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Background: Low metabolic flexibility (MetF) may be an underlying factor for metabolic

health impairment. Individuals with low MetF are thus expected to have worse metabolic

health than subjects with high MetF. Therefore, we aimed to compare metabolic health

in individuals with contrasting MetF to an oral glucose tolerance test (OGTT).

Methods: In individuals with excess body weight, we measured MetF as the change in

respiratory quotient (RQ) from fasting to 1 h after ingestion of a 75-g glucose load (i.e.,

OGTT). Individuals were then grouped into low and high MetF (Low-MetF n = 12; High-

MetF n= 13). The groups had similar body mass index, body fat, sex, age, andmaximum

oxygen uptake. Metabolic health markers (clinical markers, insulin sensitivity/resistance,

abdominal fat, and intrahepatic fat) were compared between groups.

Results: Fasting glucose, triglycerides (TG), and high-density lipoprotein (HDL) were

similar between groups. So were insulin sensitivity/resistance, visceral, and intrahepatic

fat. Nevertheless, High-MetF individuals had higher diastolic blood pressure, a larger

drop in TG concentration during the OGTT, and a borderline significant (P = 0.05)

higher Subcutaneous Adipose Tissue (SAT). Further, compared to Low-MetF, High-MetF

individuals had an about 2-fold steeper slope for the relationship between SAT and fat

mass index.

Conclusion: Individuals with contrasting MetF to an OGTT had similar metabolic health.

Yet High-MetF appears related to enhanced circulating TG clearance and enlarged

subcutaneous fat.
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INTRODUCTION

Metabolic health refers to the state of normal regulation
of glucose and lipid metabolism. Impaired metabolic health
appears determined by ectopic lipid accumulation and insulin
resistance (1–3). Although obesity is a major risk factor for
impaired metabolic health (4), a pathophysiological mechanism
accounting for the progression from lean metabolically healthy
to obese metabolically unhealthy remains elusive (5). Indeed,
excess body weight is not sufficient to alter metabolic health, and
therefore, some individuals with obesity maintain a metabolically
healthy phenotype (1, 5–7). Thus, other factors should link excess
body weight with poor metabolic health.

The capacity to adapt fuel oxidation to fuel availability —
i.e., metabolic flexibility (MetF) (8) —has been proposed as
an underlying factor of metabolic health (9, 10). An enhanced
MetF potentially helps tissues to respond to a fuel oversupply
that would otherwise promote ectopic lipid accumulation and
insulin resistance (3, 11, 12). In agreement, previous evidence
showed that men with high insulin sensitivity (vs. low) better
coupled fat oxidation to elevated plasma non-esterified fatty acids
(NEFA) concentration, and they also had lower (borderline)
intramyocellular lipid content (13). Even so, evidence regarding
the causality between MetF and metabolic health remains
inconclusive, as has been extensively discussed elsewhere (8,
14). On the one hand, MetF has been assessed by different
methods, thus dampening comparability among studies (8). The
most used method—the euglycemic-hyperinsulinemic clamp—
primarily assesses skeletal muscle MetF (15), with minor
influence from organs, such as the liver (16), which is also
relevant for metabolic health (17). On the other hand, different
interpretations are drawn depending on the level of fuel
availability. For example, compared to non-diabetic subjects,
those with type-2 diabetes have lower MetF (by the clamp) when
fuel availability is considered at the circulating level; but similar
MetF when fuel availability is considered at tissue level (18–20).

Therefore, there is a need for a standardized method
and analytical approach to understanding the role of MetF
on metabolic health. A method challenging the capacity to
adapt fuel oxidation to the ingestion of a nutrient excess
appears methodologically and clinically relevant. Herein, we
measured MetF to an oral glucose tolerance test (OGTT).
This method proceeds under highly standardized, reproducible,
and feasible conditions. Furthermore, an OGTT challenges
the MetF of critical tissues, such as skeletal muscle and
liver. We hypothesized that subjects with High-MetF to the
OGTT have better metabolic health than subjects with Low-
MetF to the OGTT. To test this hypothesis, we aimed to
compare metabolic health in individuals with contrasting
MetF, but similar excess body weight, body fat, sex, and
age. Metabolic health was evaluated using the components of
metabolic syndrome, along with insulin sensitivity/resistance,
abdominal fat distribution, and intrahepatic fat content.
In the groups with contrasting MetF to the OGTT, we
additionally compared MetF to prolonged fast, a method that
challenges the oxidation of endogenous lipid. This allowed

us to explore whether High-MetF to exogenous glucose
(the OGTT) associates with High-MetF to endogenous lipid
(prolonged fast).

METHODS

Subjects
We recruited adult women and men with overweight or obesity
and stable weight (variation <2 kg in the last 3 months). The
recruitment took place between July 2018 and August 2019. At
the screening visit, volunteers were confirmed as healthy based on
medical examination, normal blood profiles (biochemical profile,
thyroid-related hormones, hemogram, and electrolytes), normal
electrocardiogram, and absence of diagnosed diseases or other
conditions that potentially affect energy metabolism. Volunteers
were not taking medications or nutritional supplements. Some
women were taking oral contraceptives, which are not expected
to influence our main measurements. We excluded subjects with
fasting glucose concentration >110 mg/dl. Volunteers did not
exercise vigorously more than 3 times/wk or had a physically
demanding job.

Study Design
After the screening visit, subjects participated in six additional
visits, ordered according to the subjects and equipment
availability. The following procedures were conducted in each
visit: [a] OGTT combined with indirect calorimetry to measure
MetF to exogenous glucose; [b] euglycemic-hyperinsulinemic
clamp to measure insulin sensitivity; [c] incremental exercise
test to measure maximum oxygen uptake (VO2max); [d] dual-
energy X-ray absorptiometry to measure body composition;
[e] MRI to measure abdominal and intrahepatic fat; and [f]
prolonged fast to measure MetF to endogenous lipid. For the
OGTT, euglycemic-hyperinsulinemic clamp, and prolonged fast,
participants were instructed to refrain from vigorous physical
activity 24 h before and from tea, coffee, and other thermogenic
substances 12 h before. Note that body weight changed <2 kg
throughout the study.

OGTT
After a 10–12 h overnight fast, an intravascular cannula was
inserted into an antecubital vein. Participants then rested
for 30min in a supine position under thermoneutral and
quiet conditions before gas exchange measurement for 20min.

During the gas exchange measurement, two 10-min apart

blood samples were drawn to determine metabolic markers;
the average of both samples represented the blood fasting
values (“before” time-point). Then, 75 g of glucose (Trutol

75, Thermo Scientific, Waltham, MA, USA) were ingested

within 5min, and blood samples were subsequently collected

at 30, 60, 90, and 120min. Gas exchange was measured

again at 40–60 and 100–120min after glucose ingestion.

MetF was considered as the change in respiratory quotient
(RQ = VCO2/VO2) from fasting to 60min after glucose
ingestion (δRQ = RQ 60min – RQ fasting). Note that
δRQ was unrelated to fasting RQ in the whole group
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(Spearman r =−0.09; P = 0.67), therefore, we did not adjust
δRQ for fasting RQ.

All gas exchange measurements were conducted with a VMax
Encore 29n (SensorMedics Co., Yorba Linda, CA, USA) and
corrected using high-precision mass-flow regulators (series 358;
0–2 l/min; Analyt-MTC [Müllheim, Germany]), as described
(21). Metabolic rate (in kcal/d) was calculated as: [3.941 × VO2

(L/min) + 1.11 × VCO2 (L/min)] × 1,440min. In addition,
glucose-induced thermogenesis (in kcal/d×min) was computed
as the incremental area under the curve by the trapezoidal
method as: 2 × (kcal/d60min × 30) + (kcal/d120min × 30)—
(kcal/dbefore × 90).

Euglycemic-Hyperinsulinemic Clamp
After a 10–12 h overnight fast, an intravenous catheter was
inserted into an antecubital vein for infusion of insulin and
a 20% glucose solution. A second intravenous catheter was
inserted into an antecubital vein of the contralateral arm
for blood sampling. Subjects then rested supine for 30min,
after which insulin was sequentially infused at 8 mIU/kg ×

min for 3min, 4 mIU/kg × min for 2min, and 2 mIU/kg
× min for 115min, i.e., 120min in total. The 20% glucose
solution was infused at variable flows to maintain blood glucose
concentration at 85 mg/dl. Blood samples were obtained every
5min to monitor blood glucose concentration (Biosen C-Line,
Clinic/GP+, EKF-diagnostic GmbH, Magdeburg, Germany).
Blood samples obtained at 100–120min of infusion were used to
calculate insulin sensitivity as the whole-body glucose disposal
rate (in mg glucose/kg × min) assuming total suppression
of hepatic glucose production (16). In addition, whole-body
glucose disposal rate was divided by the steady-state insulin
concentration× 100.

Incremental Exercise Test
Subjects arrived at the laboratory after a 2–3 h fast and rested
sitting for 15min. Then, they exercised on a Cycle Ergometer,
(CareFusion LE 200CE) following this protocol: 0W for 2min
(warm-up), 35W for 3min, 70W for 3min, 105W for 3min, and
140W for 3min, and then the workload increased by 35W every
minute until exhaustion. Cadence was maintained at 50–60 rpm.
During the test, VO2 and VCO2 were measured with a breath-by-
breath gas analysis system (Ergospirometer MasterScreen CPX,
JaegerTM, Germany). Heart rate was also constantly measured
(H10, Polar). Subjects were considered to attain the VO2max if
reaching at least one of these criteria (22): [a] increase in VO2

lower than 150 ml/min in successive workloads; [b] RQ > 1.15;

[c] heart rate within 10 bpm of the maximal heart rate predicted

by age (23).

Dual-Energy X-Ray Absorptiometry and
MRI
Total body fat mass was measured by dual-energy X-ray

absorptiometry. Fat-free mass (FFM) was calculated as the

difference between body mass and fat mass. The fat mass index
was then calculated by dividing the total fat mass (kg) by the

height squared (m2). Abdominal fat was measured by MRI

using T1-weighted six-echo Dixon-type acquisitions in a Philips

1.5T (TR/TE/DTE = 30/1.3/2.1ms; resolution = 2 × 2 × 10
mm3; 21 slices for liver coverage). Participants were analyzed
in a supine position with the arms extended above the head.
Water/fat separation was obtained using the IDEAL method
proposed by Reeder et al. (24). For a more detailed description
of fat imaging and its uses as a biomarker see Bray et al. (25).
Abdominal fat was classified as Subcutaneous Adipose Tissue
(SAT), Visceral Adipose Tissue (VAT), and intrahepatic fat.
SAT and VAT were obtained from a single 10-mm slice at the
lumbar region (L2–L3 level). To help in the segmentation, we
combined automatic segmentation algorithms (region growing,
graph cuts, and hierarchical IDEAL) implemented in a software
developed by our group (26) with manual examination to
exclude intermuscular and paravertebral adipose tissue from the
VAT area. All images were inspected to corroborate the quality
of segmentation.

Prolonged Fast
After a 10–12 h overnight fast, an intravenous catheter was
inserted into an antecubital vein for blood sampling. Subjects
then rested supine for 30min, and gas exchange was measured
and corrected as described for the OGTT (section OGTT).
Two blood samples were obtained 10-min apart during the
gas exchange measurement to determine metabolic markers;
the average of both samples represented the blood fasting
values (“before” time-point). The intravenous catheter was then
removed. Next, subjects stayed sitting or lying in the laboratory
for 7 h and were allowed to read, watch TV, use a computer
or smartphone, and use the restroom. Water was provided ad
libitum, but no other beverage or food was consumed. After,
an intravenous catheter was inserted into an antecubital vein
of the other arm. Subjects rested supine for 30min, and gas
exchange was measured again. Two blood samples were obtained
10-min apart during the gas exchangemeasurement to determine
metabolic markers; the average of both samples represented the
values at the end of prolonged fast (“after” time-point).

Blood Analyses and Markers of Metabolic
Health
Serum was used to determine insulin concentrations by
chemiluminescence, along with triglycerides (TG), total
cholesterol, and high-density lipoprotein-cholesterol (HDL)
concentrations by dry chemistry. Whole-blood glucose
and lactate were measured by an electrochemical method
(Biosen C-Line device). Plasma glucose was measured by the
glucose oxidase method. Colorimetric assay kits were used to
measure serum concentrations of NEFA (NEFA-HR[2], Wako
Diagnostics, Richmond, VA, USA), glycerol (MAK117, Sigma-
Aldrich, St. Louis, MO, USA), and β-hydroxybutyrate (βOHB;
#700190, Cayman Chemical, Ann Arbor, MI, USA).

From the blood samples of the OGTT, several health markers
were calculated. The Homeostasis Model Assessment of Insulin
Resistance (HOMA-IR) (27) was calculated from fasting samples
as: [plasma glucose (mmol/L) × serum insulin (mIU/L)]/22.5.
The Matsuda index (28) was calculated from fasting and
postprandial concentrations of glucose and insulin. Adipose
tissue insulin resistance (Adipo-IR index) (29) was calculated
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TABLE 1 | General characteristics of subjects.

Low-MetF High-MetF P-value*

Females/Males (n) 8/4 8/5 0.99

Age (years) 29.9 (25.8–39.5) 28.6 (27.3–34.5) 0.77

Body weight (kg) 82.6 (72.6–86.1) 86.5 (79.4–96.9) 0.22

Body mass index

(kg/m2 )

29.6 (28.2–32.2) 30.5 (28.9–33.1) 0.41

Maximum oxygen

uptake (mL/kg ×

min)

21.9 (19.9–24.9) 28.2 (23.0–30.2) 0.15

Data are median (interquartile range) or the number of individuals. *Wilcoxon test with

two-sided t approximation or Fisher test.

from fasting samples as: NEFA (mmol/L) × insulin (pmol/L).
The insulinogenic index (30) was calculated as: (serum insulin
(mIU/L) [30min – fasting])/(plasma glucose (mg/dl) [30min –
fasting]). Finally, NEFA suppression was calculated as: NEFA
nadir (mmol/L)/NEFA fasting (mmol/L). In all cases, fasting
samples are the same as the “before” time-point described for the
OGTT (section OGTT).

From measurements at the screening visit, subjects were
considered to have metabolic syndrome if manifested ≥3 of the
following disturbances (6): [a] waist circumference (WC)≥91 cm
in men or ≥83 cm in women; [b] TG ≥150 mg/dl; [c] HDL
<40 mg/dl in men or <50 mg/dl in women; [d] diastolic blood
pressure≥85mmHg or systolic blood pressure≥130mmHg; and
[e] glucose ≥100 mg/dl. Furthermore, we calculated a metabolic
syndrome z-score, as previously done (31). The z-score indicates
the severity of the syndrome by integrating its five components in
a continuous variable. This is a better index of severity than just
adding the number of disturbances because the same disturbance
may have different severity, e.g., TG of 151 vs. 300 mg/dl. The
higher the z-score, the higher the severity of the syndrome. We
used the SDs of each metabolic syndrome component obtained
from the National Health Survey of Chile 2016–2017 (32) to
calculate the z-score: in males = (40 – HDL)/12.1 + (TG –
150)/98.5+ (glucose – 100)/23+ (WC – 91)/12+ (mean arterial
pressure [MAP] – 100)/11; in females = (50 – HDL)/13.1 + (TG
– 150)/98.5 + (glucose – 100)/23 + (WC – 83)/13.6 + (MAP –
100)/11. For calculations, HDL, TG, and glucose were expressed
in mg/dl, WC in cm, and MAP in mmHg. MAP was calculated
as: diastolic blood pressure + (systolic blood pressure – diastolic
blood pressure)/3.

Sample Size Calculation
We considered the HOMA-IR and Matsuda index as the health
outcomes for sample size calculation. Considering their inter-
individual variability (33), to detect differences in HOMA-IR of
≥1.3 and in Matsuda index of ≥2.3 between two groups, we
needed 12–13 subjects per group (80% power, 5% type I error).
Thus, we recruited 25 individuals that were subsequently divided
into low (Low-MetF, n = 12) or high (High-MetF, n = 13) MetF
by the median value of δRQ in the OGTT. The median δRQ was
0.036, representing the ∼20th percentile from a previous study

in healthy individuals (body mass index 20–35 kg/m2) assessed
with similar instrumentation and conditions (33). There were no
differences in sex, age, body mass index, and VO2max between
groups (Table 1).

Statistical Analyses
Results are presented as median [interquartile range] or
proportions. Analyses were performed using SAS version 9.4
(SAS Institute, Cary, NC, USA). Proportions and distributions
between groups were analyzed by Fisher and Wilcoxon (with
two-sided t approximation) tests, respectively. Raw values were
log-transformed or ranked as needed to conduct repeated-
measures ANOVA for assessing the effects of group (Low-
MetF, High-MetF), time (before and after the OGTT, or before
and after the prolonged fast), and group × time interaction.
In case of significant interaction, Tukey post-hoc test was
conducted to compare before vs. after values within the same
group or Low-MetF vs. High-MetF values at the same time-
point. Analysis of covariance (ANCOVA) was used to compare
regression equations between groups. A P < 0.05 was considered
statistically significant.

RESULTS

MetF and Metabolic Responses to the
OGTT
Overnight fasting RQ was similar in the High-MetF and Low-
MetF groups (0.82 [0.79–0.84] and 0.81 [0.78–0.83], respectively;
P = 0.99) and increased to a different extent after glucose
ingestion by design (Figure 1A). Thus, MetF in response to
OGTT (i.e., δRQ over the first hour) was 0.12 [0.06–0.17]
in the High-MetF and 0.00 [−0.03–0.03]) in the Low-MetF
groups (Figure 1B). In turn, the Low-MetF group achieved
similar RQ values as individuals with High-MetF after 2 h of
glucose ingestion.

We additionally explored the metabolic responses to the
OGTT. Glucose-induced thermogenesis was similar in High-
MetF and Low-MetF groups (22,793 [12,264–29,618] and 13,200
[7,500–18,498] kcal/d × min, respectively; P = 0.13). In both
groups, circulating levels of insulin, glucose, NEFA, and glycerol
were changed similarly after the OGTT, with serum βOHB
achieving borderline significance (P = 0.09; Figure 2). As for
lactate, there was a group × time interaction. In the High-MetF
group, lactate concentration remained higher than fasting values
over the entire post-glucose ingestion period. In turn, lactate was
only increased after 90min of glucose ingestion in the Low-MetF
group (Figure 2C). A borderline significant (P = 0.09) group ×

time interaction was noted in serum TG (Figure 2E). Further
analyses showed a larger drop in serum TG concentration (TG
120min–TG before) in the High-MetF vs. Low-MetF group (−26
[−21 to −13] vs. −4 [−8 to 6] mg/dl, respectively; P = 0.03).
NEFA suppression was similar in the High-MetF and Low-MetF
groups (0.07 [0.00–0.10] and 0.06 [0.01–0.09], respectively; P
= 0.98).
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FIGURE 1 | Response of the respiratory quotient (RQ) to a 75-g oral glucose tolerance test in individuals with low (Low-MetF) and high (High-MetF) metabolic

flexibility. (A) RQ before, 60 after, and 120min after glucose ingestion. (B) Change in RQ (δRQ) from before to 60min after glucose ingestion (RQ at 60min – RQ

before); a δRQ of 0.036 was the cutoff to divide subjects according to MetF. Data are median and interquartile ranges. Data were analyzed by repeated-measures

ANOVA and Tukey post-hoc. *P < 0.05 vs. before within the same group.

Metabolic Health in Low-MetF vs.
High-MetF Groups
Clinical Markers
During the OGTT, both glucose tolerance (Figure 2B) and
the insulinogenic index were similar in the High-MetF and
Low-MetF groups (1.04 [0.67–2.73] and 0.79 [0.38–1.40]
(µIU/ml)/(mg/dl), respectively; P = 0.23). So were the markers
of metabolic syndrome assessed at the screening visit, except
for a slightly higher diastolic blood pressure in individuals with
High-MetF vs. Low-MetF (Table 2). In the same line, both groups
had similar metabolic syndrome z-scores and the proportion of
subjects with metabolic syndrome (Table 2).

Body Fat Mass and Distribution
Total body fat mass was similar between groups (Table 2), as
expected from their similar sex, age, and body mass index. VAT
was also similar, whereas SAT showed a borderline significant
(P = 0.05) higher value in High-MetF vs. Low-MetF (Table 2).
Notably, analyses of the relationship between SAT and fat mass
index showed a steeper slope [SE] in the High-MetF vs. Low-
MetF group (33.7 [4.7] vs. 17.6 [5.6] cm3 per unit of the fat mass
index, respectively; P = 0.04; Figure 3). Intrahepatic fat content
was similar between groups (Table 2).

Insulin Sensitivity/Resistance
Neither HOMA-IR [a marker of hepatic insulin sensitivity (27)],
Matsuda index [a marker integrating hepatic and skeletal muscle
insulin sensitivity (34)], glucose disposal rate by the clamp

[determined mainly by skeletal muscle insulin sensitivity (15)],
nor Adipo-IR index [a marker of adipose tissue insulin sensitivity
(29)] was different between groups (Table 2).

MetF and Metabolic Response to
Prolonged Fast in Low-MetF vs. High-MetF
Groups
Overnight fasting RQ was similar in the High-MetF and Low-
MetF groups (0.81 [0.79–0.85] and 0.80 [0.78–0.84], respectively;
P = 0.87), and decreased to a similar extent after prolonged
fast (Supplementary Figure 1A). Thus, δRQ to prolonged fast –
i.e., MetF to prolonged fast– was similar in the High-MetF and
Low-MetF groups (−0.03 [−0.07 to −0.02] and −0.03 [−0.08
to −0.01], respectively; P = 0.73). Finally, metabolic rate was
increased similarly in the High-MetF and Low-MetF groups
(98 [36–205] and 52 [21–92] kcal/d, respectively; P = 0.20),
and blood insulin, glucose, lactate, NEFA, glycerol, TG, and
βOHB concentrations also responded similarly in both groups
(Supplementary Figures 1B–H).

DISCUSSION

Metabolic flexibility represents the capacity to adapt fuel
oxidation to fuel availability and is considered a component of
the healthy metabolic phenotype (8, 35). We thus hypothesized
that subjects with High-MetF would have better metabolic health
than individuals with Low-MetF. Nevertheless, we observed
that individuals with contrasting MetF to an OGTT had
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FIGURE 2 | Response of circulating markers to a 75-g oral glucose tolerance test in individuals with low (Low-MetF) and high (High-MetF) metabolic flexibility.

Concentrations were measured before and at various time-points after glucose ingestion for (A) insulin, (B) glucose, (C) lactate, (D) non-esterified fatty acids [NEFA],

(E) glycerol, (F) triglycerides, and (G) β-hydroxybutyrate [βOHB]. Data are median and interquartile ranges. Data were analyzed by repeated-measures ANOVA and

Tukey post-hoc. *P < 0.05 vs. before within the same group.
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TABLE 2 | Metabolic health in individuals with low (Low-MetF) and high (High-MetF) metabolic flexibility.

Low-MetF (n = 12) High-MetF (n = 13) P-value*

Clinical markers

Waist circumference (cm) 96 (89–101) 98 (93–106) 0.25

Systolic blood pressure (mmHg) 122 (115–129) 126 (124–130) 0.19

Diastolic blood pressure (mmHg) 75 (68–77) 80 (73–86) 0.04

Fasting glucose (mg/dL) 90 (86–98) 92 (85–98) 0.94

Fasting triglycerides (mg/dL) 107 (97–123) 120 (76–150) 0.89

Fasting HDL cholesterol (mg/dL) 42 (39–59) 45 (35–48) 0.94

Metabolic syndrome z-score −0.40 (−2.77 to 0.12) 0.80 (−1.79 to 1.68) 0.23

Metabolic syndrome diagnosis (n) 3 8 0.11

Body fat mass and distribution

Body fat mass (%) 46.3 (41.2–49.8) 46.1 (41.8–50.7) 0.94

Fat mass index (kg/m2 ) 13.4 (12.1–16.5) 14.0 (12.8–16.2) 0.46

Visceral abdominal tissue [VAT] (cm3) 120 (94–168) 123 (104–161) 0.98

Subcutaneous abdominal tissue [SAT] (cm3) 214 (130–223) 238 (220–281) 0.05

SAT/(SAT + VAT) 0.63 (0.52–0.69) 0.68 (0.61–0.72) 0.11

Intrahepatic fat (%) 6.5 (5.2–13.2) 7.9 (5.3–15.2) 0.83

Insulin sensitivity/resistance

HOMA-IR† 1.06 (0.73–2.31) 1.20 (0.94–2.21) 0.73

Matsuda† 5.8 (3.9–6.7) 4.5 (3.5–8.1) 0.81

GDR by clamp (mg/kg × min) 5.6 (5.0–11.4) 7.4 (5.1–9.6) 0.86

GDR by clamp (mg/kg × min × IU insulin) 4.9 (2.7–5.7) 7.2 (3.1–8.0) 0.58

Adipose tissue insulin resistance index† 20.8 (15.0–43.1) 20.6 (16.8–44.8) 0.89

Data are median (interquartile range) or number of individuals. *Wilcoxon test with two-sided t approximation or Fisher test;
†
From oral-glucose tolerance test; GDR, whole-body glucose

disposal rate.

similar metabolic health, assessed by the clinical markers
of metabolic syndrome, insulin sensitivity/resistance indexes,
and intrahepatic fat content. The only differences between
groups were that individuals with High-MetF had a slightly
(∼5 mmHg) higher diastolic blood pressure, a borderline
significantly larger SAT, a faster increase in lactate during
the OGTT, and a higher TG clearance during the OGTT.
These results suggest that MetF to an OGTT does not
discriminate for metabolic health in groups homogenous for
excess body weight, body composition, VO2max, and other
confounding factors. At the same time, our results point
toward an association between MetF and SAT that has been
scarcely explored.

There are several methods to assess MetF. Each method
challenges different tissues for their capacity to adapt the
oxidation to the availability of different substrates and sources
(8). For example, the hyperinsulinemic-euglycemic clampmostly
challenges skeletal muscle for exogenous glucose oxidation.
Whereas, prolonged fast challenges both the liver and skeletal
muscle for endogenous NEFA oxidation. In lean, healthymen, we
have previously observed that both measures of MetF are directly
associated, suggesting concordance in MetF in these organs
(36). Herein, we reasoned that a method approaching hepatic
MetF to exogenous nutrient excess maybe relevant. This is
because among individuals with obesity, those with low (vs. high)
hepatic fat content seem characterized by an enhanced capacity
to handle dietary nutrient excess (7). Indeed, after gaining

weight due to dietary excess, these individuals accumulated
less hepatic fat and preserved their insulin sensitivity (7).
Therefore, we propose that the extent to which RQ changes
over the first hour of an OGTT (where the organism is
exposed to a ∼4–5 times energy excess) represents a valid index
of MetF. Thus, individuals with the higher increase in δRQ
were considered as having High-MetF, i.e., a higher capacity
to adapt exogenous glucose oxidation to glucose availability.
Note that these individuals also showed faster increases in
blood lactate concentration, thus suggesting an enhanced non-
oxidative glucose utilization as well. In contrast, individuals with
Low-MetF manifested delayed increases in oxidative and non-
oxidative glucose utilization. This last observation highlights
an impaired capacity to switch between metabolic substrates,
which has been considered a landmark of impaired MetF (37).
Notably, we did not detect differences in metabolic health
in individuals with contrasting MetF to an OGTT. Moreover,
both groups of contrasting MetF to the OGTT displayed
similar MetF to prolonged fast. These findings highlight
that the factors that determine MetF depend on how MetF
is measured.

Previous studies have suggested that individuals with
metabolic syndrome have impairedMetF. San-Millán and Brooks
(38) measured MetF as fat oxidation during an incremental
exercise until exhaustion. Subjects with metabolic syndrome
had lower MetF compared to moderately active individuals and
professional athletes (38). From these data, we calculated that
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FIGURE 3 | Relationship between subcutaneous adipose tissue and fat mass

index in individuals with low (Low-MetF) and high (High-MetF) metabolic

flexibility. Slopes were compared by ANCOVA.

the δRQ (RQ at exhaustion—RQ at the lowest intensity) was the
lowest in subjects with metabolic syndrome (8), thus supporting
their impaired MetF. In another study, MetF to a high-fat
meal was compared in healthy individuals and individuals
with metabolic syndrome (39). The RQ dropped after meal
ingestion, reaching a nadir at 30min in healthy individuals
and at 60min in individuals with metabolic syndrome (39).
These results were interpreted as indicative of impaired MetF in
metabolic syndrome. Using euglycemic-hyperinsulinemic clamp
(9) or moderate-intensity exercise (13), impaired MetF has been
also associated with low insulin sensitivity. In contrast, in our
current study, subjects with contrasting MetF to an OGTT
had essentially no difference in the components of metabolic
syndrome nor markers of insulin sensitivity/resistance. The
presence of confounding variables may explain the discrepancy
between studies. Note that our Low-MetF and High-MetF
groups were similar in many putative confounding variables –
e.g., body mass index, fat mass, VAT, VO2max–, which was
not the case in previous studies (9, 38, 39). Differences in
the method to assess and analyze MetF may also explain the
discrepancy. For example, the classical association between
insulin sensitivity and MetF to a euglycemic-hyperinsulinemic
clamp occurs because δRQ depends on the glucose available for
oxidation within tissues. Thus, the association often disappears
after controlling for glucose disposal rate (18–20). In turn,
during an OGTT, δRQ will depend on every factor from
the gastrointestinal to the mitochondrial function (8). Thus,
an association between MetF during an OGTT and insulin
sensitivity/resistance is less apparent, as observed in our
current study.

Consequently, if MetF truly influences metabolic health –
with the liver as a relevant organ— this would not be detected
with an OGTT, even though the liver is the first organ
reached by absorbed glucose and a relevant glucose disposal
site (40, 41). Alternatively, MetF to an OGTT might be an
early marker for the development of metabolic disturbances.
A previous study showed impairments in MetF to a mixed
meal after 21 days of bed rest; but notably, the effect
occurred before alterations in fasting glucose, fasting TG, or
oral glucose tolerance (10). This may explain why our —
yet healthy— subjects with contrasting MetF to an OGTT
had similar metabolic health. Note that the slightly higher
diastolic blood pressure in the High-MetF group is, however,
difficult to explain. Previous evidence has suggested that
obesity influences elevations in blood pressure, independent
of other metabolic syndrome components (42). Nevertheless,
the reason for higher diastolic blood pressure in individuals
with a supposedly better metabolic profile (i.e., higher MetF) is
unknown. Future studies should explore whether this is a random
or consistent observation.

Limited focus has been put on a possible association between
MetF and adipose tissue function. Indeed, white adipose tissue
and its lipogenic capacity are critical factors determining
nutrient handling capacity and metabolic health. Several studies
have observed that individuals with abnormal metabolic health
manifest decreased expression of genes involved in glucose
uptake and lipogenesis in adipose tissue (7, 43–47). Furthermore,
previous evidence suggests that the lipogenic capacity of white
adipose tissue may also influence MetF. A mouse model of
adipose tissue-specific PPARγ2 deficiency showed slow lipid
storage in adipose tissue along with low MetF in the fed
state (48). Low MetF appeared explained by an increased
NEFA flux to ectopic tissues, which triggered compensatory
lipid oxidation to clear lipid excess. The balance between
fatty acid uptake and oxidation in ectopic tissues will finally
determine the extent of fatty acid storage in those tissues.
Our current results show larger SAT (for a similar total body
fat content) in individuals with High-MetF vs. Low-MetF,
which is consistent with the observations in mice. Perhaps,
that large SAT denotes an increased capacity to store lipids
that results in an enhanced capacity to oxidize carbohydrates
after glucose ingestion. Notably, High-MetF individuals (vs.
Low-MetF) also showed a larger drop in serum TG and
a similar NEFA suppression after glucose ingestion. These
latter data suggest enhanced circulating TG hydrolytic rate
and preserved NEFA uptake/release in adipose tissue. Evidence
indicating that a large SAT is associated with a lower frequency
of elevated circulating TG concentration in humans (49)
suggests that High-MetF and high SAT are related to better
metabolic health.

Our study has some limitations that are worth recognizing.
First, the sample size of groups was rather small, which may have
precluded us from identifying differences in some parameters.
However, note that based on our calculations, the sample size
was adequate to detect differences in two clinical markers
of insulin sensitivity/resistance. Second, the study was neither
powered to test for an effect of sex nor a possible effect
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of oral contraceptives in women. We just ensured that the
groups were balanced by sex to avoid its confounding effect.
Third, contrasting MetF between groups may not be stable in
time because fasting RQ often affects MetF assessed by the
δRQ (20, 50, 51). Volunteers in this study maintained steady
body weight, thus suggesting an energy balance in equilibrium,
the main factor affecting fasting RQ (52–54). We observed a
fasting RQ consistent with the consumption of mixed diets (54)
that remained similar across testing days, with similar intra-
individual variance between groups (P = 0.70, F-test; data not
shown). These conditions and observations suggest that fasting
RQwas a stable phenotype with no confounding influence on our
measure of MetF.

In conclusion, our cross-sectional comparison of individuals
with contrasting MetF to an OGTT does not support that high
MetF associates with better metabolic health. In turn, individuals
with high MetF appear to show enlarged SAT and enhanced
circulating TG clearance. Whether high MetF is a trait associated
with enhanced adipose tissue function, which protects from the
development of abnormal metabolic health, remains elusive. This
represents a potential area of future research. To accomplish
that goal, consensus on how to approach MetF will be of
utmost importance.
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