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Assessing the impact of variants of unknown significance on splicing has become a critical issue and a bottleneck, especially with the
widespread implementation of whole-genome or exome sequencing. Although multiple in silico tools are available, the
interpretation and application of these tools are difficult and practical guidelines are still lacking. A streamlined decision-making
process can facilitate the downstream RNA analysis in a more efficient manner. Therefore, we evaluated the performance of 8
in silico tools (Splice Site Finder, MaxEntScan, Splice-site prediction by neural network, GeneSplicer, Human Splicing Finder,
SpliceAl, Splicing Predictions in Consensus Elements, and SpliceRover) using 114 NFI spliceogenic variants, experimentally
validated at the mRNA level. The change in the predicted score incurred by the variant of the nearest wild-type splice site
was analyzed, and for type II, III, and IV splice variants, the change in the prediction score of de novo or cryptic splice site
was also analyzed. SpliceAI and SpliceRover, tools based on deep learning, outperformed all other tools, with AUCs of 0.972
and 0.924, respectively. For de novo and cryptic splice sites, SpliceAI outperformed all other tools and showed a sensitivity of
95.7% at an optimal cut-off of 0.02 score change. Our results show that deep learning algorithms, especially those of
SpliceAl, are validated at a significantly higher rate than other in silico tools for clinically relevant NFI variants. This
suggests that deep learning algorithms outperform traditional probabilistic approaches and classical machine learning tools in

predicting the de novo and cryptic splice sites.

1. Introduction

Hereditary disorders are frequently caused by genetic vari-
ants that affect pre-mRNA splicing [1]. For genes such as
ATM and NFI, the proportion of splicing variants is distinc-
tively high, and up to 50% of the pathogenic variants result
from aberrant splicing [2-4]. While most of the spliceogenic
variants affect existing splice sites, exonic nucleotide variants,
some of which are filtered out at the earliest bioinformatic
stages as synonymous, non-synonymous or nonsense single
nucleotide variants (SNVs) can also result in altered splicing
[5, 6]. Moreover, whole-genome and exome sequencing is
now used widely as part of routine clinical diagnostics and

assessing the impact of variants of unknown significance
(VUSs) on splicing has become a crucial issue and a bottleneck
in clinical practice [7].

Precise pre-mRNA splicing is a complex process that
relies on the coordinated interplay of various cis- and trans-
acting elements [8]. The essential cis-acting elements are the
5'/3" splice sites and the branchpoint sequences. Additional
cis-elements include exonic or intronic splicing enhancers
and silencers (ESEs, ISEs, ESSs, ISSs). Trans-acting elements
include serine/arginine (SR)-rich proteins and heterogeneous
nuclear ribonucleoproteins (hnRNPs). Although variants
affecting the highly conserved motifs of the canonical GT-
AG splice-site sequences (the first two and last two of an
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intron) almost invariably disrupt splicing, assessing the
impact of more discrete variants involving the noncanonical
sequences or deep intronic variants is a major challenge.
Many in silico tools based on different prediction approaches
are available for predicting the effect on splicing [1]. How-
ever, the application and interpretation of the output of these
tools are difficult and practical guidelines are still lacking or
only applicable for a few genes [9].

Neurofibromatosis type 1 (NF1), one of the most com-
mon autosomal dominant disorders, affects about 1 in 3,500
individuals in all ethnic groups. NFI has a high frequency of
splicing variants. The NFI gene consists of 58 consecutive
exons, which spans over 350 kb of genomic DNA. It has one
of the highest mutation rates known for human genes, and
the majority of mutations are scattered throughout the whole
NFI coding sequence with no apparent mutation hotspots.
Notably, 30-50% of the deleterious NFI mutations affect
mRNA splicing, and approximately 30% of these splicing
mutations are located outside the consensus splicing
sequences [10-12]. The large size of the gene without any
mutation predilection sites illustrates the compelling need
for a streamlined decision-making process for assessing
VUSs for their effect on splicing so that further down-
stream RNA analysis can be performed efficiently and
accurately.

In this study, we compared different in silico prediction
tools using NF1 splice-site altering variants. Well-established
databases of NFI splicing variants that were experimentally
characterized at the genomic and mRNA level were used. Sev-
eral in silico prediction tools were assessed and compared for
their accuracy and optimal cutoffs.

2. Patients and Methods

2.1. Data Sources. All positive NFI splice-site altering vari-
ants from (i) two published data sources of Wimmer et al.
and (ii) 43 variants identified in an NF1 patients’ cohort
assessed at Seoul St. Mary’s Hospital (between 2011 and
2018) and Inha University of Korea were merged [13, 14].
All positive variants were experimentally validated as affect-
ing splicing at the mRNA level. Negative splice variants were
retrieved from previously reported data sets of Houdayer
et al,, in which the impact of the intronic variants (BRCAI,
BRCA?2) was experimentally validated as not affecting splic-
ing [19]. Variant nomenclature was based on the following
NCBI RefSeq accession numbers: NFI1: NM_001042492.3,
BRCAI: NM_007300.4, and BRCA2: NM_000059.4 and
GRCh37 genome build. The consensus splice sites referred
to in this paper are -3 to +8 at the 5’ splice site and -12
to +2 at the 3’ splice site [8]. The Institutional Review
Boards of each institution approved this study.

The positive NFI splicing variants were classified into
five categories according to Wimmer et al.: type I, classical
splice-site variants leading to exon skipping; type II, cryptic
exon inclusion caused by deep intronic mutations creating
de novo splice sites; type III, exonic variants, creating de novo
splice sites whose use results in loss of exonic sequences; type
IV, activation of cryptic exonic or intronic splice sites upon
canonical splice-site disruption; and type V, exonic sequence
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alterations causing exon skipping [13]. For the published
NFI splicing variants, each variant was classified into five
categories (Table S1A) according to the original
publications [13, 14]. For the splicing variants identified
from the local NF1 patients’ cohort, a relevant type was
assigned according to the criteria mentioned above.

2.2. NF1 Mutation Analysis of the Local NF1 Patients” Cohort
at the Genomic DNA and RNA Levels. Genomic DNA and
total RNA were extracted from the peripheral blood
lymphocytes of the 43 patients using standard proto-
cols. For stabilization of intracellular RNA during pre-
analytical processing of samples, PAXgene Blood RNA
tubes (PreAnalytiX Qiagen/BD, Hombrechtikon, Switzer-
land) were used. Reverse transcription and cDNA synthesis
were performed using 2 ug of total RNA with Transcriptor
First Strand ¢cDNA Synthesis Kit (Roche, Mannheim, Ger-
many) and random hexamers. PCR was performed using
primers targeting the mRNA coding region of the NFI gene,
designed to cover the whole cDNA sequence in overlapping
fragments [23, 28]. The PCR products were analyzed by aga-
rose gel electrophoresis, and all fragments were analyzed by
bidirectional direct sequencing to screen altered splicing and
coding region variants of NFI. Mutations identified by the
c¢DNA approach were confirmed using genomic DNA
sequencing with primers designed to cover the correspond-
ing exon and adjoining introns (will be provided upon
request). Sanger sequencing of PCR products was performed
bidirectionally with the BigDye Terminator v3.1 Cycle
Sequencing Kit (Applied Biosystems, Foster City, CA), and
the products were resolved on ABI 3130XL Genetic Analyzer
(Applied Biosystems). Sequences were analyzed using
Sequencher (Gene Codes Corporation, Ann Arbor, MI)
and were compared with the corresponding cDNA refer-
ence sequence NM_001042492.3 and gDNA reference
sequence NG 009018.1.

2.3. In Silico Prediction Tools. A total of eight in silico predic-
tion tools were assessed in this study: Splice Site Finder (SSF-
like), MaxEntScan (MES), Splice-site prediction by neural net-
work (NNSplice), GeneSplicer, Human Splicing Finder (HSF),
SpliceAl Splicing Predictions in Consensus Elements (SPiCE),
and SpliceRover [6, 10, 13, 16, 17, 20, 27, 28]. The selection cri-
teria for the choice of these eight in silico tools were that the
tool is widely applied in routine diagnostics, has a web-based
interface, can be applied to a variant in either variant or
sequence format, and can predict a score for most of the vari-
ants in the dataset. SSF-like, MES, NNSplice, and GeneSplicer
were analyzed using a commercial annotation software plat-
form called Alamut Visual Plus (Interactive Biosoftware,
Rouen, France, version 1.3) with the following thresholds and
score ranges in brackets: SSF-like >0 [0-100], MES >0 [donor
0-12; acceptor 0-16], NNSplice >0 [0-1], and GeneSplicer >0
[donor 0-24; acceptor 0-21].

A change in the predicted score incurred by the variant
at the nearest wild-type splice site (donor or acceptor) was
used to evaluate each splice-site variant. For those NFI var-
iants that resulted in a creation of de novo or activation of a
cryptic splice site (such as type II, III, and IV spliceogenic
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FiGure 1: ROC curves with AUCs of the seven in silico tools implemented in the study (a) for all splice sites and (b) only for de novo or

cryptic splice sites.

variants), the change in the prediction score of the de novo
or cryptic splice site was also analyzed. Delta scores were cal-
culated for those in silico tools that provided an independent
score for the wild-type and the variant [1]. For SpliceAI and
SPiCE, tools that do not offer independent scores to the
wild-type and the variant, the delta score of the variant sup-
plied by the SpliceAl and SPiCE probability score, respec-
tively, was used.

WTscore — variant score
Delta score = . (1)
Maximum score of the tool

Missing score rate, defined as the rate at which each in silico
tool failed to identify the actual wild-type splice site and pro-
vided an output score of zero for the wild-type splice site, was
estimated [15]. To evaluate the diagnostic accuracy of each in
silico tool, a receiver operating characteristic (ROC) analysis
was performed using the Analyse-it Method Validation Edi-
tion software, v5.68 (Analyse-it Software Ltd, City West Busi-
ness Park, Leeds, UK). P-values less than 0.05 were
considered statistically significant.

3. Results

3.1. Datasets. Exactly 114 unique NFI spliceogenic variants
were assessed for their effect on splicing including 43 NFI
spliceogenic variants identified from the local patients’
cohort (Table S1A). Of the total 114 positive variants, type
I, which is the classical exon skipping variant, was the

most frequent (65%), followed by type IV (19%), type III
(18%), type II (4%), and type V (1%). Of all positive
variants, 73% (n=83) were located within the consensus
splice site (33 were within the 5’ consensus splice site and
50 were within the 3’ consensus splice site), and 25%
(n=29) were located within the canonical GT-AG splice
sites.

Our negative dataset consisted of 64 intronic splice vari-
ants (29 BRCAI1, 35 BRCA2) (Table S1B). None of the
negative variants was located within the consensus splice
site, 30 variants (47%) were located near the 3’ splice site
(range: -113 to -13, median: -25.5), and 34 variants (53%)
near the 5’ splice site (range: +9 to +104, median: +34.5).

3.2. In Silico Tools and Missing Score Rates. The missing
score rates of each splice-site prediction tool (Table S2)
were assessed before comparing the eight in silico
prediction tools. Missing score rates were assessed for both
the positive and negative variants. Of the in silico tools,
GeneSplicer had the highest missing score rates (24.7%),
followed by HSF (6.90%). We excluded in silico tools with
missing score rates >10% from further analysis.

ROC curves with area under the curves (AUCs) of the
seven in silico tools are shown in Figure 1 and Table 1.
ROC curve plots sensitivity on the y axis against (1-speci-
ficity) on the x axis over a range of cutoff values. The
ROC curve graphically displays the inherent trade-off
between sensitivity and specificity by varying the choice
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TaBLE 1: Summary of evaluation measures for 7 in silico tools for all splice sites.

In silico tools AUC (95% CI) Cutoff TP FP TN FN Sensitivity Specificity
SpliceAl 0.991 (0.980-1.002) 0.02 148 62 2 0.987 0.969
SpliceRover 0.944 (0.912-0.977) 0.010746 149 56 9 0.943 0.875
SPiCE 0.916 (0.879-0.954) 0.04424 92 3 61 18 0.836 0.953
MES 0.912 (0.878-0.946) 0.063125 126 2 60 26 0.829 0.968
NNSplice 0.895 (0.857-0.934) 0 126 12 50 22 0.851 0.806
SSF 0.889 (0.854-0.924) 0 121 4 60 31 0.796 0.937
HSF 0.782 (0.740-0.824) 0 75 0 64 58 0.564 1
Abbreviations: AUC, area under the curve; TP, true positives; FP, false positives; TN, true negatives; FN, false negatives.

TABLE 2: Summary of evaluation measures for 7 in silico tools only for de novo or cryptic splice sites.
In silico tools AUC (95% CI) Cutoff TP FP N FN Sensitivity Specificity
SpliceAl 0.972 (0.937-1.008) 0.02 44 2 62 2 0.957 0.969
SpliceRover 0.924 (0.838-1.010) 0.095393 40 0 64 12 0.769 1
SPiCE 0.508 (0.457-0.559) 0.49529 0 0 64 7 0 1
MES 0.827 (0.750-0.903) 0.118125 31 0 62 15 0.674 1
NNSplice 0.818 (0.736-0.901) 0.07 28 2 60 15 0.651 0.968
SSF 0.829 (0.757-0.901) 0.0014 32 3 61 14 0.696 0.953
HSF 0.847 (0.774-0.921) 0 27 0 64 12 0.692 1

Abbreviations: AUC, area under the curve; TP, true positives; FP, false positives; TN, true negatives; FN, false negatives.

of the cutoff. It also provides a measure known as AUC,
which is an overall summary of diagnostic accuracy. An
AUC of 0.5 corresponds to the accuracy achieved with
random chance and an AUC of 1.0 corresponds to perfect
accuracy. Most of the in silico tools showed high AUCs of
>0.8. When prediction scores for all splice sites (wild-type
splice sites, de novo or cryptic splice sites) were compared,
SpliceAl outperformed all other tools with an AUC of
0.991. SpliceRover had a performance (AUC of 0.944)
similar to that of SpliceAl, but the difference between the
two in silico prediction tools (0.047) was statistically signif-
icant (P =0.0041). SPiCE and MES performed slightly
lower, with AUCs of 0.916 and 0.912, respectively. The
AUCs, optimal cutoffs, sensitivity, and specificity values
for in silico tools are summarized in Table 2.

Since most splice-site prediction tools are developed
focusing on the nucleotides near the canonical and consensus
splice sites, we separately assessed the prediction accuracy of
in silico tools for de novo or cryptic splices sites. SpliceAl
(AUC 0.972) outperformed all other tools for cryptic splice
site prediction, except for SpliceRover (AUC of 0.924); the
difference in prediction ability between the two tools was
not statistically significant. HSF, SSF, MES, and NNSplice
had slightly lower AUCs but the values were still >0.8. The
majority of the in silico tools showed decreased AUCs when
de novo and cryptic splice sites were assessed selectively
compared to the prediction scores when wild-type splice
sites were included. SPiCE showed a more significant
decrease in AUCs than the other tools. Interestingly, HSF
showed a higher AUC for cryptic slice site predictions than
the AUCs at all splice sites (0.847 vs 0.782).

4. Discussion

In this study, we compared some of the most popular
in silico prediction tools for splicing defect prediction using
a well-established database of positive NFI variants and
experimentally validated, splicing defect negative BRCA var-
iants. Although the result of this study is based on positive
variants of a single gene, NFI has a distinctively high propor-
tion of pathogenic variants that affect splicing, spans over
350kb, and an extensive spectrum of splicing variants have
been characterized at the genomic and RNA levels. Also,
the inclusion of variants not only in the canonical 5 and 3’
splice sites and the consensus splice sites but also in the non-
canonical splice site (NCSS) region allowed us to assess predic-
tion accuracies over a greater range of variant locations.
Moreover, we decided to use as our negative dataset, 64 exper-
imentally validated intronic BRCA variants, all of which are
located outside the consensus splice site, in nucleotide posi-
tions ranging from -13 to —113 at the 3’ splice site and from
+9 to +104 at the 5" splice site. Exploiting two different genes
for evaluation of metrics of prediction tools may have intro-
duced selection bias in this study. However, it also provided
us with an opportunity to assess the prediction strengths of
the “generic” in silico tools not only for the consensus splice
sites but also for the de novo and cryptic splice sites and deep
intronic variants.

The era of in silico splice prediction tool development
can be categorized based on the algorithm used: the tools
based on motif-based algorithms, tools based on classical
machine learning, and most recently, tools based on deep
learning algorithms [1]. Traditional models such as the
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position weight matrix (PWM) model and maximum
entropy distribution (MED) approximation have been
proven to be simple, understandable, and successful models
for splice-site prediction [16]. Machine learning approaches
have been extensively applied to newer in silico tools for
splice-site prediction. Machine learning techniques can be
further divided into classical machine learning and deep
learning; the former requires preselected features for distin-
guishing true splice sites and false ones, while the latter auto-
matically extracts features and optimizes a criterion for
classification [1, 16]. Of the in silico tools assessed in this
study, SpliceAl and SpliceRover are deep learning tools,
NNSplice and GeneSplicer are classical machine learning
tools, and SSF, MES, HSF, and SPiCE are tools that are not
based on machine learning. In this study, SpliceAl and Spli-
ceRover, two methods based on deep learning, outperformed
all the other tools for included variants. SpliceAl outper-
formed all other tools for the prediction of de novo and cryp-
tic splice sites. While most tools assessed in this study
showed high AUCs for predicting the effect of variants
located at canonical splice sites and consensus splice sites,
the extraordinary accuracy achieved by SpliceAl was
highlighted when the sensitivities of these different tools,
for de novo or cryptic splice sites, were compared. SpliceAl
showed a sensitivity of 95.7% for de novo or cryptic splice-
site predictions at an optimal cutoff of 0.02 score change,
which coincides with the suggested threshold by the devel-
opers [17]. SpliceRover showed a sensitivity of 76.9%, and
the other tools showed a sensitivity of less than 70%.

Our results are consistent with those of recent studies that
compared multiple in silico tools for genes other than NF1I. For
instance, in a study that compared 85 splice-altering variants
located in the canonical splice sites or consensus splice sites,
SpliceAlI outperformed MES, NNSplice, SSF, and HSF, with
an accuracy of 0.91 [18]. In another study that compared
213 variants located in NCSS and deep intronic (DI) regions
of ABCA4 gene and MYBPC3 gene, SpliceAl outperformed
other in silico prediction tools including other deep learning
tools such as SpliceRover, DSSP, and MMSplice and showed
the highest accuracy, positive predictive value (PPV), sensitiv-
ity, specificity, negative predictive value (NPV) and Matthews
correlation coeflicient (MCC) for DI variants [1]. Moreover,
in one study evaluating 285 NFI variants, which included
26% splice variants, SpliceAI showed 94.5% sensitivity and
94.3% specificity at a cut-off value of >0.22, and performed
better than the combined analysis of MES/SSF [19].

It is becoming increasingly noticeable that deep learn-
ing algorithms outperform traditional probabilistic algo-
rithms and classical machine learning tools by
incorporating long-range specificity determinants of splic-
ing, thereby achieving significant precision [17]. Our study
has shown that prediction of splice sites, especially those
of SpliceAl, is validated at a significantly higher rate than
other in silico tools using NFI variants. Although our data
assessed a relatively small number of variants, the wide
range of variant locations considered, and the inclusion
of various types of aberrant splicing could make the result
of this study generalizable to genes associated with aber-
rant splicing.
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