH is two or three orders of magnitude smaller than
SDH and state-of-the-art algorithm.

Keywords: automotive cyber-physical systems; hardware cost; design space exploration algorithm;
cyber security; CAN FD

1. Introduction
1.1. Background and Motivations

As security is not considered in in-vehicle networks’ specification, the employment of
various network interfaces (wireless or wired) in automobiles poses great cyber-security
challenges to the safety of automotive cyber-physical systems (ACPS). For example, CAN
is the most widely employed in-vehicle network in automobiles, but it is vulnerable to
replay attack, masquerade attack, and DoS attack [1]. CAN with flexible data-rate (CAN
FD) is proposed in 2011 and viewed as the next generation of CAN technology, which can
elevate the bandwidth of the transmission phase to 8 Mbps, but the security vulnerabilities
of CAN are not resolved [2]. Many kinds of cyber attacks have been identified in in-vehicle
networks such as CAN, CAN FD, and FlexRay, and the potential security vulnerabilities
have lead to car recall event [3]. As a result, automotive stakeholders are trying to employ
different kinds of security enhancing mechanisms to safeguard in-vehicle networks, such as
adding message authentication code (MAC) into message for integrity and availability [4,5]
(recommended and specified in AUTOSAR SecOS specification [6]), message encryption for
confidentiality [7], intrusion detection, and message ID obfuscation [8]. The authors of [9]
give an extensive survey about the security vulnerabilities and proposed security protection
mechanisms of in-vehicle networks. However, as it is too time- and memory-consuming
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to implement the cryptographic algorithms in software, processors with a dedicated secu-
rity coprocessor such as hardware security module (HSM) are recommended by the auto
industry to be used in the new generation of ECUs [10]. Main automotive chip makers
like Infineon and Renesas are already producing multicore processors with HSM, such
as Infineon Aurix and Renesas R-Car. The HSM-based security-enhancing approach can
reduce the delay overhead to an acceptable level. For example, as the real implementation
on Aurix [11] shows that software-based implementation of AES128 consumes 1209 µs,
while the HSM-based implementation only needs 62 µs. HSM offer several advantages,
such as cryptographic engine (hardware implementation of symmetric/asymmetric cryp-
tographic algorithms and hash functions, such as AES128, ECC256, SHA256, and others),
secure key storage, secure log, and others, which would allows the ECU’s host core to
devote its full power to the other tasks, and offers ECU manufacturers and automakers a
powerful plug-and-play security solution that can be easily adapted to their own security
requirements. World-renown automotive suppliers are providing HSM-based security
solutions that combines Aurix and HSM, such as ESCRYPT’s CycurHSM and Elektrobit’s
zentur HSM.

Although HSM frees the host core from computing-intensive security tasks, it brings
considerable hardware cost. Taking Aurix processores from Infineon as an example, the
Aurix TC299TP128F300N and Aurix TC299T128F300S have similar performance (in terms
of CPU and memory), but the price of Aurix TC299TP128F300N (about 47 dollars) is higher
than that of the Aurix TC299T128F300S (about 41 dollars) as it has the HSM, thus the adding
of HSM increases the hardware cost by about 15% [12]. However, given that automobiles
are mass-produced consumer products which are very cost sensitive, it is not cost-efficient
to add HSM in all ECUs. According to the authors of [13], Toyota and Honda only integrate
HSM-based security protection mechanisms into a few ECUs implementing safety-critical
functions, such as engine ECU, brake ECU, and steering ECU. As a result, it is important to
reduce the HSM introduced hardware cost by minimizing the number of ECUs equipped
with HSM. In this paper, we formulate an optimization problem to minimize the number
of HSMs required for a given ACPS, where both the task mapping, task scheduling and
message scheduling are explored subject to both deadline and security constraints.

1.2. Contributions

In this paper, we observe that HSM-based security protection mechanisms introduce
considerable hardware cost, which poses great challenges to cost management of car
manufacturers. Thus, we formulate a new design space exploration (DSE) problem to
reduce the hardware cost for security-enhanced ACPS. To the best of our knowledge, this
is the first time that HSM introduced hardware cost is integrated into the DSE of CAN
FD-based ACPS. The main contributions of this paper are as follows. (1) We provide
a stepwise decreasing-based heuristic DSE algorithm (SDH) which reduces the design
space into smaller one based on the decreasing number of HSMs. (2) As the performance
of SDH deteriorates as the searching space expands, we provide another interference-
balancing based heuristic algorithm (IBH) which can get an equal or even better result
with much shorter runtime by comparing with SDH. (3) By comparing with the state-of-
the-art algorithm based on both synthetic and real data sets, the efficiency of the proposed
algorithms is verified.

This paper is organized as follows. Section 2 surveys the related work. Section 3
presents the system models and key assumptions. In Section 4, the details about the SDH
and IBH algorithms are given for the hardware cost optimization problem. Section 5
presents the experimental results, and the paper is concluded in Section 6.

2. Related Work

Cost optimization is one of the key objectives for DSE of embedded systems. In [14],
the authors first transfer reliability goal of the application to that of each task, and then
resource cost is minimized by heuristically assigning tasks to the processors. In [15,16],
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the authors propose to minimize the development cost of embedded systems with genetic
algorithm-based and tabu search-based heuristics, respectively. In [17], the authors propose
a two-stage solution for function safety risk assessment and development cost optimization
of software-defined vehicles, where both the reliability and real-time requirements are
considered. However, the above-mentioned works consider resource cost and develop-
ment cost, and they employ different cost models. Hardware cost is an essential part of
the cost of embedded systems, especially for mass-produced ACPS. In [18], the authors
present two heuristic algorithms to minimize hardware cost for parallel embedded systems,
where both the functional safety and real-time requirements are considered. In [19], the
authors combine genetic algorithm and simulated annealing to reduce the hardware cost
and energy consumption of embedded products while satisfying the hard real-time and
reliability requirements of safety-critical applications. In [20], the authors present three
price performance-driven heuristic algorithms for hardware cost minimization of embed-
ded systems, which consider both real-time and reliability requirement. In [21], the authors
present a multi-population genetic algorithm towards optimizing both operation time and
the number of required processing units for distributed real-time systems. In [22], the
authors try to reduce the hardware cost by minimize the number of required processors to
schedule an application, where considerably memory requirements and application latency
are reduced by comparing with related approaches while meeting the same throughput
constraint. In [23], the authors shows how to minimize the number of required processors
for feasible running the parallel real-time tasks. However, our work considers to minimize
security-enhancing related hardware cost of ACPS by minimizing the number of HSMs,
where both security and real-time requirements are considered. In [24], the authors try to
minimize the hardware cost for security-aware ACPS, but it considers the FlexRay as the
in-vehicle network. Our work considers the CAN FD-based ACPS, and we assume a more
general system model with two security levels.

3. System Models and Key Assumptions
3.1. System Model

Figure 1 shows a typical safety-critical electronic subsystem inside the ACPS, where
several ECUs are interconnected by CAN FD. We assume that there is a task set in each
ECU and tasks are scheduled with static priority-based preemptive scheduling algorithm
according to the AUTOSAR specification [25]. Messages are transmitted on the bus to realize
the communication and cooperation between communicating tasks which are assigned to
different ECUs. ECU set is represented as ECU = {E1, E2, . . . Ek, . . . EEN}, where EN indicates
the number of ECU in Ek. Each ECU may has two cores: the computing core and HSM core.
The computing core is necessary, and it is responsible for the computing tasks, whereas the
HSM core is optional, and only those ECUs that include security-critical tasks have HSMs, as
security-critical tasks have to send security-critical messages needing to be security-enhanced
(such as adding MAC for integrity protection). HSM is used for security protection, such as
key storage, MAC generation, message encryption/decryption, and others [26].

Figure 1. DSE for CAN FD-based ACPS.
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3.2. Task Model

Each ACPS application is a directed acyclic graph (DAG) G =< V, E >, where V
is the set of computing tasks and E is the set of messages. Each message indicates the
communication relation between two adjacent tasks, if two adjacent tasks assigned to
different ECUs, the corresponding message needs to be transmitted on CAN FD; or else,
two adjacent tasks can communicate with each other through shared memory. The ACPS
includes functions with different security requirements, functions such as steering control
and braking control are with high security requirement, functions such as window control
and remote door lock control have low security requirement [27]. Thus, we divide the
computing tasks into two subgroups based on their level of security requirement, namely,
security-critical tasks and non-security-critical tasks [28]. For those security-critical tasks,
they can only be assigned to those ECUs with HSM. While for non-security-critical tasks,
they can be assigned to any ECUs. The set of computing task in Ek is indicated as Zk, where
Zk = {Tk,1, Tk,2, . . . Tk,i, . . . Tk,TNk

}, and TNk indicates the number of tasks in Zk. The task
set of all ECUs is denoted by Z, where Z =

⋃
∀k Zk, and TN indicates the total number of

tasks in Z. Tk,i is denoted with a 5-tuple: Tk,i = {Pk,i, Ck,i, Rk,i, Dk,i, Qk,i}, which indicate the
period (in µs), worst-case execution time (WCET, in µs), worst-case response time (WCRT,
in µs), deadline (in µs) and security level, respectively. Qk,i is a binary variable, if Qk,i=1,
it indicates that Tk,i is a security-critical task; otherwise, Tk,i is a non-security-critical task.
We assume that deadline equals to period for each task, and priorities are assigned to tasks
based on their periods, these assumptions are common in ACPS [29–31]. Pk,i, Ck,i, Dk,i, and
Qk,i are given, and Rk,i is calculated as follows:

Rk,i = Ck,i + ∑
∀Tk,i′∈hpk,i

d
Rk,i

Pk,i′
e × Ck,i′ (1)

where hpk,i indicates the set of tasks with higher priorities than Tk,i in Ek.

3.3. Message Model

Computing tasks of each ACPS functions are allocated to different ECUs, and messages
are exchange between different ECUs to realize the communication and cooperation of
them, thus CAN FD messages have the same security requirement with their sending tasks.
Mk indicates the set of messages sent by ECUk, where Mk = {mk,1, mk,2, . . . mk,j, . . . mk,MNk

},
and MNk indicates the number of messages in Mk. The message set of all ECUs is denoted
by M, where M =

⋃
∀k Mk, and MN indicates the total number of messages in M. mk,j is

indicated with a 5-tuple: mk,j = {pk,j, ck,j, rk,j, dk,j, qk,i}, which indicate the period (in µs),
worst-case transmission time (WCTT, in µs), WCRT (in µs), deadline(in µs) and security
level of mk,j, respectively. pk,j and ck,j are given, qk,j equals to that of its sending task,
and dk,j equals to pk,j [29–31]. As the authors of [32] verified that the rate monotonic
priority order is close to the optimal priority order for CAN, thus we assume that the rate
monotonic priorities are assigned to CAN FD messages. CAN FD messages are scheduled
non-preemptively before transmitting on the bus, thus rk,j is calculated as follows [30,33]:

∀mk,j, mk′ ,j′ , rk,j =

blockk,j + ck,j + ∑
∀mk′ ,j′∈shpk,j

d
rk,j

pk′ ,j′
e × ck′ ,j′

(2)

where blockk,j indicates the blocking delay incurred by low priority messages, shpk,j indi-
cates the set of messages with higher priorities than mk,j in M.

As it shows in Figure 1, we try to reduce the security-related hardware cost by min-
imize the number of HSMs required for a given CAN FD-based ACPS, where both the
task mapping, task scheduling and message scheduling are explored subject to end-to-
end deadline and security constraints. Thus, we need to define the end-to-end delay for
each function path. A function path PHl is an ordered interleaving sequence of tasks
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and messages, where PHl = [Tl,1, ml,1, Tl,2, ml,2, . . . , Tl,n−1, ml,n−1, Tl,n], and n indicates the
number of tasks in PHl . PH indicates the set of function paths in ACPS. We assume an
asynchronous sampling communication approach is employed in ACPS, thus the end-
to-end WCRT of PHl (we indicate it as PRl) can be calculated by adding the WCRT of
all computing tasks and CAN FD messages on the path, the security-enhancing related
delay overhead, as well as the periods of all the messages and their receiving tasks on the
path [34]. To sum up, PRl is calculated as follows:

PRl = ∑
Tk,i∈PHl

∧
mk,j∈PHl

(Rk,i + Pk,i + rk,j + pk,j + lk,j × ok,j) (3)

where ok,j indicates the security-enhancing related delay overhead. As messages are
processed with the same operations non-preemptively inside the HSM [35], we assume an
equal ok,j for all security-critical messages, and it is set according to the real implementation
of [11]. For each function path, there is an end-to-end deadline, and we indicate it as
PDl . APCS is schedulable and safe only when all their included function paths meet the
deadline constraint.

4. Hardware Cost Minimization Algorithms
4.1. Stepwise Decreasing Based Heuristic Algorithm

Randomized optimization algorithms such as simulated annealing and genetic al-
gorithm are widely employed to solve research problems similar to this paper [24,36].
However, they only evaluate a finite number of design point based on random changes,
thus as the design space expands, they are easily trapped into local optimum, and the
global optimum can not be assured. To solve this problem, this paper proposes a stepwise
decreasing based heuristic algorithm (SDH) based on the basic ideas of SA. The main
differences between SDH and SA are as follows: (1) SDH tries to reduce the search space
to a smaller one by implementing a stepwise decreasing on the number of HSMs. As the
search space is reduced, it is more likely to find a better task assignment result; (2) in each
searching loop when the number of HSMs is given, as long as one feasible task assign-
ment result that meets both the end-to-end deadline and security constraint is found, the
heuristic searching step is terminated, thus this allows SDH to reduce the number of HSMs
quickly. Details of SDH is given in Algorithm 1.

HN indicates the minimal number of HSMs that are required to be attached to ECUs
to meet the design constraints of ACPS, HN′ is a temporary variable used in each searching
loop, where both HN and HN′ are initially set as EN. PRavg and PDavg indicate the average
end-to-end WCRT and average end-to-end deadline of all function paths, respectively. f lag
indicates if the task assignment result can meet the deadline constraint or not, and it is
initially set as TRUE. For SDH, there is an outer while loop (from line 3 to line 27) that
realize the stepwise reduction on the number of HSMs, where if the inner while loop can
get a feasible task assignment meeting both the real-time and security constraint of ACPS
(from line 8 to line 26), the number of HSMs can be reduced by 1, and the outer while
loop continues; otherwise, the outer while loop is terminated. Inside the outer while loop,
an initial task assignment result is obtained by randomly assigning tasks to ECUs (line
4), and then the average end-to-end WCRT is analyzed (line 5). Next, the inner while
loop attempts to decrease the end-to-end WCRT of function paths to meet the end-to-end
deadline constraint, which heuristically exchanging tasks assigned to two different ECUs
or moving tasks from one ECU to another ECU (line 10). After the timing analysis of the
updated task assignment result (line 11), if the end-to-end WCRT if reduced, the new task
assignment result is accepted; otherwise, accept it with a certain random probability based
on the average end-to-end WCRT difference between current task assignment result and
the new task assignment result (from line 12 to line 15). If all function paths can meet the
deadline constraints, it means that one feasible task assignment result is found, thus HN′

can be reduced by 1, and the outer while loop continues (from line 16 to line 20); or else,
f lag is set as FALSE to indicate that current searching step can not find a feasible task
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assignment result(from line 21 to 23). If the inner while loop cannot find a feasible task
assignment result in all the heuristic searching steps, the outer while loop is terminated
and HN is returned as the final result.

Algorithm 1 Stepwise Decreasing-Based Heuristic Algorithm.
Input: Z, EN
Output: HN
1: HN=EN, HN′ = EN;
2: f lag = TRUE;
3: while (HN′ ≥ 1) ∧ ( f lag = true) do
4: Result=Task_Allocation(Z, EN, HN′);
5: PRavg=E2EWCRT_Analysis(Result);
6: Tini = 3 ∗ EN, Tter = .5,step_num = 5 ∗ TN ∗MN, θ = 0.98;
7: T = Tini;
8: while T > Tter do
9: for i = 1 to step_num do

10: Result′=Heuristic_Task_Move(Result);
11: PR′avg=E2EWCRT_Analysis(Result′);
12: if (PR′avg < PRavg) ∨ (exp((PRavg − PR′avg)/T) > Rand(0, 1)) then
13: PRavg = PR′avg;
14: Result = Result′

15: end if
16: if (PR < PD) then
17: f lag = TRUE;
18: HN = HN′

19: HN′ = HN′ − 1
20: break;
21: else
22: f lag = FALSE;
23: end if
24: end for
25: T = T ∗ θ;
26: end while
27: end while

To sum up, SDH realizes a stepwise decrease of the design space by reducing the
number of HSM one by one. For a given system configuration, as long as one viable task
assignment solution is found, the searching step is terminated immediately. Thus, SDH can
shorten the searching time to find a viable task assignment solution for the given number
of HSMs. Furthermore, the proactive reduction of search space taken by SDH makes it
easier to find a viable task mapping solution with fewer HSMs.

4.2. Interference Balancing Based Heuristic Algorithm

As SDH is implemented based on the basic ideas of SA, the efficiency of it will deterio-
rate as the search space expands. Moreover, as the number of HSMs decreases, it becomes
increasingly difficult for the heuristic searching to find a feasible task assignment, thus
the runtime of SDH increases rapidly. To remedy the above mentioned disadvantages,
this paper proposes another interference balancing-based heuristic algorithm IBH. As the
number of messages that are scheduled and transmitted on CAN FD depends on the task
assignment, and tasks contribute a larger part to the end-to-end WCRT than that of the
messages, tasks and their WCRT analysis are primarily considered during the DSE process
of IBH. To be more specific, IBH employs the definition of variance to describe difference
of interferences caused by the set of tasks assigned to different ECUs. The interference
variance is defined as Definition 1 shows.
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Definition 1. The interference variance is the interference differences caused by the set of tasks
assigned to different ECUs for a given time interval.

For a given time interval len, the interference variance is calculated as Equation (4) shows.

in f _variance =
EN

∑
k=1

in f len
k − in f len

avg

EN
(4)

where in f len
k indicates the interference caused by the set of tasks assigned to Ek, and the

in f len
avg indicates the average in f of all ECUs. By assigning task to the ECU that causes the

minimal interference variance, the interference caused by those already assigned tasks as
well as the end-to-end WCRT of the function paths can be balanced. Details of IBH is given
in Algorithm 2.

Algorithm 2 Interference Balancing-Based Heuristic Algorithm.
Input: Z, EN
Output: HN
1: HN = EN, f lag = TRUE;
2: Task_Sort(Z);
3: while (HN ≥ 1) ∧ ( f lag = true) do
4: Interval=Min_Period(Z);
5: for i = 1 to TN do
6: Variance=W(1, TN);
7: if Qi == 1 then
8: for k = 1 to HN do
9: Result=Task_Allocation(Ti, Ek);

10: if Ti is schedulable then
11: Variance(1, k)=Variance_Analysis(Interval);
12: end if
13: end for
14: else
15: for k = 1 to EN do
16: Result=Task_Allocation(Ti, Ek);
17: if Ti is schedulable then
18: Variance(1, k)=Variance_Analysis(Interval);
19: end if
20: end for
21: end if
22: (Min_Variance, k)=min(Variance);
23: if Min_Variance < W then
24: f lag = TRUE;
25: Allocate Ti to the Ek;
26: Interval=Pi;
27: else
28: f lag = f alse;
29: break;
30: end if
31: end for
32: if system is schedulable then
33: HN=HN-1;
34: else
35: break;
36: end if
37: end while
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For IBH, HN also indicates the minimal number of HSMs that are required to be
attached to ECUs to meet the design constraint of ACPS, f lag indicates if each task can
be successfully assigned to an ECU where it can meet the deadline constraint, Interval
indicates the time interval that the WCRT is analyzed for the tasks, and Variance is an array
to store the interference variances when tasks are assigned to different ECUs. HN is initially
set as EN, and f lag is initially set as TRUE. IBH first sorts task with increasing period and
size (line 2), and then there is a while loop tries to find a feasible task assignment result (it
means that all function paths meet their end-to-end deadline constraint, and the system
is schedulable) when the number of HSMs is set as HN (from line 3 to line 37). Inside
the while loop, Interval is initially set as the minimal task period (line 4), and next there
is a for loop tries to assign each task to the ECU with the minimal variance (from line 5
to line 31). Inside the for loop, each element of Variance is initially set as a big number
W (line 6). Moreover, if the current task is a security-critical task, it tries to assign it to
the ECUs with HSMs, and the corresponding variance is analyzed(from line 7 to line 14);
or else if the current task is a non-security-critical task, it tries to assign it to all ECUs, and
the corresponding variance is analyzed(from line 15 to line 21). After the analysis of all
possible variances, if the current task can be successfully assigned to ECUs (which means
that all assigned tasks are schedulable), it is assigned to the ECU with the minimal variance
(from line 22 to line 25), and Interval is updated to the period of the current task (line 26);
or else, the current task can not be assigned successfully, which means that it can not find a
feasible task assignment result when the number of HSMs is set as HN (from line 27 to line
30). Thus, the for loop is terminated. After the for loop, if all tasks can be assigned properly,
HN is reduced by 1, and the while loop continues (from line 32 to line 34); or else, the
while loop is terminated (from line 35 to line 36). HN is returned as the minimal number
of HSMs that are required to meet both the security and real-time constraints.

To sum up, IBH also realizes a stepwise decrease of the design space by reducing the
number of HSM one by one, the difference between IBH and SDH is that IBH replaces the
random searching approach with interference balancing-based approach to find a viable
task assignment for the given system configuration. The interference balancing-based
approach is easier to find a schedulable task assignment result, as it considers to balance
the interference to the unassigned tasks in each step.

5. Experiment Results

We conducted extensive experiments based on both synthetic and real data sets to
verify the proposed SDH and IBH algorithm, and the efficiency of the proposed algorithms
is shown by comparing them with the simulated annealing-based heuristic algorithm pre-
sented in [24]. This algorithm is state-of-the-art, and we indicate it as SSH. The task graph
generator given in [37] is used to generate synthetic ACPS functions, where the parameters
of the tasks and messages are generated according to the guidelines on real-world automo-
tive benchmarks [38]. For synthetic data sets, the number of ECUs is set as 6/10/14/18, and
the number of tasks is set as 80/100/120/140/160/200. Six real-life ACPS functions given
in [15] are adopted to generate the real data sets, where the number of tasks are increased by
replicating the ACPS functions. For real data sets, the number of ECUs is set as 6/8/10/12,
and the number of tasks is set as 40/60/80/100/120. For both synthetic and real data sets,
the percent of security-critical tasks is set as 20%/40%/60%. ok,j is set according to the
real implementation given in [35], where ok,j=103 µs. We assume that the arbitration phase
bit-rate and data phase bit-rate of CAN FD are 500 kbps and 2 Mbps [30,31], respectively.
The experiments are conducted on an OS X(v10.13.1) machine running on 2.3 GHz the 7th
generation Intel i5 core with 8 GB main memory. The experiment code is implemented in
Matlab 2017a.

Figures 2–4 show the experimental results of synthetic data sets, where the percent
of security-critical tasks is set as 20%, 40%, and 60%, respectively. Figures 5–7 show the
experimental results of real data sets, where the percent of security-critical tasks is also set
as 20%, 40%, and 60%, respectively. From the above mentioned results, we can conclude
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that the proposed SDH and IBH are better than SSH in reducing the security-related
hardware cost for ACPS. Especially as the increase about the percent of security-critical
tasks, the advantage of SDH and IBH becomes more obvious. For synthetic data sets, the
hardware cost can be reduced by 61.4% and 45.6% averagely for IBH and SDH, respectively,
and for real data sets, the hardware cost can be reduced by 64.3% and 54.4% averagely for
IBH and SDH, respectively. Furthermore, as the expansion of the design space due to the
increase of ECUs and tasks, IBH shows a better performance than SDH in reducing the
number of HSMs in most cases, and it also gets the same performance with SDH in the
other cases. Last but not the least, the runtime of IBH is two or three orders of magnitude
smaller than SDH and SSH, which means that SDH is quite extensible.

(a) EN = 6

(b) EN = 10

(c) EN = 14

Figure 2. Cont.
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(d) EN = 18

Figure 2. Experimental results of synthetic data set when percent of security-critical task is 20%.
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Figure 3. Cont.
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(d) EN = 18

Figure 3. Experimental results of synthetic data set when percent of security-critical task is 40%.
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Figure 4. Cont.
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(d) EN = 18

Figure 4. Experimental results of synthetic data set when percent of security-critical task is 60%.
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(c) EN = 10

Figure 5. Cont.
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(d) EN = 12

Figure 5. Experimental results of real data set when percent of security-critical task is 20%.
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Figure 6. Cont.



Sensors 2021, 21, 6807 14 of 17

(d) EN = 12

Figure 6. Experimental results of real data set when percent of security-critical task is 40%.

(a) EN = 6

(b) EN = 8

(c) EN = 10

Figure 7. Cont.
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(a) EN = 12

Figure 7. Experimental results of real data set when percent of security-critical task is 60%.

6. Conclusions

As connectivity between and within automobiles increases, it brings great cyber-
security challenges for CAN FD-based ACP. The auto industry recommends employing the
HSM-based multicore ECUs to secure the ACPS functions with acceptable delay overhead.
However, the introduction of HSM incurs significant hardware cost. In this paper, we
try to reduce security-enhancing-related hardware cost by proposing two efficient DSE
algorithms, namely, SDH and IBH, which explore the task assignment, task scheduling,
and message scheduling to minimize the number of required HSMs. Experiments on both
synthetical and real data sets show that the proposed SDH and IBH are superior than the
state-of-the-art SSH algorithm, and the advantage of SDH and IBH becomes more obvious
as the increase about the percentage of security-critical tasks. Furthermore, IBH is better
than SDH, and the runtime of IBH is two or three orders of magnitude smaller than SDH
and SSH.
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