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Abstract

The intra-tumor heterogeneity is associated with cancer progression and therapeutic resistance, such as in breast cancer.
While the existing methods for studying tumor heterogeneity only analyze variant allele frequency (VAF), the genotype of
variant is also informative for inferring subclones, which can be detected by long reads or paired-end reads. We developed
GenoClone to integrate VAF with the genotype of variant innovatively, so it showed superior performance of inferring the
number of subclones, estimating the fractions of subclones and identifying somatic single-nucleotide variants composition
of subclones. When GenoClone was applied to 389 TCGA breast cancer samples, it revealed extensive intra-tumor
heterogeneity. We further found that a few somatic mutations were relevant to the late stage of tumor evolution, including
the ones at the oncogene PIK3CA and the tumor suppress gene TP53. Moreover, 52 subclones that were identified from 167
samples shared high similarity of somatic mutations, which were clustered into three groups with the sizes of 24, 14 and 14.
It is helpful for understanding the development of breast cancer in certain subgroups of people and the drug development
for population level. Furthermore, GenoClone also identified the tumor heterogeneity in different aliquots of the same
samples. The implementation of GenoClone is available at http://www.healthcare.uiowa.edu/labs/au/GenoClone/.
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Introduction

Tumor evolution is a reiterative process of clonal expansion
driven by sequential somatic mutation and Darwinian nature
selection [1, 2]. Therefore, tumors are composed of remark-
able distinct cell populations (referred as ‘subclones’), which is
termed intra-tumor heterogeneity. The explicit studies of sub-
clones within tumor samples can greatly improve the under-
standing of tumor evolution and thus benefit drug development

and precision medicine [3, 4]. For example, intra-tumor hetero-
geneity has been shown in breast cancer [5–7] and causes target
therapy may not function on the therapy-resistant subclones
[8]. Moreover, the resistant subclones may reduce the successful
rate of subsequent treatments and lead to tumor relapse and
therapy failure [9]. Thus, it is important to correctly identify the
subclones and estimate their fractions for intra-tumor study.

The development of new sequencing technologies allows us
to perform genome-wide study of tumor heterogeneity [10–12].

http://creativecommons.org/licenses/by-nc/4.0/
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Single-cell sequencing, which avoids the confounding factors
of bulk sequencing of the whole tumor, is useful to address
the heterogeneity problems [13, 14]. However, in addition to
the technical problems of amplification bias and allele dropout
[15, 16], single-cell sequencing is also limited by the high cost
for sequencing a number of single cells, which is required to
identify the subclones and estimate their fractions. Alternatively,
identification of tumor subclones by bulk sequencing of a whole-
tumor sample, followed by appropriate bioinformatics analysis,
is more affordable and thus is of broader utility.

Variant allele frequency (VAF) of single-nucleotide mutations
or variants has been used to infer the tumor subclones from
bulk sequencing in recent studies [17, 18], because the fractions
of subclones are linearly associated with VAFs. The observed
VAFs depend on the stochastics process of selecting fragments
from library construction, so it strongly correlates with sequenc-
ing depth. Deep sequencing is helpful to address the uncer-
tainty of VAF. Roth et al. developed a statistical inference model,
PyClone, to identify the tumor subclones [19]. PyClone identifies
somatic mutations and copy number variants by the whole-
genome or exome sequencing data, and next applies targeted
deep sequencing to estimate VAFs. However, PyClone only infers
cellular abundance of each variant, rather than the fractions of
subclones. The other existing tools based on clustering approach
overcome the substantial variability of observed VAFs measure-
ment and further infer the fractions of subclones [20, 21]. For
example, SciClone maximizes the posterior probability of VAFs
based on a Dirichlet Process mixture model while the num-
ber of clusters is not fixed in advance. Subsequently, SciClone
identifies the number of variant clusters by discarding clusters
that does not contribute to the model and finally estimates
the fractions of subclones. However, in addition to VAFs, the
fractions of subclones also depend on genotype. For example, if
the variant is adenine to guanine (A to G), then the genotype of
the variant would be AG or GG. Lee et al. developed a Bayesian
feature allocation model to identify the genotype of variants
as well as the number of subclones and their fractions while
it simultaneously increases the solution space and thus results
in higher uncertainty of the solution [22]. Determination of the
genotype of variants and reduction of the VAF uncertainty are
the main problems in subclone inference.

Direct determination of the genotype of variants in each sub-
clone is to identify whether variants are from paternal or mater-
nal alleles [23–25]. However, it is difficult to obtain the entire
paternal and maternal alleles (e.g. family trio data are required).
Instead, if the linkage between somatic mutation (i.e. somatic
single-nucleotide variant/sSNV) and germline mutation (single-
nucleotide polymorphism/SNP) is known, we can determine the
origins of sSNVs: maternal, paternal or both. Since the matched
pair of normal and tumor samples shares the same SNPs, we
can firstly distinguish sSNVs from SNPs from sequencing data.
Then the sSNV–SNP linkage can be detected from long reads (e.g.
PacBio, Oxford Nanopore Technologies and 454 sequencing) or
paired-end reads covering sSNVs and the corresponding adja-
cent SNPs. This linkage information can reduce the dimension
of solution space and thus a more accurate subclone inference
can be obtained.

We develop a novel method, GenoClone (http://www.health
care.uiowa.edu/labs/au/GenoClone/), to study tumor hetero-
geneity by innovatively integrating VAFs and genotype of sSNVs
(Figure 1). Comparing to two existing methods, GenoClone
showed superior performance of identifying the number of
subclones, estimating their fractions and determining their
sSNVs compositions in simulation data. By GenoClone, we ana-

Figure 1. Flowchart of GenoClone. VarScan2 is used to detect the somatic

mutations (sSNVs) and germline mutations (SNPs) from tumor and matched

normal samples. Then, GenoClone detects sSNV–SNP linkage by paired-end

reads or long reads to infer the genotype of sSNVs. The observed VAFs are

computed from short-read coverage. Finally, GenoClone integrates the genotype

of sSNVs and their VAFs in the optimization model to infer subclones.

lyzed 389 breast invasive carcinoma samples from The Cancer
Genome Atlas (TCGA-BRCA) and revealed tumor heterogeneity
in nearly all the samples. The results also showed that the
mutations of the oncogene PIK3CA and the tumor suppressor
gene TP53 may occur at the late stage of tumor evolution
of breast cancer. Moreover, the similarity analysis among the
subclones identified from 167 samples showed high similarity
of 52 subclones, which were clustered into three groups with the
sizes of 24, 14 and 14. Within these clusters of subclones, a few
shared sSNVs, such as chr2 55679588 CA, chr3 179234297 AG
and chr3 179218303 GA, provided informative foundation for
drug design and treatment in certain subgroups of patients.
In addition, we revealed the tumor heterogeneity in different
aliquots of the same tumor samples and found the VAF of TP53
varied in different aliquots.

Methods
Somatic and germline mutation detection

Given the exome or whole-genome sequencing data from tumor
and the matched normal samples, we can detect the mutations
from both by the existing SNP calling methods. Next, we can
determine the somatic and germline mutations by comparing
the variant calling results from two samples. These two steps
can be integrated (e.g. by VarScan2 [26]). Here, we used VarScan
v2.4.2 and named the germline mutation as SNP and somatic
mutation as sSNV below.

sSNV–SNP linkage

It is ideal to obtain the linkages among sSNVs for inferring the
haplotypes of subclones. sSNVs are separated by long distance
in the genome, so whole-genome sequencing by long reads is
required to obtain such linkages among sSNVs. However, the
whole-genome sequencing by long reads is of high cost and

http://www.healthcare.uiowa.edu/labs/au/GenoClone
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requires a large amount of DNA materials that the primary
tumor samples may not provide. Instead of linkages among
sSNVs, the linkage of sSNV and the adjacent SNP (termed sSNV–
SNP linkage) can be detected by paired-end reads or long reads
from either exome or whole-genome sequencing. Given an SNV,
we use the adjacent SNPs to identify whether the SNV originates
from one haplotype or both haplotypes. For example, one sSNV
and one SNP is simultaneously detected on some paired-end
reads, and the SNP on one haplotype is A and on the other
haplotype is T. If the sSNV is only detected to be linked with A,
then we could infer that the sSNV originates from one haplotype.
If the sSNV is detected to be linked with A and T, then the sSNV
originates from both haplotypes.

Optimization model to estimate the fractions of
subclones

Suppose the tumors contain C subclones. Let XS×2C be the sub-
clone matrix with the binary elements xs,2c−1 and xs,2c denoting
whether cth subclone contains the sth sSNV in its two haplotypes
wheres = 1, 2, · · · , S and c = 1, 2, · · · , C. Denote wc as the fraction
of subclone c, then we have

c∑
c=1

wc = 1. (1)

Next, we can infer the true VAFs of sSNVs by the subclone
matrix X and their fraction wc

VAFs
true = 1

2

C∑
c=1

wc
(
xs,2c−1 + xs,2c

)
. (2)

However, the observed VAF is influenced by the sequenc-
ing depth: as the sequencing depth increases, the variance of
observed VAF decreases. If the depth is large enough, then we
could assume that the observed VAF is nearly the same as true
VAF. According to this assumption, given the sequencing depth
of the sth sSNV (termed Ds), we minimize the difference between
true and observed VAF

min f =
S∑

s=1

1
Ds

∣∣∣VAFs
true − VAFs

observed
∣∣∣. (3)

Considering the sSNV–SNP linkages in the model, for the
sSNV s ∈ I, s should occur in no more than one haplotype from
each subclone, then

xs,2c−1 + xs,2c ≤ 1. (4)

For s ∈ I, s should occur on two haplotypes at least in one
subclone, then we could get

C∑
c=1

(
xs,2c−1 + xs,2c

) ≥ 2. (5)

Therefore, we can construct an optimization model to obtain
the feasible solution,

min
S∑

s=1

1
Ds

∣∣∣VAFs
true − VAFs

observed
∣∣∣ (6)

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C∑
c=1

wc = 1

VAFs
true = 1

2

C∑
c=1

wc
(
xs,2c−1 + xs,2c

)

xs,2c−1 + xs,2c ≤ 1 for s ∈ I
C∑

c=1

(
xs,2c−1 + xs,2c

) ≥ 2 for s ∈ I

xs,2c−1, xs,2c−1 ∈ {0, 1}, wc > 0

,

where set I is for the sSNVs that originated from only one
haplotype, and I for the ones that originated from both. If all
subclones can be inferred from the set I, then let ysc = xs,2c−1+xs,2c

and we could obtain a simplified model

min
S∑

s=1

1
Ds

∣∣∣VAFs
true − VAFs

observed
∣∣∣ (7)

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

C∑
c=1

wc = 1

VAFs
true = 1

2

C∑
c=1

wcysc

ysc ∈ {0, 1}, wc > 0

where Y = (ysc)S×C is a binary matrix. Y is similar to X and
thus can also be referred to a subclone matrix. Then, the diploid
inference is converted to haplotype inference, which is the nov-
elty of the model. The sSNV–SNP linkage information could
obtain the sets I and I and we only use the sSNVs from set I to
simplify the calculation in the next section.

Solve the model by Monte Carlo optimization

For the simplified model, since ysc is an integer and wc is a pos-
itive real number, the optimization problem is a mixed-integer
problem. Mixed-integer linear programming (MILP) problems are
NP-hard to solve [27, 28]. In our model, the constraints are
quadratic, which makes the problem more difficult. Here we
apply the Monte Carlo optimization method to solve the model
by fixing the number of subclones:

Step 1: Initialization. Given the maximal number of subclones

(Cmax) and let f = ∑S
s=1

1
Ds

∣∣∣VAFs
true − VAFs

observed
∣∣∣, C = 1, then

VAFs
observed = 0.5.

Step 2: Update C = C+1;. Randomly generate W = (w1, · · · , wC) for
10 000 times from uniform distribution U (0, 1) and normalize
them by wc = wc/

∑C
c=1 wc.

Step 3: For each W, calculate all the sums of elements from
2W denoting the all subsets of W, and then assign 2VAFobserved

s

to the nearest sums to obtain ysc and further VAFtrue
s . The

objective function f for W is also calculated.
Step 4: Obtaining W by minimizing all f ′s, if C = Cmax, stop;

otherwise, go to Step 2.

Usually, we set the Cmax as 10 in the calculation. If needed, the
user can modify Cmax when many subclones are expected.



Revealing breast cancer tumor heterogeneity 2309

Subclones inference by balancing model goodness and
the numbers of subclones

As the number of subclones is an important parameter in the
model, we need to evaluate the goodness of the model to find the
optimal number of subclones. Suppose the number of fragments
is large enough in the sequencing library construction and then
Ds fragments are randomly selected for sth sSNV where VAFs

true

of these fragments contains alternative allele. Assume that this
random process follows a binomial distribution, we have

DsVAFs
observed ∼ Binomial

(
Ds, VAFs

true) .

Furthermore, we estimate the standard variance of VAFs
observed

as

σ
(
VAFs

observed
)

=
√

VAFs
true (

1 − VAFs
true)

Ds
. (8)

The true VAF is not larger than 0.5, so we use the maximal
VAFs

true = 0.5 and the median Ds to obtain an estimation of
σ
(
VAFs

observed).
Then we define the goodness for a given number of subclones

C as

GC =
#

(∣∣∣VAFs
observed − VAFs

true
∣∣∣ < σ

(
VAFs

observed
))

S
. (9)

The term
∣∣VAFs

observed−VAFs
true

∣∣ can be calculated for each C for
C = 1, 2, . . . , Cmax in the Monte Carlo optimization and the optimal
number of subclones is selected by balancing the goodness and
the number of subclones. By default, we select the number of
subclones C if |GC+1 − GC| < 0.05.

Implementation of GenoClone

As illustrated in Figure 1, the alignments (‘bam’ files) of the
sequencing data of tumor and the matched normal samples are
entered. Firstly, the somatic mutations (sSNVs) and germline
mutations (SNPs) are called by VarScan2 [26]. Secondly, Geno-
Clone uses the paired-end short reads or long reads sequencing
to detect the sSNV–SNP linkages for the genotype of sSNVs.
Simultaneously, GenoClone calculates VAFs of all sSNVs via
short reads. Thirdly, GenoClone integrates the VAFs and their
genotypes into the above optimization model that is solved by
the Monte Carlo optimization.

Data set

The diversity of intra-tumor subclones in breast cancer is asso-
ciated with cancer progression and therapeutic resistance (6).
We analyzed 389 breast invasive carcinoma samples from The
Cancer Genome Atlas (TCGA) by GenoClone (Supplementary
Table S1). For each sample, the exome sequencing data from
tumor and the matched normal were used. In addition, the
exome sequencing data of different aliquots from two TCGA-
BRCA samples (TCGA-A7-A13E and TCGA-A7-A13D) were also
used to study the heterogeneity among different aliquots.

Results
Subclone inference by GenoClone

We applied GenoClone to a simulation data to evaluate
the performance by the following three metrics: (i) correct
identification of the number of subclones, (ii) the fractions
of subclones and (iii) accuracy (i.e. the proportion of sSNVs

correctly identified in each subclones). The simulation data
contained four subclones with different fractions (0.05, 0.15, 0.35
and 0.45) and all sSNV-SNP linkages were known (see Supple-
mentary Materials, Supplementary Figure S1). We examined the
difference between true and observed VAFs and the goodness
(see definition of ‘goodness’ in Method) with respect to the
number of subclones (Figure 2). As the number of subclones
increased from one to four, the difference between true and
observed VAFs decreased dramatically (Figure 2A) and the
goodness increased significantly (Figure 2B). Until the number of
subclones was increased from four to five, the improvement of
the goodness was not smaller than 0.05. Therefore, GenoClone
identified four subclones that matched exactly to the simulation.
The estimated fractions of subclones were 0.0748, 0.1418, 0.3427
and 0.4406, which were very close to the true values (Figure 3A).
The accuracy of each subclone identified by GenoClone were
68.18%, 69.70%, 78.79% and 84.85%, respectively (Figure 3B).
The subclones with low fractions (e.g. 0.05 and 0.15) showed
relatively poorer accuracy because the low fractions might be
sensitive to the process of solving the optimization problem in
GenoClone (Supplementary Figure S2 and see Methods).

Influence of sSNV–SNP linkage ratio for subclone
inference

In the simulation above, we assumed all sSNV–SNP linkage were
known, while we often have only a subset of sSNVs linked with
SNPs in real data, as the other sSNVs are far from SNPs. To inves-
tigate the influence of sSNV–SNP linkages for subclone inference,
we define linkage ratio as the fraction of sSNVs linked with SNPs.
Given a linkage ratio, we repeated 1000 simulations. We tested
different linkage ratios from 20% to 90% (see Supplementary
Materials). For the linkage ratio of 20%, only 1.2% tests failed to
find the correct numbers of subclones. Moreover, the estimated
fractions of subclones were close to the true values (Figure 4).
As the linkage ratio increased, the standard deviation of the
estimated fractions decreased. Interestingly, the most significant
improvement occurred as the linkage ratio increased from 20%
to 40% and then the improvement became marginal. Therefore,
more linkage information were helpful to estimate subclone
fractions with less variance, while the linkage ratio of 40% rather
than 100% may be high enough to generate the optimal output.

Comparisons with PyClone and SciClone

Furthermore, we compared the performance of GenoClone
with the existing tools PyClone and SciClone on the same
simulation data (see Supplementary Materials) [19, 21]. PyClone
inferred the cellular abundance for each sSNVs, based on which
sSNVs were clustered. Pyclone yielded six clusters of sSNVs
with their centroids of abundance at 0.0666, 0.2041, 0.3714,
0.2558, 0.5498 and 0.4721 (Supplementary Figure S3). Therefore,
PyClone was not able to predict the number of subclones
correctly and thus was also not able to estimate the fractions
accurately. We tried to convert six clusters of sSNVs to four
subclones manually by considering the size of cluster and
their abundance and the fractions of four subclones could be
obtained as 0.0666, 0.2041, 0.3579 and 0.3714 (see Supplementary
Materials, Figure 3A). Except Subclone 1, the fraction estimations
of the other subclones by PyClone were of much higher errors
than GenoClone. The similar result was also observed in the
comparison of the accuracy between GenoClone and PyClone
(Figure 3B). Overall, GenoClone showed better performance
of predicting the number of subclones and estimating of the

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bby084/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bby084/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bby084/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bby084/-/DC1
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Figure 2. Subclone inference by examining the difference of true and observed VAFs and goodness in the simulation. As the number of subclones increases, (A) the

difference of true and observed VAFs decreased and (B) the goodness increases. The changes are significant until the number of subclones increases to four.

Figure 3. Comparison of GenoClone, PyClone and SciClone in the simulation. (A) The black bar represents the true fractions of the four subclones. The fractions of

the subclones inferred by GenoClone (red bars) are closer to the true ones than PyClone (green bars) and SciClone (blue bars). (B) The accuracy of sSNV composition

identification of each subclone by GenoClone, SciClone and Pyclone. GenoClone showed the highest accuracy except the Subclone 1.

fractions of subclones, as well as more accurate identification of
sSNV composition in each subclone.

SciClone yielded four clusters of sSNVs and their fractions
were estimated as 0.0382, 0.2148, 0.3666 and 0.3804 (Figure 3A).
The average estimation error of subclone fractions by Geno-
Clone was much smaller than SciClone (0.0124 versus 0.0407).
In addition, the averaged accuracy of sSNV composition in each
subclone predicted by SciClone (51.5%) was much lower than
GenoClone (75.2%) (Figure 3B). Although SciClone predicted the
same number of subclones, GenoClone showed advantages in
estimating the fractions of subclones and identifying sSNV com-
position of each subclone.

Subclone inference of breast cancer

GenoClone detected two subclones in nearly all (388) the
samples (Figure 5A), while the only outlier contained one sub-

clone. Therefore, intra-tumor heterogeneity existed extensively
in breast cancer. However, the goodness of 11.31% samples
(44/389) was smaller than 0.7, which inferred the possible
underestimation of the numbers of subclones. It may be caused
by the lack of enough sSNV–SNP linkages (P-value = 7.75e-9,
Student’s t test, Supplementary Figure S4). Thus, we defined
that these samples contained two or more subclones (termed
Group 1). In addition, 42.93% samples (167/389) with goodness
higher than 0.85 were defined to contain exactly two subclones
(termed Group 2). According to American Joint Committee on
Cancer (AJCC), higher proportion of the samples in Group 1 was
at Stage I than Group 2, while Group 1 was slightly lower than
Group 2 at Stage III (Supplementary Figure S5). Therefore, the
samples containing more subclones (i.e. Group 1) may increase
the probability of obtaining metastasis at the early stage, while
at the late stage the samples with less subclones (i.e. Group 2)
may dominate to expose. We used 167 samples of Group 2 in the
analysis below as they had higher goodness.

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bby084/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bby084/-/DC1
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Figure 4. Subclone fraction estimation with different sSNV–SNP linkage ratios

in the simulation. The true fractions of the four subclones are 0.05, 0.15, 0.35 and

0.45 (dashed lines). The fractions estimated by GenoClone with different sSNV-

SNP linkage ratios are close to the true values. As the linkage ratio increases, the

variance of fraction estimation decreases.

Subclones inference with non-SNP-linked sSNVs

While the SNP-linked sSNVs were informative for inferring sub-
clones, the non-SNP-linked sSNVs may be important to study
tumorigenesis and tumor evolution. Therefore, the non-SNP-
linked sSNVs should be also considered in the analysis. We
assigned the non-SNP-linked sSNVs to each subclone according
to the difference between the fractions of subclones and the cor-
responding observed VAFs (see Supplementary Materials). After
including both types of sSNVs in the analysis by GenoClone,
the goodness of each sample was still higher than 0.85, except
that two samples went down to 0.84 and 0.83 (Supplementary
Figure S6A). Furthermore, in 155 samples, the average of the
difference between true and observed VAFs was smaller than
0.045 and the variance was smaller than 0.0015 (Figure 5B). For
example, the distribution of VAFs

true − VAFs
observed of the tumor

TCGA-EW-A1P7 centered at zero (Supplementary Figure S6B).
Thus, GenoClone showed consistent and unbiased results when
including non-SNP-linked sSNVs. Both SNP-linked and non-SNP-
linked sSNVs were included in the analysis below to investigate
the role of sSNVs in tumor evolution.

sSNVs in tumor evolution of breast cancer

A total of 39 604 sSNVs were detected from 167 breast cancer
samples (Supplementary Table S2). For each sample, the sSNVs
that occurred in all subclones were defined as early mutants, and
the sSNVs that occurred in only one subclone were defined as
late mutants. Next, we studied the correlation between sSNVs
and the tumor evolution of breast cancer. For example, the sSNV
chr3 179234297 AG located at PIK3CA that had been shown as
an oncogene in ovarian cancer [29] and high mutation frequency
at PIK3CA was also found in breast cancer [30, 31]. This sSNV
occurred in 17 samples and occurred in only one subclone in

most samples (16 of 17). Therefore, it may likely emerge in
the late stage of tumor evolution. In addition, another sSNV of
PIK3CA, chr3 179218303 GA, was similar as it also occurred in
one subclone of 11 of 12 samples containing it. These evidences
implied that mutations of PIK3CA occurred at the late stage of
tumor progression, which was consistent with the recent studies
in human cancers [32, 33]. Another sSNV, chr10 26224072 GT,
occurred in both subclones of three samples while a total of
seven samples contained it. Thus, this sSNV might be the early
mutant so it is associated with breast cancer occurrence. More
interestingly, 24 sSNVs were found at TP53, which is a well-
known tumor suppressor gene and driver gene in many types
of human tumors [34, 35], including four sSNVs that occurred at
both subclones. It showed a possibility that the majority of TP53
mutations occurred at the late stage of tumor evolution, while a
few may occur at the early stage (Supplementary Table S3).

Similarities of sSNVs composition among subclones

To investigate the biological significance of subclones, we stud-
ied their similarities of sSNVs composition by Fisher’s exact test
(see Supplementary Materials). In the majority [123 (73.6%) of
167] of the samples, significant similarity (P-value < 0.01) was
found between two subclones. However, two subclones were
different (P-value > 0.1) in 15.5% (23/167) of the samples (Supple-
mentary Figure S7), which was likely due to significant difference
of cancer progression in these samples. The difference existed in
two subclones of the same sample demonstrated the importance
of studying the tumor heterogeneity within tumors.

Next, we studied the similarities among subclones from all
the samples by clustering analysis (Figure 6A). Although 97.6%
pairs of subclones were different (P-value > 0.1), a cluster of
24 subclones with significant similarities were found (black
solid-line box in Figure 6A and B). Within this cluster, the most
common sSNV chr2 55679588 CA occurred in 10 subclones,
followed by chr7 92040995 GT and chr6 83237608 CA occurring
in eight subclones, chr19 16483788 TG, chr3 138269901 CA,
chr2 169891311 CT, chr10 26224072 GT and chr10 32932369 CA
in seven subclones, etc. Moreover, the panel of sSNVs chr2
55679588 CA, chr6 83237608 CA, chr19 16483788 TG and
chr3 138269901 CA occurred in 83.33% (20/24) of subclones.
Furthermore, all the subclones were not metastasis and most
were Her2 negative (83.3%) and ER positive (70.8%) [31]. These
results from the 24-subclone cluster provided useful information
for the research of cancer progression and precision medicine.

In addition to the cluster above, we found two smaller clus-
ters (white dashed-line box in Figure 6A). An sSNV at PIK3CA,
ch3 17923497 AG, occurred in all subclones of the first cluster
of 14 subclones (Supplementary Figure S8A). Similarly, the other
sSNV at PIK3CA, ch3 179218303 GA, occurred in all subclones of
the second cluster of 14 subclones (Supplementary Figure S8B).
Thus, the two sSNVs could be target driver mutations for these
subclones.

Subclone inference in aliquots of tumors

In order to further analyze the intra-tumor heterogeneity of
breast cancer sample, we applied GenoClone to three aliquots of
the tumor TCGA-A7-A13E. At least three subclones were found
in each aliquot (Figure 7). All three subclones in the second vial
(01B-06D-A272-09) did not contain the sSNV chr17 7675088 CT,
which is located at TP53 (Figure 7A) and was shared by two
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Figure 5. Subclone inference of 389 TCGA-BRCA samples. (A) The histogram of the goodness for 389 TCGA-BRCA samples. The goodness of about half of the samples

[167 (42.93%) of 389] is greater than 0.85. (B) The mean and variance of true and observed VAFs for 167 samples. The red box highlights the samples with mean < 0.045

and variance < 0.0015.

Figure 6. Similarities among the subclones from 167 TCGA-BRCA samples. (A) The heatmap of similarity of mutual subclone pairs identified from 167 TCGA-BRCA

samples. The P-value of each pair of subclones was calculated by the Fisher’s exact test. The biggest cluster is highlighted by the black solid-line box and the other

two clusters are highlighted by the white dashed-line box. (B) The sSNVs in the biggest clusters. The sSNVs occurred at least four times are shown. Chr2 55679588 CA

occurs in 10 samples. Chr2 55679588 CA represents the sSNV at chromosome 2 and its position is 55679588 with reference C to A.

aliquots of the first vial (01A-11D-A272-09 and 01A-11D-A12Q-
09). This implied the heterogeneity between different vials of
this sample. More interestingly, significant difference of the
subclones was also detected even within the same vial of the
sample. In the first vial, four subclones were found in the aliquot
01A-11D-A12Q-09 (Figure 7C), while three subclones in the other
aliquot 01A-11D-A272-09 (Figure 7B). Furthermore, we found that
the VAF of chr17 7675088 CT was 0.2051 in the 01A-11D-A272-09

and was increased to 0.3113 in 01A-11D-A12Q-09. Therefore, the
aliquot 01A-11D-A12Q-09 might occur in a later phase of tumor
evolution than 01A-11D-A272-09.

In addition to TCGA-A7-A13E, we applied GenoClone
to another tumor TCGA-A7-A13D containing two aliquots
(01A-13D-A272-09 and 01A-13D-A12Q-09) from the same
vial. Similarly, different numbers of subclones were found
in the two aliquots (Supplementary Figure S9). The sSNV
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Figure 7. Subclone inference from three aliquots of the tumor TCGA-A7-A13E

by examining the difference of true and observed VAFs and goodness. (A) The

second vial ‘B’ and both (B) and (C) are from the first vial ‘A’. Three subclones

are predicted in both (A) and (B) and four subclones in (C). When the number of

subclones increase from three to four, the improvement of goodness of (B) and

(C) are 0.039 and 0.069, individually.

chr17 7674870 CA at TP53 was detected in both aliquots.
Moreover, the aliquot 01A-13D-A272-09 that contained less
subclones (Supplementary Figure S9A) had smaller VAF of
this sSNV (0.5882) than the other aliquot 01A-13D-A12Q-
09 (VAF = 0.7307, Supplementary Figure S9B). If the sSNV
chr17 7674870 CA at TP53 correlates with tumor evolution, then

the aliquot 01A-13D-A12Q-09 may emerge in a later evolution
stage than the other aliquot.

Discussion
Deciphering tumor heterogeneity is very helpful for understand-
ing the causes and consequences of tumor evolution [9] and
finally assists therapeutic treatment and personal medicine [36,
37]. Recent studies identified subclones by VAFs without utilizing
genotype information [19, 21]. GenoClone integrates the geno-
type of sSNVs and VAFs in an optimization model innovatively,
so as to achieve better characterization of tumor heterogeneity.
Compared to the existing methods, GenoClone showed superior
performance of inferring the number of subclones, estimating
subclone fractions and identifying sSNVs composition of each
subclone. If the fraction of subclones is equal, GenoClone could
infer the number of subclones and their fractions but nearly
impossible to assign sSNVs to each subclone (Supplementary
Table S4). PyClone and SciClone also obtained similar result.
This situation may be solved by single-cell sequencing. There-
fore, the re-analysis of the publicly available data by GenoClone
may provide more accurate understanding of heterogeneity of
the samples, as paired-end reads can detect the genotype of
sSNVs. By GenoClone, we showed the extensive intra-tumor
heterogeneity of 389 breast cancer samples in TCGA. Further
analysis also revealed the possible roles of a few sSNVs in tumor
evolutions, especially the ones at the oncogene PIK3CA and the
tumor suppressor gene TP53. Interestingly, similarity analysis of
sSNVs composition among all subclones found from 167 TCGA-
BRCA samples identified three subclone clusters, which con-
tained a panel of sSNVs. These results may further benefit the
treatment and drug design for large population. In addition, the
heterogeneity in different aliquots of the same samples showed
that the subclones did not uniformly distribute within the tumor.
Therefore, in order to obtain a better understanding of tumor
evolution, we needed to study the heterogeneity in the whole
tumor rather than a fraction of sample.

GenoClone used the variant calling results from the exist-
ing tool VarScan2, which outputs the sSNVs with VAFs larger
than a default threshold. Thus, GenoClone only identifies the
large subclones with VAFs above the threshold. Small subclones
can be detected if the threshold of VAF is relaxed. When we
analyzed 389 TCGA-BRCA samples by GenoClone, two subclones
with reasonably high VAFs were found in most samples because
of this restriction. This result still demonstrated that tumor
heterogeneity is widespread.

Because GenoClone utilizes sSNV-SNP linkage, it reduces the
uncertainty of the genotype of sSNVs. As the sSNV–SNP link-
age ratio increases, the estimation variance of subclone frac-
tions decreases. However, GenoClone could also handle the low-
coverage data by minimizing the difference of true and observed
VAFs to reduce the influence of the variance of VAFs. While low
sequencing coverage and the long distance between some sSNVs
and the adjacent SNPs may result in low ratios of sSNV–SNP
linkages, GenoClone showed robust performance in different
linkage ratios. As a user-friendly tool, GenoClone defined the
model goodness to evaluate the reliability of subclone inference
so that the results can be used and interpreted appropriately
in the downstream analysis. In addition, like PyClone, Geno-
Clone assumes that sSNVs occur and remain in the descendant
cells, while GenoClone does not require that sSNVs occur only
once. As copy number variation (CNV) is also important for
subclone formation and evolution, the integration of CNV data
to GenoClone may obtain more accurate subclone inference in
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the future study. We downloaded the CNVs of the matched
samples from TCGA and found no significant difference between
GenoClone output with and without removing the sSNVs from
CNV regions (Supplementary Figure S10). The heterogeneity may
exist in different aliquots of the same sample, so the CNVs
data may not be helpful in the subclone inference from exome
sequencing data. Moreover, GenoClone may use the linkage
information to distinguish the homozygous and heterozygous
CNVs. GenoClone can be applied to both exome and whole-
genome sequencing data. Both paired-end reads (e.g. Illumina)
and Third Generation Sequencing long reads (e.g. Pacbio and
Oxford Nanopore Technologies) can be used.

Key Points
• We develop the bioinformatics tool GenoClone that first

integrates the genotype of sSNVs and VAF to infer sub-
clones and tumor heterogeneity.

• We showed superior performance of GenoClone over
the existing tools in three ways: (i) infer the number
of subclones correctly, (ii) estimate subclone fractions
accurately and (iii) identify sSNVs composition of each
subclone accurately.

• By GenoClone, we analyzed 389 TCGA breast cancer
samples and showed the widespread heterogeneity of
the samples. The further analysis revealed the possible
roles of a few sSNVs in tumor evolution, including the
ones at the oncogene PIK3CA and tumor suppressor
gene TP53.

• We discovered three significant clusters of subclones
that were identified from different TCGA breast cancer
samples, which would benefit the research of common
variants in breast cancer and the following studies of
precision treatment.

• We also showed the heterogeneity among different
aliquots of the same samples.

Supplementary data
Supplementary data are available online at https://academic.
oup.com/bib.
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