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Abstract
Background: Currently, there are no biomarkers for migraine.
Objectives: We aimed to identify proteomic biomarker signatures for diagnosing, 
subclassifying, and predicting treatment response in migraine.
Design: This is a cross-sectional and longitudinal study of untargeted serum and 
cerebrospinal fluid (CSF) proteomics in episodic migraine (EM; n = 26), chronic migraine (CM; 
n = 26), and healthy controls (HC; n = 26).
Methods: We developed classification models for biomarker identification and natural clusters 
through unsupervised classification using agglomerative hierarchical clustering (AHC). 
Pathway analysis of differentially expressed proteins was performed.
Results: Of 405 CSF proteins, the top five proteins that discriminated between migraine 
patients and HC were angiotensinogen, cell adhesion molecule 3, immunoglobulin heavy 
variable (IGHV) V-III region JON, insulin-like growth factor binding protein 6 (IGFBP-6), and 
IGFBP-7. The top-performing classifier demonstrated 100% sensitivity and 75% specificity 
in differentiating the two groups. Of 229 serum proteins, the top five proteins in classifying 
patients with migraine were immunoglobulin heavy variable 3-74 (IGHV 3-74), proteoglycan 
4, immunoglobulin kappa variable 3D-15, zinc finger protein (ZFP)-814, and mediator of 
RNA polymerase II transcription subunit 12. The best-performing classifier exhibited 94% 
sensitivity and 92% specificity. AHC separated EM, CM, and HC into distinct clusters with 
90% success. Migraine patients exhibited increased ZFP-814 and calcium voltage-gated 
channel subunit alpha 1F (CACNA1F) levels, while IGHV 3-74 levels decreased in both cross-
sectional and longitudinal serum analyses. ZFP-814 remained upregulated during the 
CM-to-EM reversion but was suppressed when CM persisted. CACNA1F was pronounced 
in CM persistence. Pathway analysis revealed immune, coagulation, glucose metabolism, 
erythrocyte oxygen and carbon dioxide exchange, and insulin-like growth factor regulation 
pathways.
Conclusion: Our data-driven study provides evidence for identifying novel proteomic 
biomarker signatures to diagnose, subclassify, and predict treatment responses for migraine. 
The dysregulated biomolecules affect multiple pathways, leading to cortical spreading 
depression, trigeminal nociceptor sensitization, oxidative stress, blood–brain barrier 
disruption, immune response, and coagulation cascades.
Trial registration: NCT03231241, ClincialTrials.gov.
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Plain language summary 

Identification of biological markers for migraine using proteins found in the cerebrospinal 
fluid and blood

The diagnosis of migraine currently relies on self-reported symptoms. Inaccurate reporting 
by patients and inadequate interviewing by diagnosticians can result in misdiagnosis 
and subsequent mistreatment. Our study investigated the disparity in protein levels in 
the cerebrospinal fluid (CSF) and serum between individuals with migraine and healthy 
individuals. Our study provides evidence for identifying novel protein biomarkers and 
biological pathways that can assist in diagnosing, subclassifying, and predicting treatment 
responses for migraine.

Keywords: biomarkers, migraine, pathway enrichment, proteomics

Received: 30 November 2023; revised manuscript accepted: 24 July 2024.

Introduction

Diagnostic accuracy is dependent on the 
patient’s history
The diagnosis of migraine primarily relies on a 
patient’s medical history.1 However, this can be 
challenging due to patient recall bias and the 
diagnostician’s skill in eliciting pertinent informa-
tion.2–9 Only a quarter of chronic migraine (CM) 
patients seeking medical help receive an accurate 
diagnosis, and just 1.8% receive the best available 
treatment.10 The diverse and unstable symptoms 
of migraine further complicate accurate diagno-
sis, leading to significant misdiagnosis and under-
diagnosis.10,11 This results in an average delay in 
diagnosis of 15 years.10–12 The challenge of diag-
nosing migraine can be addressed by identifying 
easily measurable peripheral biomarkers.13–15 
Having a biomarker-based confirmation will 
improve the accuracy of interview-based migraine 
diagnosis.13–15 The absence of a definitive bio-
marker for migraine contributes to the stigma sur-
rounding the condition, emphasizing the urgent 
need to establish diagnostic biomarkers that can 
help reduce the stigma associated with migraine 
among healthcare professionals and society as a 
whole.16,17 Without a peripheral biomarker such 
as a blood test, individuals with migraine may 
perceive their condition as insignificant, adversely 
affecting their work productivity and overall qual-
ity of life.

Dichotomizing a discrete quantitative variable, 
that is, monthly migraine frequency
Dichotomizing a discrete quantitative variable, 
like headache frequency, using arbitrary cutoffs, 
such as the median split, can be misleading.18–21 
The 15-day convenience cutoff to distinguish 
between episodic migraine (EM) and CM can 
exaggerate the difference between a 14-day and a 
16-day headache, reducing the distinction between 
a 16-day and a 30-day headache (Figure 1). The 
distribution of monthly headache frequency does 
not adhere to a normal pattern, necessitating a 
Poisson or negative binomial distribution for 
appropriate analysis.22,23 Dichotomizing migraine 
frequency can reduce statistical power, limit 
understanding of individual differences, compli-
cate relationships between variables, exclude 
nonlinear effects, and hinder comparing and 
combining results from various studies.18,20,21 
Spurious effects may arise when dichotomizing 
discrete variables, as it only considers one-half of 
the spectrum and obscures an effect initially 
present in the combined data.18,21 Distinguishing 
between EM and CM based on headache fre-
quency can complicate the evaluation of 
migraine outcomes due to Simpson’s para-
dox.24,25 This paradox occurs when outcomes 
appear to improve in each subgroup of EM and 
CM, but the overall trend shifts and worsens 
when the subgroups are combined.24–26 These 
rationales suggest using models that integrate 
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comprehensive biomolecular and clinical data, 
utilizing all available data, and setting appropri-
ate cutoff points.

Difficulties associated with frequency-based 
classification
Based on a 15-month research study, the diagno-
sis of CM rose threefold when evaluated across 
five 3-month intervals compared to a single inter-
val.26 The arbitrary data division based on a 
15-day cutoff frequency does not consider indi-
vidual variations. For instance, an individual who 
experiences migraine and has headaches only a 
few days each month may have a greater level of 
disability than another individual with migraine 
who experiences headaches more frequently.27–30 
In total, 63% of EM patients experience migraine 
1–4 days per month, while only 14% have 
migraine for 5–14 days per month.31 Frequency-
based classification can lead to high placebo rates 
and regression artifacts.32,33 Patients often round 
their reported frequency to the nearest multiple of 
5, leading to inaccuracies.34

Data-driven discovery of biomarkers
Multiomics technologies have revolutionized bio-
marker discovery by enabling unbiased global 
biomolecular profiling of complex conditions 

such as migraine, measuring thousands of bio-
molecules and affected pathways.35–37 This con-
trasts traditional methods, which only measure a 
few pre-selected molecules.35–37 Among omics 
technology platforms, proteomics and metabo-
lomics offer the most similar molecular profiling 
to the phenotype and represent the final down-
stream product of the genomics-transcriptomics-
proteomics-metabolomics pathway.38,39 Using 
biomarkers or biomarker signatures in the context 
of migraine has various advantages, including aid-
ing in diagnosis and subclassification,40 under-
standing the underlying pathophysiological 
mechanisms,35 predicting treatment response,40 
supporting biomarker-driven clinical trials,41,42 
efficient drug/therapy development, reducing 
stigma associated with migraine,43 and enabling 
personalized migraine management.37,42

Previous studies on proteomics and 
metabolomics in migraine
A recent meta-analysis of 40 studies found 
increased levels of glutamate, calcitonin gene-
related peptide (CGRP), and nerve growth factor 
in CM patients.44 Additionally, decreased levels 
of β-endorphin (β-EP) were observed in CM and 
interictal EM patients.44 Serum analysis showed 
increased glutamate levels in interictal EM 
patients and increased CGRP levels in CM, 

Figure 1. Using a 15-day cutoff to distinguish between EM and CM can exaggerate the difference between a 
13-day and 17-day headache, which were initially adjacent while minimizing the distinction between a 17-day 
and 27-day headache, which were initially far apart.
CM, chronic migraine; EM, episodic migraine.
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interictal, and ictal EM patients. Two studies 
using Nuclear Magnetic Resonance (NMR)-based 
cerebrospinal fluid (CSF) and serum metabo-
lomics found lower levels of 2-hydroxybutyrate 
and increased lactate and valine, indicating dys-
regulation of brain energy metabolism in migraine 
patients.45–47 These studies have limitations, 
including the low sensitivity of the NMR-based 
omics approach and the lack of global protein/
metabolite profiling. However, the findings of ele-
vated glutamate, increased CGRP, and reduced 
β-EP in migraine patients correlate with neuronal 
hyperexcitability, peripheral trigeminal nocicep-
tion, and diminished analgesia, respectively.44

A serum proteomics study found that migraine 
patients showed dysregulation of several proteins 
related to inflammation and vascular integrity 
(serum amyloid P-component, Ig kappa chain C 
region, and apolipoprotein A–I) compared to 
healthy controls (HCs). Besides, serum and uri-
nary proteomic studies on menstrual-related 
migraine patients showed upregulation of other 
inflammatory protein fragments (inter-alpha-
trypsin inhibitor heavy chain H4, complement 
C4-A, protein S100A8 (S10A8), uromodulin 
(UROM), and alpha-1-microglobulin (AMBP)) 
compared to controls. Another study revealed 
that migraine patients had lower high-density 
lipoproteins (HDLs), apolipoprotein A1, and 
omega-3 fatty acids.48 The authors speculated 
that owing to HDL’s antioxidative, anti-inflam-
matory, and antithrombotic effects, HDL plays a 
role in endothelial dysfunction in migraine.48 A 
serum proteomics study showed changes in 
inflammation, oxidative stress, and neuroprotec-
tion proteins (haptoglobin, clusterin, fibrinogen 
alpha chain, fibrinogen beta chain, complement 
c3, transthyretin (TTR), AMBP, and retinol-
binding protein 4 (RBP4)) in migraine patients 
compared to controls or their pain-free period.49 
In trigeminal neuralgia patients, serum proteom-
ics found increased TTR, RBP4, and alpha-1-
acid glycoprotein 2.50 Neuronal signaling and 
inflammatory proteins were identified through 
large population datasets involving proteome-
wide association studies and Mendelian randomi-
zation. The studies predominantly involved 
females of European descent and identified LDL 
receptor-related protein 11 and inter-alpha-
trypsin inhibitor heavy chain H1 as promising 
drug targets.51 Additionally, islet cell autoantigen 
1 like, Signal Transducer and Activator of 
Transcription 6, and Ubiquitin-fold modifier 1 

(UFM1) specific ligase 1 were identified as causal 
genes for migraine.52 However, these previous 
studies were cross-sectional analyses mainly 
based on serum without CSF analysis. These 
prior studies indicate the necessity and signifi-
cance of conducting additional proteomics analy-
sis in migraine.

In this study, we conducted a cross-sectional CSF 
and serum proteomics involving well-defined EM 
and CM patients and HCs. Furthermore, we pro-
spectively examined longitudinal proteome changes 
in CM patients to identify candidate biomarkers for 
migraine diagnosis and subclassification.

Methods

Study design
Our research methodology encompasses a cross-
sectional study of untargeted serum and CSF 
proteomics among individuals with EM, CM, 
and a control group of healthy individuals. 
Moreover, we conducted a longitudinal study 
focusing on untargeted serum proteomics, 
wherein patients with CM were monitored over a 
span of 2 years, and serum samples were obtained 
both at the beginning of the study and at the 
2-year follow-up to track any changes over the 
duration of the study.

Inclusion and exclusion criteria
Patients. The study included migraine patients 
who were 18 years and older, diagnosed by head-
ache specialists according to the International 
Classification of Headache Disorders (ICHD) 
3-beta criteria,1 and had a minimum migraine 
duration of 1 year. They also needed to have the 
ability to speak and write in English. Patients were 
allowed to continue their usual care and medica-
tions. Exclusion criteria were children under 18, 
those with secondary headaches other than 
comorbid medication-overuse headache (MOH), 
as well as individuals with severe medical or neu-
rological conditions such as seizure disorder, dia-
betes, hypertension, alcoholism, cardiac disease, 
psychiatric problems, drug or alcohol addiction, 
respiratory problems, or liver disease. All patients 
were recruited from the Stanford Headache Clinic.

Healthy controls. Individuals who responded to 
our study announcement posted on notice 
boards around the university and surrounding 

https://journals.sagepub.com/home/taj


YW Woldeamanuel, BM Sanjanwala et al.

journals.sagepub.com/home/taj 5

community were screened via telephone inter-
view using the ICHD 3-beta criteria.1 Controls 
met the inclusion and exclusion criteria men-
tioned above except for migraine or another 
headache diagnosis.

Migraine-related questionnaires
All migraine patients completed online self-
administered questionnaires about their demo-
graphic information, headache features during 
the previous 3 months involving monthly fre-
quency of headache days, headache severity on a 
numeric rating scale of 1–10, headache medica-
tion use, and headache-related disability meas-
ured using Migraine Disability Assessment.53 
The CM patients retook these questionnaires at 
the second time point, 2 years after initial 
participation.

Psychometric questionnaires
A battery of self-administered questionnaires was 
provided to the participants to assess the co-
occurrence of psychological and behavioral con-
ditions in individuals with CM. The questionnaires 
included the Patient Health Questionnaire-9 
(PHQ-9)54 for evaluating depression, the 
Generalized Anxiety Disorder-7 (GAD-7)55 for 
measuring anxiety, the Pain Catastrophizing 
Scale (PCS)56 for assessing pain catastrophizing, 
the Pittsburgh Sleep Quality Index57 for evaluat-
ing sleep quality, the Primary Care Post-
Traumatic Stress Disorder (PTSD)58 for detecting 
PTSD, the PHQ-1559 for identifying somatic 
symptoms, and the Pain Self-Efficacy 
Questionnaire60 for examining patients’ confi-
dence in performing daily activities despite expe-
riencing head pain.

Blood collection
A total of 50 ml of whole blood was collected 
through median cubital venipuncture from indi-
viduals with EM, CM, and 26 HCs. The veni-
puncture procedure took place within the 
timeframe of 09:00 am and 04:00 pm. The whole 
blood was obtained using vacutainer tubes with-
out anticoagulant and left upright for 30–45 min 
to facilitate clotting. Following this, the tubes 
underwent centrifugation for 15 min at 1500 rela-
tive centrifugal force (RCF). The resulting serum 

was then carefully divided into 0.5 ml aliquots 
and stored at −80°C.

Moreover, serum samples were also collected 
from 10 CM patients at a second time point, spe-
cifically 2 years after the initial serum collection.

CSF collection
A total of 28 ml of CSF was collected via lumbar 
puncture from four individuals diagnosed with 
EM, four individuals diagnosed with CM, and 
four HCs. All participants also provided serum 
samples. The CSF collection was performed dur-
ing the daytime, specifically between 09:00 am 
and 04:00 pm. Following the collection, the CSF 
samples underwent centrifugation at 1000 RCF 
for 10 min. After centrifugation, the samples were 
divided into 0.5 ml aliquots to ensure proper stor-
age and then promptly stored at −80°C to main-
tain sample integrity. The participants did not 
fast prior to the serum and CSF collections.

Proteomics workflow
Serum samples. We employed the Thermo Sci-
entific Pierce Albumin/IgG Removal Kit to spe-
cifically target and remove the highly abundant 
proteins human serum albumin and IgG from our 
sample. Following this, we precipitated the pro-
teins using acetone. Subsequently, the precipi-
tated proteins underwent a series of steps, 
including reduction with dithiothreitol (DTT), 
alkylation with iodoacetamide (IAA), and diges-
tion by trypsin to yield peptides. These peptides 
were then subjected to analysis using nanoAC-
QUITY ultra-high-pressure liquid chromatogra-
phy coupled to a Q Exactive mass spectrometer 
from Thermo Scientific. For protein identifica-
tion and quantification, we utilized MaxQuant 
v1.6.2.6, and initially, all protein intensities were 
represented on the Log10 scale. To normalize the 
data, we divided the intensity of each protein in 
the sample by the median protein intensity for the 
entire sample. Ensuring the reliability of the data, 
we took precautions to cleanse the dataset of 
known contaminants such as keratin and trypsin 
before conducting the analysis.61

CSF samples. The protein extraction process 
started with the precipitation of proteins using 
acetone. Subsequently, the precipitated proteins 
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were subjected to reduction with DTT, alkylation 
with IAA, and enzymatic digestion with trypsin. 
The resulting peptides were then analyzed using a 
nanoACQUITY ultra-high-pressure liquid chro-
matography system coupled to a Q Exactive mass 
spectrometer from Thermo Scientific. Following 
the mass spectrometry analysis, protein identifi-
cation and quantification were performed using 
Maxquant software v1.6.2.6. The protein intensi-
ties were represented in the Log10 scale and then 
normalized by dividing each protein’s intensity by 
the median protein intensity for the entire sample. 
This normalization step ensures that the data 
accurately reflect the relative abundance of pro-
teins across different samples. Prior to further 
analysis, the dataset underwent preprocessing to 
remove common blood contaminants found in 
CSF obtained through a lumbar puncture proce-
dure. This preprocessing step involved the exclu-
sion of proteins such as hemoglobin, carbonic 
anhydrase, peroxiredoxin, and catalase, which are 
commonly present in blood and could interfere 
with the accurate analysis of CSF proteins.62 The 
Human Metabolome Database (hmdb.ca) data-
base was used to identify proteins.

Statistical analysis and machine learning 
models
The sample size was based on available data. The 
study conducted a statistical power calculation fol-
lowing recommended statistical simulation models 
and criteria for biomarker discovery using blood-
based proteomics research.63 MetaboAnalyst 5.0 
was utilized to analyze the results of proteomics. 
Biomarker analysis and unsupervised classification 
were performed using multivariate receiver operat-
ing curve (ROC)-based exploratory analysis and 
agglomerative hierarchical clustering (AHC). The 
linear support vector machine classification 
method and univariate area under the ROC fea-
ture ranking method were employed for ROC 
analysis, with Monte Carlo cross-validation using 
balanced subsampling to generate ROC curves. 
Classification models were constructed using the 
most important features on two-thirds of the sam-
ples and then validated on the remaining one-
third, with the best classifier chosen based on the 
area under the curve. Volcano plots were employed 
in the analysis to visualize and identify proteins 
that exhibited significant changes in expression 
levels. The criteria for identifying these proteins 
included a fold change threshold of 4.0, indicating 

a substantial difference in expression level and a 
significance level of p < 0.05, suggesting statistical 
significance. Proteins that fell beyond these thresh-
olds were considered as differentially expressed. In 
addition, statistical analysis was conducted to 
compare questionnaire-related outcomes among 
different groups. The Kruskal–Wallis test was ini-
tially performed as a non-parametric method for 
comparing more than two independent groups. 
Subsequently, Dunn’s post hoc test, a method for 
pairwise comparisons following an omnibus test, 
was applied to examine differences in medians 
between specific groups further. This approach 
allowed for a comprehensive assessment of group 
differences in the questionnaire-related outcomes.

Identification, enrichment, and pathway 
analysis of differentially expressed proteins
We employed fold change analysis to compare the 
expression levels of proteins in migraine patients 
and HCs, focusing on samples from both CSF 
and serum. Using a fold change threshold of 2, we 
identified proteins with significantly different 
expression levels, referred to as differentially 
expressed proteins (DEPs). We extracted their 
corresponding gene names from the UniProtKB/
Swiss-Prot database. Subsequently, we conducted 
a comprehensive analysis by submitting these 
DEP genes to networkanalyst.ca64 and bioinfor-
matics.com.cn65 for detailed exploration. This 
encompassed Gene Ontology (GO)66,67 enrich-
ment analysis, Kyoto Encyclopedia of Genes and 
Genomes (KEGG)68,69 pathway analysis, and in-
depth investigation of protein–protein interactions 
(PPIs). For a deeper understanding, we con-
structed a PPI network of the DEP genes using 
the Search Tool for the Retrieval of Interacting 
Genes70 platform. This network allowed us to 
identify hub genes, which play a critical role in the 
interaction and regulation of other proteins within 
the network. Furthermore, the utilization of the 
networkanalyst.ca online tool aided in the identifi-
cation and characterization of these hub genes.

Ethical approval
All participants signed informed consent before 
the study procedures. Written informed con-
sent for participation was obtained from all  
participants. The study was approved by the 
Stanford University Institutional Review Board 
(IRB-30785).
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Data availability and reporting guidelines
The datasets that were created or analyzed as part 
of the current study can be obtained from the cor-
responding author upon making a reasonable 
request. This study was conducted in accordance 
with the guidelines outlined in the Requirements 
for Scientific Reporting of Proteomic Biomarker 
Data71,72 (Supplemental Table 1) as recom-
mended by the EQUATOR (Enhancing the 
QUAlity and Transparency Of health Research) 
Network.72

Results

Characteristics of participants
There were 26 EM and 26 CM patients, as well 
as 26 HCs, included in the cross-sectional study. 
All CM patients (20) had an ongoing headache 
during the blood draw in the initial cross-sectional 
study except for 6 patients. There were 4 EM 
patients with headache, while the remaining EM 
patients (22) did not have ongoing headache at 
the time of blood draw in the initial cross-sec-
tional study. Four participants from each EM, 
CM, and HC group provided CSF samples. Of 
those who provided CSF samples, all CM patients 
had an ongoing headache during lumbar punc-
ture, while none of the EM patients had an ongo-
ing headache. For the longitudinal study, the CM 
patients were re-contacted 2 years after initial par-
ticipation for the second time point of a blood 
draw and migraine-related questionnaires—10 of 
whom were enrolled. Six of these patients had 
ongoing headache during the second blood draw, 
while the rest 4 did not.

The demographic characteristics of all partici-
pants in the study were quite similar, with most of 
them being middle-aged and slightly overweight. 
The distribution of male and female participants 
was comparable in EM, CM, and HCs. Those 
with EM reported a median frequency of 5 monthly 
migraine days with moderate severity and moder-
ate migraine-related disability. On the other hand, 
participants with CM experienced a higher median 
frequency of 30 monthly migraine days with mod-
erate severity and severe migraine-related disabil-
ity. The median duration of CM was 7.5 years, 
and 54% of CM patients experienced MOH. 
When compared with the control group, CM 
patients reported significantly higher levels of 
depression, pain catastrophizing, and somatic 

symptom severity (p < 0.005; see Table 1). In our 
longitudinal study with 10 CM patients who 
received headache management at the clinic, 6 
patients reverted to EM, while 4 persisted as CM.

CSF proteomics
Biomarker analysis. Untargeted proteomics mea-
sured the levels of 405 proteins in the CSF. Using 
the best classifier model, each sample’s predicted 
class probabilities (average of the cross-valida-
tion) reached 100% sensitivity and 75% specific-
ity for classifying patients with migraine from HC 
participants (Figure 2(a)). The top five classifying 
proteins were angiotensinogen, cell adhesion 
molecule 3 (CADM3), Ig heavy chain V-III region 
JON, insulin-like growth factor-binding protein 6 
(IGFBP-6), and IGFBP-7 (Figure 2(b)). Among 
the five proteins examined, only the Ig heavy 
chain V-III region JON exhibited a decrease in 
expression in patients with migraine. In contrast, 
the remaining four proteins demonstrated an 
increase in expression. On the volcano plot, neu-
romodulin was upregulated in patients with 
migraine (Figure 2(c)).

Unsupervised classification. AHC analysis sepa-
rated all 4 control participants from the remain-
ing 8 migraine patients using the top 15 CSF 
proteins (Figure 2(d)). Among the eight migraine 
patients, three EM patients clustered into one 
subgroup, while one EM patient clustered with 
the remaining four CM patients.

Serum proteomics results
Biomarker analysis. Untargeted proteomics mea-
sured the levels of 229 proteins in the serum. 
Using the best classifier model, the predicted 
class probability reached a 94% sensitivity and 
92% specificity for classifying patients with 
migraine from HC participants (Figure 3(a)). 
The top five classifying proteins were: immuno-
globulin heavy variable 3-74 (IGHV 3-74), pro-
teoglycan 4 (Lubricin/megakaryocyte-stimulating 
factor/superficial zone proteoglycan) (Cleaved 
into: Proteoglycan 4 C-terminal part), immuno-
globulin kappa variable 3D-15 (IGKV 3D-15), 
zinc finger protein 814 (ZFP-814), and mediator 
of RNA polymerase II transcription subunit 12 
(activator-recruited cofactor 240 kDa compo-
nent/ARC240/CAG repeat protein 45/mediator 
complex subunit 12/OPA-containing protein/ 
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Table 1. Comparison of patient characteristics, comorbidities, and disabilities in controls, episodic migraine, and chronic migraine 
patients.

Clinical variables Control median (IQR) Episodic migraine 
median (IQR)

Chronic migraine 
median (IQR)

Kruskal–Wallis, 
Dunn’s post test

Age in years

 Serum, n = 26 40 (26–49) 40 (29–56) 41 (32–53) NS

 CSF, n = 4 48 (38, 67) 47 (38, 60) 43 (32–53) NS

Female:male ratio

 Serum, n = 26 10:16 15:11 15:11 NS

 CSF, n = 4 3:1 3:1 3:1 NS

BMI

 Serum, n = 26 24 (22–27) 25 (22–29) 26 (24–30) NS

 CSF, n = 4 24 (23–26) 22 (22–24) 22 (21–23) NS

Monthly frequency of migraine in last 3 months

 Serum, n = 26 N/A 5 (3–8) 30 (25–30) p < 0.0001

 CSF, n = 4 N/A 4 (2–5) 30 (29–30) p < 0.001

Migraine severity: 0–10 in NRS

 Serum, n = 26 N/A 6 (5–7) 6 (4–7) NS

 CSF, n = 4 N/A 6 (5–8) 5 (4–5) NS

MIDAS (migraine disability)

 Serum, n = 26 N/A 19 (9–28) 90 (50–184) p < 0.0001

 CSF, n = 4 N/A 20 (16–21) 133 (73–182) p < 0.001

Medication overuse headache: n (%)

 Serum, n = 26 N/A N/A 14 (54%) N/A

 CSF, n = 4 N/A N/A 2 (50%) N/A

PHQ-9 (depression)

 Serum, n = 26 1 (0–2) 4 (2–7) 9 (6–11) C vs CM, p = 0.005

 CSF, n = 4 0 (0–1) 6 (4–7) 10 (8–13) C vs CM, p = 0.001

GAD-7 (anxiety)

 Serum, n = 26 1 (0–1) 3 (1–6) 4 (2–8) NS

 CSF, n = 4 0 (0–1) 5 (2–6) 2 (0–7) NS

PCS (pain catastrophizing)

 Serum, n = 26 0 (0–6) 16 (11–22) 19 (9–29) C vs EM, p = 0.0005
C vs CM, p = 0.001

(Continued)
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Clinical variables Control median (IQR) Episodic migraine 
median (IQR)

Chronic migraine 
median (IQR)

Kruskal–Wallis, 
Dunn’s post test

 CSF, n = 4 0 (0–4) 15 (9–20) 11 (5–21) C vs EM, p = 0.005
C vs CM, p = 0.01

PC-PTSD

 Serum, n = 26 0 (0–0) (0–1) 0 (0–0) NS

 CSF, n = 4 0 (0–1) 2 (1–3) 0 (0–0) NS

PSQI (sleep quality)

 Serum, n = 26 4 (2–6) (5–9) 9 (6–10) NS

 CSF, n = 4 5 (3–6) 10 (9–13) 7 (5–10) NS

PHQ-15 (somatic symptoms)

 Serum, n = 26 2 (0–5) 7 (4–9) 12 (9–13) C vs CM, p = 0.003

 CSF, n = 4 4 (3–5) 9 (7–10) 11 (8–12) NS

PSEQ (self-efficacy)

 Serum, n = 26 N/A 32 (23–46) 26 (18–33) NS

 CSF, n = 4 N/A 42 (36–44) 24 (18–30) NS

Chronic migraine patients had significantly higher levels of depression, pain catastrophizing, and somatic symptom severity than controls 
(p < 0.005). Kruskal–Wallis with Dunn’s post-test was utilized to test inter-median statistical differences.
BMI, body mass index; C, control; CSF, cerebrospinal fluid; GAD-7, General Anxiety Disorder-7 questionnaire for anxiety assessment; IQR, 
interquartile range; MIDAS, Migraine Disability Assessment; NA, not available; NRS, numeric rating scale; NS, non-significant; PC-PTSD, Primary 
Care Post-Traumatic Stress Disorder; PCS, Pain Catastrophizing Scale; PHQ-9, Patient Health Questionnaire-9 for depression assessment; PHQ-15, 
Patient Health Questionnaire-15 for somatic symptoms assessment; PSEQ, Pain Self-Efficacy Questionnaire; PSQI, Pittsburgh Sleep Quality Index.

Table 1. (Continued)

thyroid hormone receptor-associated protein 
complex 230 kDa componen/Trap230/trinucleo-
tide repeat-containing gene 11 protein) (Figure 
3(b)). The immunoglobulins IGHV 3-74 and 
3D-15 were downregulated in migraine patients 
compared to the control group. Proteoglycan 4, 
ZFP-814, and mediator complex subunit 12 were 
upregulated in migraine patients compared to the 
control group. In migraine patients, the levels of 
IGHV 3-74 and 3D-15 were lower, while proteo-
glycan 4, ZFP-814, and mediator complex sub-
unit 12 were higher compared to the control 
group.

Unsupervised classification. AHC analysis sepa-
rated 96% of the controls in a single cluster dis-
tinct from migraine patients (Figure 3(c)). Ninety 

percent of the EM and 90% of the CM patients 
were subgrouped in two separate clusters, respec-
tively (Figure 3(d)).

Repeated measures
Serum proteomics revealed three proteins among 
the top classifying molecules in cross-sectional 
and longitudinal (repeated) measures. ZFP-814 
and calcium voltage-gated channel subunit alpha 
1F (CACNA1F) were both upregulated, while 
IGHV 3-74 was downregulated in migraine 
patients (EM and CM), compared to HC. 
CACNA1F upregulation was higher in CM com-
pared to EM. In the longitudinal (repeated) 
measures, ZFP-814 continued to be upregulated 
during CM to EM reversion, while it sustained 
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Figure 2. Results of CSF proteomics. (a) Cross-validation prediction using the best model showed that the predicted class probability 
reached a 100% sensitivity and 75% specificity for classifying patients with migraine from healthy control participants. The model training 
employed a balanced subsampling technique, resulting in the classification boundary being located at the center (x = 0.5, represented by 
the dotted line). (b) The top 15 proteins ranking in the important features are selected from the training data at each cross-validation run. 
The x-axis shows the percentage of being selected in the features. These 15 proteins were angiotensinogen, cell adhesion molecule 3, Ig 
heavy chain V-III region JON, IGFBP-6, IGFBP-7, monocyte differentiation antigen CD14 (cluster of differentiation 14), ProSAAS (Proprotein 
convertase subtilisin/kexin type 1 inhibitor, Ser-Ala-Ala-Ser), prostaglandin-H2 D-isomerase, transthyretin, cystatin-C, beta-1,4-
glucuronyltransferase 1, EGF (epidermal growth factor)-containing fibulin-like extracellular matrix protein 1, ceruloplasmin, tetranectin, 
and Ig kappa chain C region. Red color indicates overexpression, while blue represents underexpression of proteins. (c) On the volcano 
plot, neuromodulin was downregulated in healthy controls compared to patients with migraine. The downregulation of Ig heavy chain 
V-III region JON in migraine patients is shown in (b). See the “Methods” section for decision thresholds of fold changes and p-values. (d) 
Heatmap and dendrogram showing the 2 major clusters of controls and migraine separated by using the top 15 proteins. Among the eight 
migraine patients, three EM patients clustered into one subgroup, while one EM patient clustered with the remaining four CM patients.
C, control; CM, chronic migraine; EM, episodic migraine; IGFBP, insulin-like growth factor-binding protein; M, migraine participants.
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being downregulated as CM persisted. CACNA1F 
continues to be more upregulated when CM 
persists.

Study power
Our study achieved a probability power greater 
than 73.3% for reaching verification utilizing 52 
migraine cases (26 EMs, 26 CMs), 26 controls, 
and 20 top serum candidate biomarkers for dis-
covery. We identified that one of the three candi-
date biomarkers, CACNA1AF, was expressed in 
48% of the migraine cases. Furthermore, there 
was a notable distinction of six standard devia-
tions between the migraine cases and controls. 
This statistical power was calculated using simu-
lation models and quantitative criteria for the sta-
tistical design of proteomics biomarker discovery 
and verification research.63 These criteria are sup-
ported by prestigious organizations such as the 
National Cancer Institute, the National Heart, 
Lung, and Blood Institute, the American 
Association for Clinical Chemistry, and the US 
Food and Drug Administration.63

GO enrichment
The GO results were categorized into three com-
ponents, that is, biological processes, cellular 
components, and molecular function. From both 
the CSF (Figure 4(a)) and serum (Figure 4(b)), 
the top biological processes were complement 
activation (classical pathway), humoral immune 
response, and lymphocyte-mediated immunity. 
The top cellular components were microparticle, 
vesicle lumen, secretory granule lumen, cytoplas-
mic vesicle lumen, immunoglobulin complex, 
primary lysosome (CSF), azurophil granule 
(CSF), pore complex (CSF), haptoglobin–hemo-
globin complex (serum), and endoplasmic reticu-
lum lumen (CSF). The top molecular functions 
were immunoglobulin receptor binding, antigen 
binding, aminopeptidase activity (CSF), serine-
type peptidase activity (CSF), hormone binding 
(CSF), exopeptidase activity (CSF), endonucle-
ase activity (CSF), serine-type exopeptidase 
activity (CSF), peroxidase activity (serum), oxy-
gen carrier capacity (serum), antioxidant capacity 
(serum), heme binding (serum), and lipopeptide 
binding (serum).

KEGG pathway analysis
The KEGG pathway analysis enrichment score 
revealed complement and coagulation cascades 
as the top significant pathway involved in the 
CSF (Figure 4(c)) and serum (Figure 4(d)) 
samples.

Protein–protein interaction
The CSF’s most extensive subnetwork comprised 
24 nodes and 23 edges (Figure 4(e)). Among these 
nodes, alpha-enolase exhibited the highest degree of 
connectivity (degree = 21). Histidine-rich glycopro-
tein and plasminogen followed with degrees of 2 
each. The upregulated nodes were enriched in path-
ways related to glucose metabolism (Supplemental 
Table 2). Notably, the downregulated nodes were 
associated with coagulation pathways (e.g., fibrin 
clot formation) (Supplemental Table 3).

For the serum, the largest subnetwork contained 
93 nodes and 97 edges (Figure 4(f)). The node 
for hemoglobin subunit alpha showed the highest 
degree of 29, followed by complement 3 (degree =  
28) and insulin-like growth factor (IGF) II 
(degree = 12). The significant pathways in the 
upregulated nodes were related to oxygen and 
carbon dioxide exchange in erythrocytes, comple-
ment cascade, and regulation of IGF 
(Supplemental Table 4). There were no signifi-
cant pathways in the downregulated nodes.

Discussion
Our study, which employed an unbiased and 
deep profiling approach, identified several candi-
date biomarker signatures that could aid in diag-
nosing migraine. Our serum and CSF proteomics 
analysis has demonstrated a clear differentiation 
between migraine and HCs, indicating that 
migraine is a distinct condition affecting multiple 
biomolecules. Furthermore, our investigation 
into the subclassification of migraine has revealed 
various clusters of patients in both serum and 
CSF proteomics, which deviate from the tradi-
tional EM versus CM classification. Only serum 
proteomics analysis could distinguish between 
the three groups of individuals with EM, CM, 
and HC, supporting the frequency-based migraine 
subclassification.
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Three serum molecules were identified as top 
classifiers in cross-sectional and longitudinal 
analyses. Among these, ZFP-814 exhibited down-
regulation, while CACNA1F showed upregula-
tion in individuals with persistent CM. ZFP-814 
is known to play a role in regulating transcription 
by RNA polymerase II.73 It is worth exploring 
whether ZFP-814 is a protein associated with 
migraine tolerance. Additionally, it is important 
to investigate whether CACNA1F contributes to 
chronicity, given that the CACNA1A gene is 
responsible for up to 50% of cases of Familial 
Hemiplegic Migraine.74

In the following paragraphs, we shall deliberate 
upon the significant biomolecules identified as 
top classifiers in our CSF and serum proteomics.

CSF proteomics
The present study has revealed an upregulation of 
CSF angiotensinogen in individuals with migraine 
compared to controls. Angiotensinogen consti-
tutes approximately 2%–3% of CSF proteins and 
is primarily secreted by the hypothalamus and 
brainstem astrocytes.75 Additionally, neurons in 
various brain regions, such as the forebrain, thala-
mus, hypothalamus, brainstem, magnocellular 
neurons of the paraventricular nucleus, nucleus 
of the solitary tract, subfornical organ, and rostral 
ventrolateral medulla, also secrete CSF angio-
tensinogen.76 The brain has its own renin–angio-
tensin system (RAS), including low levels of 
renin.76,77 Overactivation of this system can result 
in elevated levels of oxidative stress,78 disruption 
of the blood–brain barrier,78 neuroinflamma-
tion,78 and nociceptive transmission.79 As sys-
temic angiotensinogen cannot penetrate the 
blood–brain barrier,80 CSF angiotensinogen is 
solely derived from the brain. The brain RAS is 
believed to be implicated in the pathophysiology 
of migraine and may account for the effectiveness 
of angiotensin-converting enzyme inhibitors and 
angiotensin receptor blockers in reducing 
migraine symptoms.81 However, the present CSF 
proteomics study did not permit pathway analysis 
to investigate the involvement of other RAS pro-
teins, such as renin and angiotensin.

The present investigation revealed an upregula-
tion of CADM3 in the CSF of migraine patients. 
CADM3 is critical in facilitating the axon–glia 
interaction in neurons, including those in the 
trigeminal nerve.82,83 It possesses signaling 

properties that can impede the activation of the 
phosphoinositide-3-kinase–protein kinase B/Akt 
(PI3K-PKB/Akt) pathway mediated by neuregu-
lin.84 The PI3K-PKB/Akt signaling pathway 
involves multiple cellular processes, such as pro-
tein synthesis, transcription, angiogenesis, and 
metabolism.85,86 Moreover, it has been observed 
to be activated in a preclinical model of migraine.85 
The brain exhibits the highest level of CADM3 
expression compared to other anatomical 
regions.83,87 This study is the first to report the 
involvement of CADM3 in migraine. Previous 
studies have shown a temporary elevation of vari-
ous cell adhesion molecules, including soluble 
intercellular adhesion molecule (sICAM1), in the 
jugular vein of migraine patients ictally.88 
Likewise, increased serum ICAM1 and elevated 
CSF soluble vascular cell adhesion molecule-1 
(sVCAM-1) levels have been reported in people 
with migraine compared to those without.89 To 
our knowledge, no prior studies have investigated 
CSF levels of CADM3 in migraine.

The present study suggests that reducing the lev-
els of the IGHV V-III region JON in the CSF of 
migraine patients may indicate immune dysregu-
lation. Several studies have reported the role of 
humoral immunity in the pathophysiology of 
migraine.90 Moreover, the elevated incidence of 
comorbid autoimmune disorders in individuals 
with migraine suggests that the immune system 
may be involved.90

The present study has revealed that individuals 
experiencing migraine display increased concen-
trations of IGFBP-6 and IGFBP-7 in their CSF 
compared to the control group. These binding 
proteins regulate the bioavailability of IGF-1 and 
IGF-2 in different bodily fluids, including serum 
and CSF.91 Although the liver secretes most IGF, 
some neuronal cells produce the IGF.91 IGFBP-6 
functions as a specific inhibitor of IGF-2,92,93 
whereas IGFBP-7 inhibits IGF-1 actions by bind-
ing to IGF receptors, consequently deactivating 
the PI3K-PKB/Akt pathway downstream.94 
IGFBP-7 is also linked to cellular senescence95 
and obesity (potentially as a compensatory mole-
cule)96 and is regarded as a biomarker for dias-
tolic heart failure.97 In a rat migraine model, the 
intranasal administration of IGF-1 was effica-
cious in arresting cortical spreading depression, 
diminishing trigeminal nociception, oxidative 
stress, and CGRP 99 levels. The increased levels 
of IGFBPs observed in the present study may be 
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a contributing factor to the chronicity of migraine 
in affected individuals.

Upregulation of CSF neuromodulin (growth-
associated protein 43) in migraine patients may 
suggest mechanisms of neuroplasticity and neu-
ronal repair at play, similar to what is observed in 
chronic pain conditions.98,99 Neuromodulin, a 
marker indicative of neural plasticity and regen-
eration, has been observed to be increased in pre-
clinical models of neuropathic pain and is 
exclusively derived from neurons.98,99

Serum proteomics
Elevated serum levels of proteoglycan 4, an anti-
neuroinflammatory protein,100 were observed in 
migraine patients compared to the control group. 
Proteoglycan 4 restores the integrity of the blood–
brain barrier by inhibiting the signaling pathways 
of toll-like receptors (TLRs).100 Numerous stud-
ies have shown that the activation of TLRs is 
linked to the occurrence of migraine attacks.101–102 
Therefore, the elevated levels of proteoglycan 4 in 
migraine patients could serve as a compensatory 
mechanism for combating pain.

Elevated expressions of ZFP-814 and mediator of 
RNA polymerase II transcription subunit 12 
(Med12) were observed in migraine patients 
compared to the control group. ZFP-814 and 
Med12 are widely distributed proteins recognized 
for their role in regulating RNA polymerase 
II.73,104 Other ZFPs have been discovered to be 
upregulated in people with migraine.105,106 ZFPs 
involve multiple functions, that is, transcription, 
RNA synthesis, protein assembly, and lipid func-
tioning.107 Therefore, we hypothesize that ZFP-
814 and Med12 may regulate proteins associated 
with migraine by upregulating or downregulating 
their expression. Additional research is required 
to ascertain the precise mechanisms by which 
ZFP-814 and Med12 impact migraine and the 
pathways they regulate.

Changes in IGHV 3-74 serum levels and IGKV 
3D-15 indicate immune dysregulation in migraine 
patients.

The present research emphasizes that a solitary 
biomarker cannot precisely depict complex con-
ditions such as migraine, underscoring the neces-
sity for a comprehensive biomarker signature. 

Some of the pathways affected by the dysregu-
lated biomolecules include neurovascular decou-
pling, oxidative stress, sensitization of trigeminal 
nociceptors, neuroinflammation, and disruption 
of the blood-brain barrier (BBB). The upregula-
tion of CADM3 and IGFBP-7 in the CSF of 
migraine patients may indicate that these proteins 
are directed toward suppressing the PI3K-PKB/
Akt signaling pathway—a pathway reported to be 
activated in a preclinical migraine model.85

The enrichment and pathway analysis revealed 
the activation of various pathways associated with 
immune response, complement and coagulation 
cascades, glucose metabolism, oxygen and car-
bon dioxide exchange in red blood cells, and IGF 
regulation. This finding offers a more compre-
hensive understanding that migraine is a complex 
disease affecting multiple biological pathways. 
Previous studies have reported dysregulation of 
the immune system,108 aberrant coagulation path-
ways,109–111 alterations in glucose metabolism,112 
atypical erythrocyte biology,113,114 and reduced 
levels of IGF115 in association with migraine. To 
facilitate a better understanding and management 
of migraine disorders, it is crucial to offer a thor-
ough elucidation of the mechanisms that underlie 
these diverse pathways and their significance in 
triggering migraine attacks. The presence of 
numerous pathways indicates the necessity of 
employing a multimodal strategy in the manage-
ment of migraine. Additionally, migraine’s phased 
and heterogeneous nature lends itself to the pos-
sibility of developing dynamic biomarkers rather 
than static ones.

The present study contains some limitations. As 
the present study is exploratory in nature, we did 
not conduct a priori sample size estimation. 
Future studies with well-powered sample sizes 
are required. Due to the limited sample size, it 
was impossible to conduct further sensitivity 
analysis, for example, comparing ictal and interic-
tal migraine, migraine with and without MOH, 
and migraine with and without known comorbid-
ities (e.g., depression). Our analysis was limited 
by the small sample size of our CSF, which has 
the potential to affect the reliability and generaliz-
ability of the results obtained from the study. 
CSF is a precious resource, and obtaining a suf-
ficient sample size is challenging. To address this 
limitation, we utilized various strategies. For 
example, we implemented an ultra-sensitive 
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proteomics workflow to detect low-abundance 
proteins, and we used data integration tech-
niques, such as combining proteomics data with 
pathway analysis, to enhance our understanding. 
The timing of serum and CSF collection could 
have been more consistent, which may introduce 
variability in the findings due to the influence of 
time of day and circadian factors on biomolecule 
levels and pathways.

Conclusion
Our comprehensive data-driven proteomics inves-
tigation has uncovered evidence suggesting the 
identification of innovative proteomic biomarker 
signatures designed to accurately diagnose, clas-
sify, and predict treatment responses for migraine. 
The perturbed biomolecules exert their influence 
across a spectrum of pathways, culminating in 
cortical spreading depression, sensitization of 
trigeminal nociceptors, generation of oxidative 
stress, disruption of the blood–brain barrier, dys-
regulated immune responses, and activation of 
coagulation cascades.
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