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HIGHLIGHTS GRAPHICAL ABSTRACT

e EC effective technology used to treat
wastewater generated from hospital.

e Al was used as an electrode for hospital
wastewater treatment using EC process.

e EC can eliminate pollutants from waste-
water under various operating
parameters.

e CCD used to optimize operational pa-
rameters for treatment of hospital
wastewater.
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ARTICLE INFO ABSTRACT
Keywords: Electrocoagulation (EC) is a process used by supply of electric current with sacrificial electrodes for the removal of
Elec?ocoagUIation pollutant from wastewater. The study was experimentally investigated taking into account various factors such as
Hospital wastewater pH (3-7.5), current (0.03-0.09 A), distance between the electrodes (1-2 cm), electrolytic concentration (1-3 g/L),

Color

L and electrolysis time (20-60 min) which is impact on the % removal efficiency of color, chemical oxygen demand
COD and turbidity removal

Energy consumption (COD), turbidity and determination of energy consumption used for aluminum (Al) electrode used. The surface

Optimization response design process based on the central composite design (CCD) has been used to optimize different oper-

RSM ational parameters for treatment of hospital wastewater using EC process. The % color, COD and turbidity
removal, and energy consumption under different conditions were predicted with the aid of a quadratic model, as
were the significance and their interaction with independent variables assessed by analysis of variance (ANOVA).
The optimal conditions were obtained through mathematical and statistical methods to reach maximum % color,
COD, and turbidity removal with minimum energy consumption. The results showed that the maximum removal
of color (92.30%), COD (95.28%), and turbidity (83.33%) were achieved at pH-7.5, current-0.09A, electrolytic
concentration-3g/L, distance between electrodes-2 cm and reaction time 60 min. This means that, the process of
EC can remove pollutants from various types of wastewaters and industrial effluent under the various operating
parameters.
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1. Introduction

Wastewater generated from various sources like agricultural [1, 2],
industrial [3, 4, 5, 6], commercial [7, 8, 9], the institution [6, 10], and
domestic [11, 12] with different contents of pollutants that affect the
natural condition of the environment [6, 11]. Rendering to [6, 13] hos-
pital is an institution that needs a huge quantity of water and abstemi-
ously releases wastewater to an environment that contains toxic
pollutants such as metal oxides, hazardous liquid waste from various
units, radioactive waste, bacteria, viruses, blood, fluids, different con-
centration of chemical oxygen demand (COD) and biochemical oxygen
demand (BOD) that affects environments in different aspects [14, 15]. A
number of technologies are functional to minimize effects of hospital
wastewater generated such as ion-exchange [16], adsorption [6, 17, 18,
19], coagulation-flocculation [6, 18], electro-dialysis [20], chemical
oxidation [6, 21], reverse osmosis [19, 22, 23], filtration [24], ultrafil-
tration [23, 25, 26, 27] and activated sludge [21, 28, 29, 30, 31], etc.,
Based on the fundamentals of wastewater treatment techniques, their
advantages and disadvantages are summarized in Table 1.

Electrocoagulation (EC) is an electrochemical process for the treat-
ment of wastewater using an electric current without adding chemicals
where tiny particles are removed in wastewater [32, 33, 34]. In addition
to that, EC was progressive and highly adopted due to low initial cost
installation and maintenance, a small amount of sludge production after
treatment with a short period of settling time, and good removal effi-
ciency of pollutant [35, 36]. The stainless steel (SS), aluminum (Al), and
iron (Fe) are types of electrodes used in the EC process for the treatment
of wastewater [37, 38].

In this investigation, Al was used as an electrode and the mechanism
of EC process is given in the following Egs. (1), (2), and (3). Metallic ions
were produced from the EC process by electrochemically in the
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coagulants of hydroxide flocs formed which absorbs the precipitates of
suspended particles and dissolved pollutants [39].

The electrochemical reaction involved in the reactor for anode and
cathode when Al was used [40];

Anodic reaction: Al— AP' + 3e” ¢))
Cathodic reaction: 3H,0+3e” — 3/2H, + 30H (2)
Overall reaction: APT +30H — Al(OH), 3)

In the above overall reaction, aluminum hydroxide AI(OH)3 formed
was used as a coagulant which forms flocs and absorbs dissolved and
suspended pollutants of precipitates.

1.1. Response Surface Methodology

Design of Experiment (DoE) represents a collection of valuable math-
ematical techniques for statistical modeling and systematic analysis of the
issue by using variables or factors for optimizing the desired responses or
measurements of output [41, 42]. One of the frequent of DoE for model
building is Response Surface Methodology (RSM), a key consecutive
technology for original process, improving the design and formulation of
new products and maximizing their performance [41, 43] and RSM is a
common empirical statistic method used to set mathematical models,
optimize multi-factor tests, and explore relationships between the response
and explanatory variable [44]. The RSM main advantage over the con-
servative time-consuming approach to one variable at a time is the small
number of experimental processes required, including simultaneous
interaction of variables and modeling of the selected response parameters
for a faster and more systematic examination of its parameters [41].

Table 1. Advantages and disadvantages of several wastewater treatment technologies.

Treatment Process Advantages

Disadvantages

Anodic oxidation Treatment of large volumes wastewater.
Very large % removal of pollutant.

No pH restrictions.
Photo Slow but large % removal of pollutant.

Photo-Electro-Fenton Small bias potential required.

Very large % removal of pollutant.

No need of separation filtration after the treatment.

Electro-Fenton The on-site production of Hy05.

The continuous regeneration of Fe>™ on the cathode.

The low iron sludge production.

Electrocoagulation It is a moderately fast treatment process.

Can be treated large volumes and higher organic loadings.

Particles electroflotation by H bubbles.

Attention to halogenated by-products.
Electrode fouling.
Expensive, high O, over potential anodes.

High cost of UV lamps usage.

Attention to halogenated by-products

High cost of UV lamps usage.

Particular reactor configuration with photoactive anodes and
quartz glass.

Low H,0, yield.

Low current density.

Low conductivity.

The sludge is produced during operation.

The electrode is dissolved and replacement needed.

Can separate only contaminants

Very good removal efficiency of ionic and colloidal matter.

Electrode cost is relatively low.
Operation is probable to run in continual mode.

Adsorption

sludge production.

Ozonation Excellent pharmaceutical removal Effectiveness.

Oxidant assisting disinfection, sterilization properties.

Organic contaminants can be removed
Efficiently.

Ion exchange
No perforation of substances into the soft water.
Most of the heavy metals can be reused.

Wastewater that is produced by ion exchange machines is also

used for water treatment.

Membrane filtration Greater quantity can be treated.

Finest removal efficiency of salts and organic matter.

Moderately quick

High pharmaceutical contaminants removal is achieved.
Lower energy consumption, simple operating conditions, fewer

Very useful and efficient method of water softening.

Making low operating cost and effective process is a challenge.
Recycling and residue management are a serious concern

High depletion of energy, oxidative by-products production.
Radical scavenger is disrupted.
Little employment in pharmaceutical contaminants removal.

The acidity level in the water can be increased for sodium ions
entrance into the softened water which may make the water not
very safe for use.

The machines used to soften the water are known as Iron
exchangers which must be cleaned for high saturation level.
The process require high operational cost

Membrane cost is relatively high.

Problems like membrane fouling occurred.

Only can contribute to the separation of contaminants
Operation work is possible in batch mode
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Table 2. Characteristics of wastewater.

No Parameters Quantity Unit
1 pH 7.8 _

2 Color (Absorbance) A _

3 Turbidity 375 NTU
4 COD 448 mg/L
5 TSS 121 mg/L
6 TDS 512 mg/L
7 TS 633 mg/L

A =295

According to [45] the Box-Behnken Design (BBD) and the Central
Composite Design (CCD) are the two common design types of RSM that
allow a reasonable amount of information for testing lack of fit statisti-
cally which needed for consecutive experiments. According to [46] BBD
is used aimed at designing all quantitative numerical values varied over
three levels and [47] elucidated CCD was used when the lower experi-
ment was investigated. The CCD was used to examine the impacts of the
factors on their responses and in optimization studies subsequently as
well as this technique is appropriate for the installation of the quadratic
surface and improves the viable parameters by a minimum number of
experimentations [48].

Utmost of the previous research work focused by using synthetic so-
lutions on the removal of pollutants by using the EC process and there
was limited work using real wastewater. Also, most of the work focused
on pollutant removal efficiency from wastewater. In the EC process, en-
ergy consumption is a significant parameter from the economic point of
view. Therefore, the present study focused on the determination of en-
ergy consumption for the removal of % COD, color and turbidity from
hospital wastewater using an EC process.

Intended for electrocoagulation process, several parameters were
chosen to optimize statistically through RSM. In this study, operating
parameters of the EC process like pH (A), current (B), electrolytic con-
centration (C), distance between electrodes (D), and reaction time (E)
were optimized by CCD through RSM. The main objective of the opti-
mization is to maximize the removal of % color, COD, turbidity and
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Figure 1. Experimental setup of electrocoagulation process.

Table 3. Coded and actual values of the variables of the design of experiments for
the electrocoagulation process.

Variables Unit Factors Levels

-1 0 +1
pH A 3] 6 7.5
Current A B 0.03 0.06 0.09
Electrolytic concentration g/L C 2 3]
Distance between electrodes cm D 1 1.5 2
Reaction time min E 20 40 60

minimize consumption of energy with the minimum of reaction time
from hospital wastewater. The DoE Software (11) was used to optimize
the effect of the designated operating variables on the efficacy of
wastewater treatment and the study combined effect of CCD analyses
using the statistical analysis of the selected variables.

2. Materials and methods
2.1. Characterization of wastewater

Wastewater was collected from the Jimma University (JU) specialized
hospital, Jimma, Ethiopia and it was characterized for pH, color, COD,
turbidity, TSS and TDS, and the results are given in the Table 2.

2.2. Reagents

Types of reagents were used in this study, particularly for determining
the COD. Among these reagents such as KoCro07, H2SO4, and NaOH to
adjust pH, AgSO4 and HgSO4 to produce CO, and Hy0, ferrous ammo-
nium sulphate, Ferroin as an indicator, and distilled water.

2.3. Experimental procedures

An experimental setup of EC was shown in the Figure 1. The process
was a batch that was performed with 1000 mL of wastewater in EC cell.
The Al electrode is used up in the EC process with a dimension of 5.3 x 10
x 0.1 cm, respectively. The anode and cathode were positioned vertically
and parallel to each other with an interelectrode distance of varied from
1 to 2 cm. The copper wires were connected to a direct current (DC)
power source at one end and to the electrodes by electrical clips on the
other end. Then, the anticipated current was applied to anode and
cathode submerged in the solution. The current and cell voltage were
measured periodically using a multimeter. The solution was continuously
stirred using a magnetic stirrer at a constant speed. The pH of the
wastewater was measured using pH meter and it was adjusted using a 0.1
N NaOH and HySO4 solution. With required experimental conditions, the
samples were collected from EC reactor and filtered using Whatmann 42
filter paper. The color, COD and turbidity were determined to examine
the behavior of EC process for treatment of wastewater. The electrode
plates were cleaned physically by washing with distilled water prior to
every run, and owing to their sacrificial nature and also, they were
replaced after every two runs. The % color, COD and turbidity removal
efficiency, and energy consumption of the EC reactor were investigated
under various conditions such as pH, current, electrolytic concentration,
distance between electrodes and reaction time, respectively.

2.4. Design of experiment for optimization

A CCD was executed for five independent variables and DoE is used to
minimize the number of runs and needed to combine various indepen-
dent variables. The parameters chosen are pH (A), electric current (B),
electrolytic concentration (C), distance between electrodes (D), and the
reaction time (E). The coded and actual values of variables are showed in
Table 3 and an experimental design matrix resulting from CCD was



Table 4. Removal percentage and energy consumption with actual versus predicted values.

Run A B C D E Color removal, (%) Turbidity removal, (%) COD removal, (%) Energy consumption
(kWhr/m>)
- A g/L cm min Actual Value Predicted Value Actual Value Predicted Value Actual Value Predicted Value Actual Value Predicted
Value
1 7.5 0.03 2 1.5 60 85.71 81.90 70.00 67.16 91.70 89.39 8.00 7.86
2 6 0.03 2 1.5 60 79.31 78.01 66.67 61.47 90.44 85.89 7.00 7.21
3 7.5 0.06 3 2 20 33.33 31.38 33.33 33.54 35.27 31.78 16.00 16.85
4 6 0.06 2 1.5 60 85.20 79.62 63.63 66.24 94.10 90.22 18.00 16.90
5 3 0.03 1 1 20 25 20.20 18.20 16.31 27.50 24.54 9.00 8.91
6 3 0.06 2 1.5 60 83.30 76.61 66.70 65.42 93.90 93.53 14.00 13.91
7 3 0.03 2 1.5 40 46.40 45.52 40.00 43.25 65.20 64.77 6.00 6.45
8 6 0.09 3 2 20 48.28 43.78 30.00 31.89 35.85 36.05 33.00 34.03
9 3 0.09 3 2 40 86.40 65.33 75.00 66.06 94.80 78.21 27.00 29.04
10 7.5 0.06 3 2 40 54.17 56.73 66.67 67.06 67.19 68.61 16.00 16.86
11 6 0.09 3 2 40 62.10 66.76 70.00 66.89 73.58 74.90 33.00 33.65
12 7.5 0.03 2 1.5 40 53.57 55.28 50.00 57.11 69.00 72.19 8.00 6.78
13 7.5 0.06 2 1.5 40 56.14 59.24 60.00 59.46 76.00 72.95 18.00 18.11
14 7.5 0.09 3 2 40 69.23 69.28 75.00 70.55 77.00 76.02 39.00 36.53
15 6 0.09 3 2 60 89.66 93.82 80.00 82.31 95.28 97.70 33.00 34.09
16 3 0.03 2 1.5 60 75 73.83 60.00 56.58 89.10 84.45 6.00 7.05
17 7.5 0.03 2 1.5 20 30.36 32.74 30.00 27.49 35.50 38.95 7.00 6.52
18 7.5 0.06 2 1.5 20 35.08 39.63 30.00 29.45 35.25 38.51 18.00 18.07
19 6 0.03 2 1.5 20 27.59 27.72 22.22 19.60 33.12 33.80 7.00 6.18
20 6 0.06 2 1.5 20 31.50 35.19 27.27 23.59 33.55 35.73 16.00 16.33
21 6 0.06 3 2 20 30.77 27.71 27.27 26.76 32.14 27.46 16.00 15.54
22 6 0.03 2 1.5 40 47.78 50.82 44.44 50.33 66.18 67.87 7.00 6.29
23 6 0.06 3 2 60 84.62 83.61 71.73 76.40 85.00 86.71 16.00 16.06
24 6 0.03 1 1 40 49.15 45.54 50.00 50.92 54.70 57.89 10.00 9.43
25 3 0.06 3 2 40 49.20 51.03 60.00 56.48 60.85 63.67 14.00 13.60
26 7.5 0.06 3 2 60 85.42 86.15 83.33 81.00 89.96 89.38 16.00 17.68
27 3 0.03 1 1 40 42.50 38.70 45.50 45.72 61.80 57.88 9.00 8.72
28 7.5 0.03 1 1 40 51.85 50.77 57.14 56.78 58.15 60.67 10.00 10.36
29 7.5 0.06 2 1.5 60 87.71 82.93 70.00 69.90 95.25 91.35 18.00 18.96
30 3 0.09 3 2 20 31.81 41.21 25.00 28.87 32.76 37.71 33.00 29.74
31 6 0.03 1 1 20 27.12 28.18 25.00 23.70 30.42 26.20 9.00 9.30
32 3 0.06 2 1.5 20 27.10 29.92 16.70 18.39 30.30 35.72 14.00 13.98
33 3 0.06 2 1.5 40 50 51.23 50.00 51.69 70.30 72.65 14.00 13.54
34 7.5 0.03 1 1 60 70.37 71.65 64.29 63.32 74.77 75.49 11.00 11.47
35 3 0.03 2 1.5 20 21.4 21.29 10.00 10.33 26.10 29.04 5.00 6.66
36 7.5 0.09 3 2 60 92.30 95.77 83.33 84.88 95.10 98.00 39.00 37.13
37 3 0.06 3 2 20 25.40 23.99 20.00 19.67 28.93 24.37 14.00 14.07
38 3 0.09 3 2 40 54.50 65.33 62.50 66.06 72.40 78.21 27.00 29.04
39 6 0.06 3 2 40 53.85 53.62 63.64 61.37 62.46 65.11 16.00 15.39
40 7.5 0.03 1 1 20 35.19 33.97 28.57 30.65 32.92 29.81 10.00 10.07
41 6 0.06 2 1.5 40 53.70 55.37 54.54 54.70 73.00 71.00 16.00 16.20
42 3 0.03 1 1 60 50 61.27 54.50 55.56 70.70 75.18 10.00 9.35
43 6 0.03 1 1 60 66.10 66.99 58.33 58.57 70.23 73.53 10.00 10.38
44 3 0.06 3 2 60 79.60 82.15 70.00 73.70 82.21 86.93 16.00 13.95
45 7.5 0.09 3 2 20 53.85 46.86 33.33 36.64 38.03 38.00 36.00 36.75

0 32 D9qd W

£8£602 (220Z) 8 uofiaH
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Table 5. Sequential model sum of squares and summary statistics for % COD removal.

Sequential Model Sum of Squares

Source Sum of Squares df Mean Square F-value p-value

Mean vs Total 1.752E+05 1.752E+05

Linear vs Mean 22757.41 5689.35 96.97 <0.0001 Aliased
2FI vs Linear 939.33 134.19 BAI5! 0.0117 Aliased
Residual 1407.44 B! 42.65

Total 2.003E+05 45 4451.60

Model Summary Statistics

Source Std. Dev. R? Adjusted R? Predicted R? PRESS

Linear 7.66 0.9065 0.8972 0.8802 3006.76 Aliased
2FIL 6.53 0.9439 0.9252 0.8903 2753.21 Aliased
Table 6. ANOVA of quadratic model for % color removal.

Source Sum of Squares df Mean Square F-value p-value

Model 19356.51 13 1488.96 39.18 <0.0001 Highly Significant
A-pH 286.83 1 286.83 7.55 0.0099 Significant
B-Current 104.15 1 104.15 2.74 0.1079

C-Electrolytic Concentration 148.32 1 148.32 3.90 0.0572

D-Distance Between Electrodes 0.0000 0

E-Electrolysis Time 8088.05 1 8088.05 212.83 <0.0001 Highly Significant
AB 4.97 1 4.97 0.1307 0.7201

AC 8.92 1 8.92 0.2347 0.6315

AD 0.0000 0

AE 13.53 1 13.53 0.3560 0.5550

BC 164.52 1 164.52 4.33 0.0458 Significant

BD 0.0000 0

BE 50.78 1 50.78 1.34 0.2565

CD 218.63 1 218.63 5.75 0.0227 Significant

CE 210.41 1 210.41 5.54 0.0251 Significant

DE 0.0000 0

A2 13.95 1 13.95 0.3671 0.5490

B2 0.0000 0

c? 0.0000 0

D? 0.0000 0

E? 41.52 1 41.52 1.09 0.3040

Residual 1178.06 31 38.00

Lack of Fit 669.25 30 22.31 0.0438 1.0000

Pure Error 508.81 1 508.81

Cor Total 20534.57 44

revealed in Tables 3 and 4 and it consists of 45 coded conditions for Al-Al Color removal, (%) — <Ao - At> %100 (5)
electrode combination. A,

In Table 3, actual values are the original values that are given to
different factors, and the coded values are also given for the levels of
factors by default or they may be adjusted. In this case, the actual and
coded factors are all variables and A, B, C, D, and E, respectively.

2.5. Removal analysis

Data processing and analysis were done through the laboratory based
on the sample obtained from the selected place and optimized using RSM.

The removal percentage of COD [45, 49, 50, 511, color, and turbidity
[52] were determined according to the formula given in Egs. (4), (5), and
(6) for each parameter.

(€3]

D, ~ COD
COD removal, (%) — (%) » 100

Where, COD, and CODy are the chemical oxygen demand at time =
0 (initial) and at t (reaction time, t) respectively.

Where, Ag and A; are Absorbance registered at time t = O (initial) and at t
(reaction time), respectively.

Turbidity removal, (%)= <%> x 100

(6)

Where, Cy and C; are turbidity registered (in NTU) at time t = O (initial)

and at t (reaction time), respectively.

2.6. Determination of energy consumption

In the electrochemical process determining the energy consumption
(kWh/mS) is required in which contains the different parameters [51].

VIt
E= A ()
Where, V, I, and t, stand for average cell voltage of the electrochemical
system (V), electrical current intensity (I), and reaction time (t),
respectively, and Vy is a volume of wastewater used.
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Table 7. ANOVA of quadratic model for % COD removal.

Source Sum of Squares df Mean Square F-value p-value

Model 24380.69 13 1875.44 80.36 <0.0001 Highly Significant
A-pH 0.4070 1 0.4070 0.0174 0.8958

B-Current 83.23 1 83.23 3.57 0.0684

C-Electrolytic Concentration 75.42 1 75.42 3.23 0.0820

D-Distance Between Electrodes 0.0000 0

E-Electrolysis Time 12228.82 1 12228.82 523.98 <0.0001 Highly Significant
AB 82.69 1 82.69 3.54 0.0692

AC 35.69 1 35.69 1.53 0.2255

AD 0.0000 0

AE 28.96 1 28.96 1.24 0.2738

BC 98.78 1 98.78 4.23 0.0481 Significant

BD 0.0000 0

BE 8.53 1 8.53 0.3657 0.5498

CD 454.79 1 454.79 19.49 0.0001 Highly Significant
CE 36.20 1 36.20 1.55 0.2223

DE 0.0000 0

A? 33.01 1 33.01 1.41 0.2433

B? 0.0000 0

c? 0.0000 0

D? 0.0000 0

E2 643.26 1 643.26 27.56 <0.0001 Highly Significant
Residual 723.49 31 23.34

Lack of Fit 472.61 30 15.75 0.0628 0.9996

Pure Error 250.88 1 250.88

Cor Total 25104.18 44

Table 8. ANOVA of quadratic model for % turbidity removal.

Source Sum of Squares df Mean Square F-value p-value

Model 18093.95 13 1391.84 103.89 <0.0001 Highly Significant
A-pH 269.71 1 269.71 20.13 <0.0001 Highly Significant
B-Current 129.89 1 129.89 9.70 0.0040 Significant
C-Electrolytic Concentration 35.00 1 35.00 2.61 0.1162

D-Distance Between Electrodes 0.0000 0

E-Electrolysis Time 7645.12 1 7645.12 570.67 <0.0001 Highly Significant
AB 60.61 1 60.61 4.52 0.0415 Significant

AC 13.17 1 13.17 0.9828 0.3292

AD 0.0000 0

AE 50.90 1 50.90 3.80 0.0604

BC 2.91 1 2.91 0.2176 0.6442

BD 0.0000 0

BE 0.9015 1 0.9015 0.0673 0.7970

CD 33.52 1 33.52 2.50 0.1239

CE 78.27 1 78.27 5.84 0.0217 Significant

DE 0.0000 0

A? 45.17 1 45.17 3.37 0.0759

B? 0.0000 0

c” 0.0000 0

D? 0.0000 0

E2 957.03 1 957.03 71.44 <0.0001 Highly Significant
Residual 415.30 31 13.40

Lack of Fit 337.17 30 11.24 0.1439 0.9869

Pure Error 78.13 1 78.13

Cor Total 18509.25 44
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Table 9. ANOVA of quadratic model for energy consumption.

Source Sum of Squares df Mean Square F-value p-value

Model 3959.97 13 304.61 181.50 <0.0001 Highly Significant
A-pH 93.20 1 93.20 55.53 <0.0001 Highly Significant
B-Current 378.42 1 378.42 225.47 <0.0001 Highly Significant
C-Electrolytic Concentration 20.74 1 20.74 12.36 0.0014 Significant
D-Distance Between Electrodes 0.0000 0

E-Electrolysis Time 0.6681 1 0.6681 0.3981 0.5327

AB 29.24 1 29.24 17.42 0.0002 Significant

AC 2.85 1 2.85 1.70 0.2021

AD 0.0000 0

AE 1.07 1 1.07 0.6361 0.4312

BC 155.16 1 155.16 92.45 <0.0001 Highly Significant
BD 0.0000 0

BE 0.3146 1 0.3146 0.1875 0.6680

CD 32.41 1 32.41 19.31 0.0001 Highly Significant
CE 0.0042 1 0.0042 0.0025 0.9603

DE 0.0000 0

A? 1.39 1 1.39 0.8300 0.3693

B? 0.0000 0

c? 0.0000 0

D? 0.0000 0

E2 1.66 1 1.66 0.9896 0.3275

Residual 52.03 31 1.68

Lack of Fit 52.03 30 1.73

Pure Error 0.0000 1 0.0000

Cor Total 4012.00 44

3. Results and discussion
3.1. Removal efficiency of color, COD, turbidity and energy consumption

The removal efficiency of % color, COD, and turbidity, with an energy
consumption were shown in Table 4, which is based on the Al-Al elec-
trode combination with its respective predicted values from RSM. In
Table 4, column 1, 2, 3, 4, 5, and shows that, the number of runs or
experiments, indicates pH value, electric current (A), electrolytic con-
centration (g/L), distance between electrodes (cm), and electrolysis time
(minute), respectively and it was performed in the laboratory. The NaCl
was used as an electrolytic concentration to facilitate the removal of
color, turbidity, and COD from wastewater. The rest columns represent
the actual results of percentage of color, turbidity, COD, and energy
consumption (kWhr/m>) from the laboratory and the predicted value
determined by RSM.

In addition to that, the Table 4, factors such as pH, electric current,
electrolyte concentration, distance between electrodes, and reaction
time were considered with different ranges which applied for Al-Al
electrode combination. Similarly, the removal efficiency for color,
turbidity, COD, and energy consumption was determined by consid-
ering all factors. The EC method is sound recognized to be tremen-
dously dependent on the pH of the wastewater at the beginning. The
production of metallic hydroxides is influenced by pH of the aqueous
solution, and the initial pH of the wastewater has an influence on EC
performance [53].

As showed in Table 4 increasing the pH of the initial wastewater, the
removals efficiency was increased. The EC process is significantly influ-
enced by the current intensity. Because of anodic dissolution in accor-
dance with Faraday's law, the removal efficiency was increased as the
current intensity was increased, as well as at higher current values [54].
The effect of applied current on examined reactions is especially

important since the rate at which electro-coagulants and gas bubbles are
released has a significant impact on the rate at which flocs develop [55].
Because, it regulates the quantity of Al and Fe ions discharged from
electrodes, as well as the release of gas bubbles, and the creation of flocs
it should be considered in any EC method for wastewater treatment [55].
As the electric current was increased from 0.03 to 0.09A, the removal of
% COD, color and turbidity were increased which were shown in Table 4.

Th sodium chloride was chosen as a supporting electrolytic because
of its inexpensive cost and availability. The electrolytic concentration of
wastewater in an electrochemical process has a significant impact on
the removal efficiency of pollutant for the wastewater treatment pro-
cess [56]. When it comes to treating strong wastewater, using a highly
conducting solution with a supporting electrolyte has several advan-
tages such as avoiding migration effects, increasing solution conduc-
tivity, lowering electrode resistance, lowering energy consumption,
and increasing process efficiency [57]. The electrolytic concentration it
has a considerable impact on the kinetic electro-dissolution of the
sacrificial anodes, as well as the protective layer of the double coagu-
lant and the flocs' shape [57]. Table 4 shows that, there is an increment
of removal efficiency of color, COD and turbidity from wastewater
whereas the electrolytic concentration was increased. The formation of
adequate quantities of various ions from electrodes which are required
for the generation of adsorbents such as AI(OH)s in the case of Al
electrodes. The discharging of gases bubbles from both electrodes,
which are essentially provided with more assistance to carry the
destabilized pollutants toward the surface of the solution it is depen-
dent on electrolysis time [55].

The quantity of Fe and Al released from electrodes is directly influ-
enced by electrolysis time, in which turn the effects amount of Fe and Al
released from the anode and determined the COD, color, and turbidity
removal efficiency [58]. The movement of the ions will be faster as the
distance between the two electrodes reduces due to the shorter travel
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Figure 2. Actual versus Predicted values for % color and % turbidity and, % COD removal and energy consumption.

path, and the ions will have a better chance of colliding and producing electrodes was decreased, the formation of hypochlorite rises due to
°OH [59]. Table 4 expands, it has high removal efficiency of COD, color, lower electrolyte ohmic potential and cell voltage, resulting in higher
and turbidity in both electrode combinations while electrolysis time removal efficiency [59] which is showed in Table 4, when the distance
increased from 20 to 60 min. Also, when the distance between two between electrodes ranges from 1 to 2 cm. The maximum removal

Table 10. Sequential model sum of squares and summary statistics for % color removal.

Sequential Model Sum of Squares

Source Sum of Squares df Mean Square F-value p-value

Mean vs Total 1.365E+05 1 1.365E+05

Linear vs Mean 18789.20 4 4697.30 107.65 <0.0001 Aliased
2FI vs Linear 513.00 7 73.29 1.96 0.0908 Aliased
Residual 1232.37 33 37.34

Total 1.571E+05 45 3490.18

Model Summary Statistics

Source Std. Dev. R? Adjusted R> Predicted R? PRESS

Linear 6.61 0.9150 0.9065 0.8887 2286.38 Aliased
2FI 6.11 0.9400 0.9200 0.8758 2550.86 Aliased
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Table 11. Sequential model sum of squares and summary statistics for % turbidity removal.

Sequential Model Sum of Squares

Source Sum of Squares df Mean Square F-value p-value

Mean vs Total 1.139E+05 1.139E+05

Linear vs Mean 16497.96 4124.49 82.03 <0.0001 Aliased
2FI vs Linear 582.82 83.26 1.92 0.0972 Aliased
Residual 1428.47 B! 43.29

Total 1.324E+05 45 2942.14

Model Summary Statistics

Source Std. Dev. R? Adjusted R? Predicted R? PRESS

Linear 7.09 0.8913 0.8805 0.8622 2550.80 Aliased
2FIL 6.58 0.9228 0.8971 0.8602 2587.09 Aliased
Table 12. Sequential model sum of squares and summary statistics for energy consumption.

Sequential Model Sum of Squares

Source Sum of Squares df Mean Square F-value p-value

Mean vs Total 12005.00 1 12005.00

Linear vs Mean 3703.46 925.86 120.03 <0.0001 Aliased
2FI vs Linear 253.53 36.22 273 <0.0001 Aliased
Residual 55.01 33

Total 16017.00 45 355.93

Model Summary Statistics

Source Std. Dev. R? Adjusted R* Predicted R? PRESS

Linear 7.66 0.9065 0.8972 0.8802 3006.76 Aliased
2FI 6.53 0.9439 0.9252 0.8903 2753.21 Aliased

efficiency was color-92.30%, turbidity-95.28%, and COD-83.33% and
power consumed 39 kWhr/m®. The results indicates that, the removal
efficiency of color, turbidity, and COD was achieved maximum with
consumed low energy consumption. The performance of the EC system is
influenced by the electrode material it is particularly by the anode which
is determines the type of cations released into the solution [60]. Since
coagulants with a greater charge valence are chosen because the metallic
ions produced from the anode play a significant role in the coagulation of
pollution particles [61].

3.2. Optimization with RSM

The RSM is a particular set of mathematical and statistical methods and
itis has experimental design, model fitting, and validation as well as for the
optimization [62]. The RSM aims to optimize the response of interest which
is influenced by numerous variables [63]. The RSM is a useful statistical
method for the optimization of chemical reactions and/or industrial pro-
cesses and it is widely used for experimental design, in this technique the
response surface is optimized that is affected by process parameters [64].

Table 5 shows that, the sequential model sum of squares and summary
statistics for % COD. From Table 5, the model was significant for COD
removal since the value of p < 0.005 which means that, the model was
significant at a probability level of 95%. The model result indicates that, the
coefficient of determination (R%) and adjusted coefficients of determination
(R?) are 0.9911 and 0.9834 for COD removal, respectively. According to
ANOVA (Tables 6, 7, 8, and 9) results the interaction of pH, current, elec-
trolytic concentration, the distance between electrodes, and electrolysis
time affects the color, COD, turbidity, and the energy consumption.

3.2.1. Validity of the model

The significance of the models was investigated at a 95% confidence
level. The F-value and p-value are key metrics that illustrate the signifi-
cance and appropriateness of the models, while the coefficient of deter-
mination (RZ) expresses the quality of the fit [65]. In Table 4, an
experimental (actual) value and predicted values are shown for COD and
energy consumption. The model-predicted values matched the experi-
mental data in which all points are closed to the diagonal line, as showed
in Figure 2. The quadratic models were shown to be significant (P < 0.05)
in the ANOVA study and can be used to predict the % of COD, color and
turbidity removal, as well as energy consumption. Figure 2 the %
removal of color, COD, turbidity, and energy consumption indicates that
the actual and predicted values are plotted which is linear regression, as
well as the model is the best fit by using RSM.

3.2.2. Experiment performance analysis utilizing DoE

The % removal efficiency of color, COD, turbidity, and the energy
consumption is expressed as a function of operating variables such as pH
(A), current (B), electrolytic concentration (C), the distance between
electrodes (D), and reaction time (E). The DoE provided the quadratic
model regression which shown in Egs. (8), (9), (10), and (11) for color,
COD, turbidity removal and energy consumption, respectively.

Color removal, (%)= + 53.88 + 4.01A + 4.83B + 6.45C + 0.0000D
+ 22.50E — 0.8727AB — 1.16AC + 0.0000AD — 0.8475AE + 8.59BC
+0.0000BD — 2.93BE — 7.81CD + 5.74CE + 0.0000DE + 1.35A"2
+0.0000B"2 + 0.0000C" 2 + 0.0000D"2 + 2.04E"2
(€]
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COD removal, (%)= + 70.72 + 0.1509A + 4.32B + 4.60C + 0.0000D
+ 27.66E — 3.56AB + 2.32AC + 0.0000AD — 1.24AE + 6.66BC
+ 0.0000BD + 1.20BE — 11.26CD -+ 2.38CE + 0.0000DE + 2.08A"2

+0.0000B"2 + 0.0000C"2 — 0.0000D"2 — 8.02E" 2

Turbidity removal, (%)= + 53.14 + 3.88A + 5.40B + 3.13C

©)]

+0.0000D + 21.87E — 3.05AB + 1.41AC + 0.0000AD — 1.64AE
+1.14BC + 0.0000BD + 0.3903BE + 3.06CD + 3.50CE + 0.0000DE

+2.44A"2 + 0.0000B"2 + 0.0000C"2 + 0.0000D"2 — 9.79E"2

(10)

Energy consumption, (kWhr /m" 3)= +15.40 4+ 2.28A+9.21B+2.41C
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+0.0000D + 0.2045E +1.12AB — 0.6543AC 4 0.0000AD + 0.2381AE

+8.35BC + 0.0000BD — 0.2306BE — 3.01CD — 0.0257CE + 0.0000DE

+0.4279A"2 + 0.0000B"2 + 0.0000C"2 + 0.0000D"2 + 0.4078E"2

The sequential model sum of squares and model summary statistics

(1)

are tests used to evaluate the experimental results by CCD from RSM.
These tests are used to generate different models like mean, linear and
two factorial interactions for the removal of % color, COD, turbidity, and
energy consumption as shown in Tables 5, 10, 11, and 12 respectively.
The sequential model sum of squares and model summary statistics in-
dicates linear and two factorial interactions were aliased such that this

indicates that enough number of experiments was not worked and the
model was not used for further implementation.

(o
'bl,l% ;0

Figure 3. Percentage removal of COD, color, turbidity, and energy consumption using a combination of reaction time and pH.
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3.2.3. Combination of operating parameters

The % removal of color, COD, and turbidity with energy consumption
were determined by considering different factors which affect parame-
ters, and the effects of variables are plotted in Figure 3 to Figure 5 using
RSM concerning each variable, the effect of operating settings in pre-
dicting the maximum % removal of COD, color, turbidity, and energy
consumption. The removal efficiency of color, COD, and turbidity was
increased with the increasing of electrolysis time and pH as well as the
energy consumption also highly increased due to the increasing of elec-
trolysis time as shown in Figure 3. In Figure 4, the increment of elec-

trolytic concentration from 1 to 3 g/L and the current from 0.03 to 0.09
A, increased % color, COD, % turbidity, and energy consumption with a
gradual increase of current. Similarly, Figure 5 indicated that good
removal efficiency of color, COD, turbidity were obtained with minimum

of energy consumption under the operating parameters of the distance
between electrodes and current.

100

COD Removal (%)
b
Energy consumption, (kWh/m?)

0.0
€1@c,,o 25

4
(=]

w
[N
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3.2.4. Optimization with RSM

One of the main rewards of RSM concerning CCD is to obtain the
optimum conditions for the removal of pollutants as well as energy
consumption based on laboratory experiments. Based on the CCD, the
results were optimized using the regression equation. To optimize the
process, DoE software searches the design space while keeping several
restrictions in mind. To obtain the genuine maxima or minima, several
random starting points are chosen. Every process variable and response
variable must have a target set in advance. Maximize, minimize, target,
within range, and none are the answer options offered [54]. Factors can
be set to a precise value as well.

In the optimization of pH (A), current (B), electrolytic concentration
(C), distance between an electrode (D) and electrolysis time (E) were
selected as within the range and the responses such as % color, COD, and
turbidity removal efficiency were maximized and energy consumption
was minimized. Based on these operating parameters the optimum value

100 i
8 s 8
B N’
[ E 66
L =}
: g
E é 49
E; 40 =)
= <
© 2 =
0.0
lee,
e, “roy
lce, 1.5
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e, 17 0.03 “ﬁe“‘
ey ©

Figure 4. Percentage removal of COD, color, turbidity, and energy consumption using a combination of electrolytic concentration and current.
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Figure 5. Percentage removal of COD, color, turbidity, and energy consumption using a combination of distance between electrodes and current.

was obtained at pH-7.497, current-0.037A, electrolytic concen-
tration-2.999 g/L, distance between electrodes-1.263cm, and electrol-
ysis time-60 min such that the optimum value of color, COD, turbidity,

and energy consumption were 90.12%, 94.92%, 73.4% and 6.9 kWhr/
m°, respectively.

4. Conclusion

The hospital is supplies huge amounts of water for all activities with

this results wastewater is produced. Water is then consumed and dis-

charged into the environment as waste without any treatment that has an
impact on the condition of the natural environment. An EC is an effective
technology that is used to treat wastewater generated from the hospital
only by using a sacrificial Al electrode. The results showed that, it is
efficient to remove the COD, color, and turbidity from hospital waste-
water under different factors like pH (3-7.5), current (0.03-0.09 A),
electrolytic concentration (1-3 g/L), distance between electrodes (1-2
cm), and electrolysis time (20-60 min) using Al electrode. On the other
hand, the study was indicated with less energy consumption higher
pollutant removal percentages were achieved. The optimum value was
done via RSM by maximizing the removal efficiency of color, COD, and

12

turbidity and by minimizing the energy consumption. In addition to this
RSM display the predicted value based on the actual value obtained from
laboratory analysis as well as evaluates the statistical modeling of an
experiment. Finally, the result of this study suggested that the EC process

would be an effective and efficient method for treatment of wastewater
and industrial effluent.
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