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Alterations in the mucosal immune 
system by a chronic exhausting 
exercise in Wistar rats
Patricia Ruiz‑Iglesias1,2, Sheila Estruel‑Amades1,2, Mariona Camps‑Bossacoma1,2, 
Malén Massot‑Cladera1,2, Margarida Castell1,2,3* & Francisco J. Pérez‑Cano1,2*

Exhausting exercise can disturb immune and gastrointestinal functions. Nevertheless, the impact of 
it on mucosal-associated lymphoid tissue has not been studied in depth. Here, we aim to establish 
the effects of an intensive training and exhausting exercise on the mucosal immunity of rats and 
to approach the mechanisms involved. Rats were submitted to a high-intensity training consisting 
of running in a treadmill 5 days per week for 5 weeks, involving 2 weekly exhaustion tests. At the 
end, samples were obtained before (T), immediately after (TE) and 24 h after (TE24) an additional 
final exhaustion test. The training programme reduced the salivary production of immunoglobulin 
A, impaired the tight junction proteins’ gene expression and modified the mesenteric lymph node 
lymphocyte composition and function, increasing the ratio between Tαβ+ and B lymphocytes, 
reducing their proliferation capacity and enhancing their interferon-γ secretion. As a consequence 
of the final exhaustion test, the caecal IgA content increased, while it impaired the gut zonula 
occludens expression and enhanced the interleukin-2 and interferon-γ secretion. Our results indicate 
that intensive training for 5 weeks followed or not by an additional exhaustion disrupts the mucosal-
associated lymphoid tissue and the intestinal epithelial barrier integrity in rats.

The mucosal immune system is the largest immune component of the body, shaped by the mucosa-associated 
lymphoid tissue (MALT) where about half of the whole lymphocyte population is found1. MALT cells are scat-
tered along the surfaces of all mucosal tissues and constitute the starting point for a great number of immune 
responses because of its constant exposure to antigens. In addition, immune responses developed in a particular 
MALT structure will influence the immunity of the entire MALT due to its property of recirculating immune 
cells between mucosa and glands2. MALT comprises, among others, the salivary duct-associated lymphoid tis-
sue (DALT) and the gut-associated lymphoid tissue (GALT), which defends the gastrointestinal tract against 
infections1. One of the main effector functions of the MALT is to produce and secrete immunoglobulin A (IgA)1.

It is well known that regular bouts of moderate-intensity exercise offers several long-term health benefits3, 
such as preventing, delaying or improving the prognosis of several chronic diseases4, and even cancer5, enhanc-
ing immunity6 and inducing benefits for the gastrointestinal (GI) tract7 and the gut microbiota8. However, 
chronic intensive exercise can induce adverse effects on health, such as oxidative stress, muscle damage and 
inflammation9, as well as immune10 and GI11 alterations. The increasing participation of the general population in 
endurance events over the last decades has raised concerns regarding the impact of prolonged overly intense exer-
cise on immune and GI health11,12. Focusing on the immune system, the impact of physical activity also depends 
on the intensity and duration of the effort. Regular bouts of moderate exercise enhance immune function, 
whereas strenuous exercise may impair it, decreasing host protection accordingly and leading to a higher risk of 
GI and upper-respiratory tract infections (URTIs) 1–2 weeks after a competition13 and to a lower performance14. 
The appearance of GI symptoms related to excessive exercise has been reported to be 30–93% among distance 
runners and triathletes15–17. Most of them are mild and do not cause long-term health effects (epigastric pain, 
heartburn, nausea, vomiting, abdominal pain and diarrhoea), but oesophagitis, haemorrhagic gastritis, gastric 
ulcer, gastrointestinal bleeding and ischaemic bowel may involve severe medical complications16,18,19. The under-
lying mechanisms are not fully understood but this symptomatology seems to be mainly related to GI ischaemia, 
altered motility, malabsorption and neuroendocrine factors11,20.
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The measurement of salivary IgA concentration in humans is one of the most used biomarkers to assess the 
effect of exercise on mucosal humoral immunity21. In particular, regular sessions of moderate exercise enhances 
salivary IgA secretion22, whereas prolonged periods of intensive exercise may decrease it, contributing, at least 
in part, to the higher susceptibility to infections observed in athletes21. On the other hand, exercise also impacts 
cellular immunity21. Most of the studies have assessed changes in blood lymphocytes, whereas only a few have 
focused on lymphoid compartments such as bone marrow, Peyer’s patches21, spleen, thymus23 and lymph nodes24. 
The changes in the proportion of lymphocyte populations that have been reported in such tissues may reflect a 
redistribution of cells among lymphoid tissues which must be mainly due to the release of stress hormones such 
as catecholamines and glucocorticoids25. In addition, changes in the functionality of natural killer (NK), T and 
B lymphocytes have been described23,26, as well as in the T helper (Th)1/Th2 cell balance27 in both blood and 
lymphoid tissues. Previous studies have evidenced the effect of exercise on axillary, inguinal and submandibular 
lymph nodes’ specific immunity24, but, to our knowledge, the impact of high-intensity exercise in the GALT, 
and particularly in mesenteric lymph nodes (MLNs), remains uncertain. MLNs belong to the organized GALT 
and play an important role in the development of local immune responses in the gut28. Therefore, alterations 
in MLN lymphocyte (MLNL) composition and function may contribute to the explanation of the mechanisms 
underlying exercise-induced gastrointestinal syndrome.

Despite the existing research, the isolated role of exercise in disrupting GI and immune function has been 
challenged lately, since increasing evidence suggests that many other uncontrolled factors, such as anxiety, sleep 
deprivation, travel, nutritional deficits, environmental extremes and exposure to pathogens by attending a mass 
participation event may be involved6. Therefore, a well-controlled animal model of intensive exercise may be 
useful to elucidate the impact of exercise per se on the immune system, and, more specifically, on the MALT. 
Previously, we have characterized the alterations occurring in the innate and adaptative immune system as well 
as in the oxidative status in high-intensity trained rats23,26,29. The present study aimed to establish the impact of 
intensive training and exhaustion exercise on the mucosal immune system functionality of rats and to approach 
the mechanisms involved.

Results
Performance.  The high-intensity training programme involved 5 days of training per week for 5 weeks: 3 
regular trainings on Tuesday, Wednesday and Thursday, and an exhaustion test (ET) every Monday (M) and 
Friday (F), in which maximum running time indicated rat physical performance (Table 1). Fridays’ performance 
was better than that on Mondays (p < 0.05 for weeks 3 and 4). Rats supported a maximum time of about 25 min 
on the second Friday, achieving a maximum speed of about 59.0–71.8 m × min-1. Later, in weeks 3–5, the per-
formance achieved on Monday was lower than that on Mondays from previous weeks (p < 0.05), which was also 
observed on the last Friday in comparison with the previous ones (p < 0.05). An additional ET was performed 
after the 5-week high-intensity training programme, where trained rats ran for 32.07 ± 1.50 min (mean ± stand-
ard error).

Body weight and food efficiency.  Body weight and chow intake were monitored throughout the 5-week 
training programme (Fig. 1a,b) in both runners and sedentary (SED) rats. Although the body weight was similar 
during the first weeks of training, runner animals showed a higher body weight than SED animals on the last 
days of the study (p < 0.05). This increase was not associated with a higher chow intake, quite the opposite: run-
ner animals showed a lower weekly chow intake than SED rats from the beginning of the training programme 
(p < 0.05 in weeks 1–4).

Body weight gain and chow intake allowed the calculation of the week-long food efficiency (Fig. 1c). The pat-
tern of food efficiency progression during the study was similar between SED and runner animals, substantially 
increasing during the first 2 weeks, probably due to the young age of the animals. The high-intensity training 
tended to increase the food efficiency throughout the study, the difference being statistically significant only in 
the second week of the training programme (p = 0.008).

Table 1.   Maximum running time lasted in the Monday and Friday exhaustion tests performed throughout 
the high-intensity exercise training programme. ET exhaustion test, NS no statistically significant differences 
detected. Data are expressed as mean ± SEM (n = 8). Statistical differences (paired Student t test): significant 
differences between consecutive Monday ET and Friday ET are included in the table (p < 0.05); *significant 
differences vs the first two Monday ETs (p < 0.05); #significant differences vs the first three Friday ETs (p < 0.05).

Week

Maximum running time (min)

Monday ET Friday ET p value

1 23.83 ± 0.51 24.70 ± 0.55 NS

2 23.83 ± 0.61 25.17 ± 0.81 NS

3 22.26 ± 0.70* 24.22 ± 0.92 0.042

4 21.18 ± 0.94* 23.48 ± 0.59 0.003

5 21.48 ± 0.76* 22.30 ± 0.67# NS
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Salivary gland immunoglobulins.  After the 5-week intensive training, in order to assess the mucosal 
immune status at different time points, runner rats were divided into 3 groups according the conditions of 
sample collection: T group, whose sample were collected one day after performing a regular training, TE group, 
whose samples were obtained immediately after an additional final exhaustion test, and TE24 group whose sam-
ples were collected 24 h after the additional final exhaustion test. The results from these rats were compared with 
those obtained from matched sedentary rats (SED).

Content of IgA and IgM was determined in submaxillary salivary glands (SMGs) (Fig. 2). The intensive 
training induced a decrease in the IgA content in this compartment (p = 0.05, T group vs SED group) that was 
not statistically significant after carrying out the additional final ET. Neither training nor exhaustion induced 
significant changes in salivary IgM concentration, although exhaustion tended to increase it in comparison to 
sedentary animals (p = 0.098, TE group vs SED group).

Intestinal immunoglobulins.  Intestinal IgA concentration was determined in gut washes (GWs) from 
the small intestine and in caecal content (CC) (Fig. 3a,b). In the GWs, neither training nor exhaustion induced 
changes in IgA content, although values tended to decrease 24 h after the final exhaustion test without reaching 
significance. With regard to the CC, IgA levels tended to decrease after 5 weeks of intensive training (T group) 
but, after the final exhaustion test, there was a higher IgA content that remained for at least 24 h (p = 0.018, T 
group vs TE group; p = 0.009, T group vs TE24 group).

Figure 1.   Body weight (a), chow intake (b), and food efficiency (c) throughout the intensive training period. 
The sedentary (SED) group is represented by white symbols (○) and the runner group by grey symbols ( ). 
Data are expressed as mean ± standard error (n = 8 animals for the SED group and n = 24 animals for the runner 
group in (a); n = 3 cages for the SED group and n = 8 cages for the runner group in b,c). Statistical differences 
(Student’s t test): *p < 0.05 vs SED group.

Figure 2.   Changes in submaxillary salivary gland IgA and IgM concentration compared to the sedentary group. 
SED sedentary rats, T trained rats, TE T rats immediately after a final exhaustion test, TE24 TE rats 24 h after 
the final exhaustion test. Data are expressed as mean ± standard error (n = 8). Statistical differences (one-way 
ANOVA followed by post-hoc Tukey test): *p < 0.05 vs SED group.
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Small intestine gene expression and gut permeability.  Alterations due to the intensive training pro-
gramme and the final exhaustion in the gene expression of proteins involved in the gut homeostasis, including 
tight junction proteins (such as occludin, claudin-2, -4, zonula occludens-1, -2) and proteins involved in the B 
cell differentiation, IgA transcytosis and lymphocyte gut homing, were established (Table 2).

In the case of the tight junction proteins, the 5-week training programme decreased occludin (Oclud) and 
claudin (Cldn)-4 expression (p = 0.044 and p = 0.007, respectively, T group vs SED group), although both levels 
increased after performing the additional final ET. The claudin-4 expression found in the TE24 group inversely 
correlated with the performance achieved in the additional final ET (R = − 0.928, p = 0.008). In contrast, clau-
din-2 expression increased due to both intensive training and final exhaustion (p < 0.001 and p < 0.001, T group 
and TE group vs SED group), and these higher levels were maintained for at least 24 h (p = 0.011, TE24 group 
vs SED group).

In samples obtained immediately after the final exhaustion test (TE group) the expression of zonula occludens 
(ZO)-1 increased (p = 0.023, TE group vs. SED group) and that of ZO-2 decreased (p = 0.004, TE group vs. SED 
group) with respect to the sedentary rats. Both changes were normalized 24 h later.

With regard to the gene expression of proteins involved in B cell differentiation, IgA transcytosis and gut 
homing, no changes were found for polymeric immunoglobulin receptor (pIgR), transforming growth factor 
(TGF)-β1 and chemokine (C–C motif) ligand 25 (CCL25) due to the intensive training and/or exhaustion in 

Figure 3.   Changes in gut wash IgA (a), and caecal content IgA (b) concentration compared to the sedentary 
group. SED sedentary rats, T trained rats, TE T rats immediately after a final exhaustion test, TE24 TE rats 
24 h after the final exhaustion test. Data are expressed as mean ± standard error (n = 8). Statistical differences 
(Kruskal–Wallis followed by Mann–Whitney U test): фp < 0.05 vs. T group.

Table 2.   Changes in gene expression of some molecules in small intestine compared to the sedentary group. 
SED sedentary rats, T trained rats, TE T rats with a final exhaustion test, TE24 TE rats 24 h after the final 
exhaustion test. Data are expressed as mean ± standard error (n = 8). Statistical differences (Kruskal–Wallis 
followed by Mann–Whitney U test): *p < 0.05 vs SED group; фp < 0.05 vs T group; λp < 0.05 vs TE group.

Gene SED T TE TE24

Oclud 1 ± 0.09 0.81 ± 0.04* 0.86 ± 0.08 1.09 ± 0.01ф

Cldn-2 1 ± 0.17 2.97 ± 0.43* 3.98 ± 0.70* 2.70 ± 0.54*

Cldn-4 1 ± 0.13 0.62 ± 0.05* 0.97 ± 0.07ф 1.19 ± 0.23ф

ZO-1 1 ± 0.11 1.12 ± 0.10 1.76 ± 0.23*ф 1.25 ± 0.16λ

ZO-2 1 ± 0.05 0.88 ± 0.03 0.75 ± 0.07*ф 1.10 ± 0.05фλ

pIgR 1 ± 0.15 1.08 ± 0.08 0.83 ± 0.13 0.87 ± 0.14

TGF-β 1 ± 0.20 0.64 ± 0.09 0.75 ± 0.13 0.60 ± 0.04

RAR-α 1 ± 0.07 0.83 ± 0.05 0.75 ± 0.04* 0.89 ± 0.06

CCL25 1 ± 0.08 1.02 ± 0.06 0.97 ± 0.11 0.96 ± 0.10
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comparison to sedentary animals. Nevertheless, the additional final ET decreased the retinoic acid receptor 
(RAR)-α gene expression. When considering the association of this results with the performance, there was an 
inverse correlation between the performance achieved in the additional final exhaustion test and the intestinal 
gene expression of TGF-β in the TE24 group (R = − 0.775; p = 0.041).

On the other hand, alpha-1-antitrypsin (a1AT) concentration in GW was determined in order to assess 
changes in the gut paracellular permeability (Fig. 4). Although no significant changes in this marker were 
observed due to the 5 weeks of intensive training, the a1AT content in the GW tended to increase 24 h after 
carrying out the additional final ET (p = 0.092, TE24 group vs T group).

MLN lymphocyte composition.  The influence of intensive training and the final exhaustion on the MLNL 
composition was also assessed (Fig. 5). In SED animals, MLNL included 33.10 ± 1.53% of B cells (CD45RA+), 
57.45 ± 1.31% of Tαβ cells (TCRαβ+), 1.99 ± 0.19 of Tγδ cells (TCRγδ+) and 0.44 ± 0.04% of NK cells (CD161b+). 
Among all Tαβ cells, 75.04 ± 1.17% were Th (CD4+CD161b− in TCRαβ+), 25.13 ± 1.03% Tc (CD8+CD161b− in 
TCRαβ+) and 1.09 ± 0.05% NKT (CD161b+ in TCRαβ+) cells. The proportion of regulatory T (Treg) cells within 
CD4+ lymphocytes (CD25+FoxP3+ in CD4+) was 1.79 ± 0.11%.

The 5-week intensive training programme decreased the proportion of MLN B cells (p = 0.008, T group vs SED 
group) whereas it increased that of Tαβ lymphocytes (p = 0.044, T group vs SED group) (Fig. 5a). Consequently, 
the T/B cell ratio increased in the T group with respect to the SED group (p = 0.011) up to about 40% (Fig. 5b). 
After the final exhaustion test, the B and Tαβ cell proportions did not significantly differ from those of SED 
animals. No exercise condition modified the Tγδ and NKT cell proportions; however, in the TE group there was 
an inverse correlation between the time supported in the additional final exhaustion test and the proportion of 
MLN Tγδ cells (R = -0.757; p = 0.049).

With regard to the main Tαβ subsets, the MLN Tc cell proportion decreased in the T group (p = 0.008) com-
pared to SED animals, which increased the Th/Tc ratio up to 20% (Fig. 5c,d). However, the proportion of Tc cells 
increased immediately after carrying out the additional final ET (p = 0.004, TE group vs T group), when there 
was a significant reduction of Th cell proportion (p = 0.003, TE group vs T group) and, as a result, a lower Th/Tc 
ratio than that observed in just trained rats (p = 0.004, TE group vs T group). All these changes concerning Tc 
and Th proportions in TE group were restored 24 h later, in the TE24 group.

Although none of the exercise conditions studied significantly modified the percentage of MLN Treg cells 
(Fig. 5e), there was an inverse correlation between the Treg proportion and the performance in the final exhaus-
tion test (R = − 0.986, p < 0.001 in the TE group and R = − 0.874, p = 0.005 in the TE24 group).

MLN lymphocyte functionality.  The proliferative response of MLN T-cells was established after conca-
navalin A (ConA) stimulation (Fig. 6a). After 5 weeks of intensive training, a lower proliferation capacity than 
that in the SED group was observed (p = 0.045, T group vs SED group). Nevertheless, it was overcome after car-
rying out the additional final ET (p = 0.006, TE group vs T group; p = 0.003, TE24 group vs T group).

Cytokine secretion was also quantified in MLNL culture supernatants (Fig.  6b–f). In SED animals, 
MLNL secreted 356.18 ± 50.94 pg/mL of interleukin (IL)-2, 1624.30 ± 469.29 pg/mL of interferon (IFN)-γ, 
73.67 ± 12.92 pg/mL of IL-10, and 1.33 ± 0.19 pg/mL of IL-4 (mean ± standard error). The intensive training 

Figure 4.   Changes in gut wash alpha-1-antytripsin (a1AT) concentration compared to the sedentary group. 
SED sedentary rats, T trained rats, TE T rats immediately after a final exhaustion test, TE24 TE rats 24 h after the 
final exhaustion test. Data are expressed as mean ± standard error (n = 8).
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programme doubled the secretion of IFN-γ in MLNL (p = 0.005, T group vs SED group), and the final exhaustion 
test enhanced it even further (p < 0.001, TE group vs SED group), remaining elevated for at least 24 h (p < 0.001, 
TE24 group vs SED group). The final exhaustion test also increased the secretion of IL-2 in the TE (p = 0.003 vs 
SED group, p = 0.006 vs T group) and TE24 groups (p = 0.001 vs SED group, p = 0.002 vs T group). There were no 
significant changes regarding the secretion of IL-4 and IL-10 by MLNL, nevertheless, the levels of IL-10 positively 
correlated with the performance in the TE group (R = 0.921, p = 0.026).

The IFN-γ/IL-4 ratio was calculated in order to assess the Th1/Th2 balance (Fig. 6f). Both the TE and TE24 
groups showed a significantly higher IFN-γ/IL-4 ratio (p = 0.001 and p = 0.006, respectively, vs SED group).

Finally, the in vitro ability for antibody production was determined in supernatants from non-stimulated 
MLNL (Fig. 7). In SED animals, MLNL in the assayed conditions produced 74.87 ± 10.39 ng/mL of IgA, 
20.75 ± 5.54 ng/mL of IgM, and 17.81 ± 2.63 ng/mL of IgG (mean ± standard error). No changes were found in 
IgA and IgM secretion due to the training or the exhaustion test; however, IgG production remarkably increased 
in both the T and the TE groups (p = 0.014 and p = 0.009, respectively, vs SED group).

Discussion
Nowadays, it is widely accepted that strenuous exercise impairs the immune system and promotes gastrointestinal 
symptoms10,11. A growing amount of research is investigating the underlying mechanisms of exercise-induced 
gastrointestinal syndrome11,30,31 and conclude that it is likely that this has a multifactorial cause, involving circu-
latory, enteric and immune alterations, as well as environmental triggers11. Efforts to link this symptomatology 
with intestinal barrier disruption due to splanchnic ischaemia have been relatively successful; nevertheless, the 
available literature on the mucosal immune system’s contribution to these symptoms remains quite controversial. 
In previous studies, we demonstrated that rats submitted to intensive training and exhausting exercise exhibited 

Figure 5.   Changes in the proportion of mesenteric lymph node lymphocytes compared to the sedentary group. 
Main lymphocyte subsets (a); Tαβ/B lymphocytes ratio (b); main Tαβ subsets (c); Th/Tc ratio (d) and Treg 
proportion (e). SED sedentary rats, T trained rats, TE T rats with an additional final exhaustion test, TE24 TE rats 
24 h after the additional final exhaustion test. Data are expressed as mean ± SEM (n = 8). Statistical differences 
(one-way ANOVA followed by post-hoc Tukey test for (a,b) and Kruskal–Wallis followed by Mann–Whitney U 
test for c–e): *p < 0.05 vs SED group; фp < 0.05 vs T group; λp < 0.05 vs TE group.
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alterations in both the innate and the acquired immunity23,26. The current study aimed to establish the effects of 
5 weeks of intensive training on the mucosal immune system in rats and to elucidate the mechanisms underly-
ing these effects.

Rats intensively trained for 5 weeks showed a better performance in the first 2 weeks but, in the last 2 weeks 
there was a clear lower performance, thus suggesting that animals may have achieved overtraining syndrome, 
which appears when the training workload exceed the body’s ability to recover and this results, among other 
consequences, in a decrease in expected levels of performance10. Those runner animals showed a higher body 
weight gain, a lower chow intake and better food efficiency than sedentary animals throughout the training 
programme. This higher body weight (and consequently better food efficiency) could be due to an increase in 
muscle mass32 and/or bone mass33 and a decrease in fat content, as it has already been reported in female trained 
rats34 and mice35. However no increases in body weight have been reported in male trained rodents34–37. These 

Figure 6.   Changes in the proliferative response (a) and cytokine concentration released (b–f) by mesenteric 
lymph node lymphocyte stimulated by concanavalin A (ConA) compared to the sedentary group. SED sedentary 
rats, T trained rats, TE T rats with a final exhaustion test, TE24 TE rats 24 h after the final exhaustion test. Data 
are expressed as mean ± standard error (n = 8). Statistical differences (one-way ANOVA followed by post-hoc 
Tukey test for b,d, and Kruskal–Wallis followed by Mann–Whitney U test for a,c,e): *p < 0.05 vs SED group; 
фp < 0.05 vs T group.
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differences associated with rat gender deserve new studies aiming to establish the relationship between food 
intake, body weight and fat and muscle tissues in both male and female intensively trained rats.

Tight junction (TJ) proteins play a key role in maintaining the intestinal barrier function by regulating para-
cellular transport and secretion/absorption mechanisms. Claudins and zonula occludens proteins are vital for the 
TJ assembly and resistance, while occludin has a less vital regulatory role in the TJ30. There is evidence that the 
intestinal ischaemia-induced by exercise leads to an impairment of the gut epithelial barrier integrity, by means 
of TJ protein phosphorylation, disrupting the gut paracellular permeability30,31. Here, we found a decrease in 
occludin and claudin-4 gene expression due to the intensive training programme that could result in overtrain-
ing. Whereas these results agree with previous studies that found reduced occludin levels in intestinal cells in 
an in vitro heat stress model aiming to simulate exercise stress and recovery38, they disagree with others that 
found similar expression levels in endurance exercise-trained rats and their sedentary counterparts39, or even 
an increased occludin expression in obese rats submitted to high-intensity interval training40. To the best of our 
knowledge, changes in claudin-4 expression due to exercise have not been previously reported and they could 
have a relevant impact on GALT’s functionality, since this TJ protein appears to participate in M cell transcytosis 
to intake intestinal antigens41. On the other hand, in line with previous research on endurance swimming train-
ing in rats42, both training and exhaustion induced an increase in claudin-2 expression, which, together with 
claudin-1 and claudin-3, is essential to form the TJ seal30. Nevertheless, claudin-2 is a pore-forming claudin43 
and its upregulation has been associated with an undergoing intestinal inflammatory process that contributes to 
leak-flux diarrhoea44, which is a frequently reported symptom in endurance athletes11,31. Therefore, such increase 
in claudin-2 could be partially responsible for these gastrointestinal symptoms. Zonula occludens-1 was also 
upregulated after performing the final additional exhaustion test, in agreement with other authors39,40,42, while 
zonula occludens-2 was downregulated. Despite all these changes in TJ proteins’ gene expression, we did not 
observe a marked effect of exercise on intestinal permeability assessed by a1AT concentration in GW, but only 
a trend of increasing permeability after performing the additional final exhaustion test. Nevertheless, a previ-
ous study carried out in trained men found normal levels of faecal a1AT while zonulin’s were slightly above 
normal45. Whereas alpha-1-antitrypsin function as a marker of increased intestinal permeability is based on its 
high concentration in serum and its extravasation into the gut when the epithelial barrier function is impaired, 
zonulin plays a specific physiological role in disassembling intercellular TJ and altering the paracellular trans-
port of fluids, ions, macromolecules and leukocytes46. For that reason, zonulin has recently become one of the 
most valid surrogate markers to estimate intestinal permeability31. In this regard, a recent study compares the 
intestinal permeability assessment with the traditional assay based on the differential sugar absorption method 
(lactulose/mannitol test) and zonulin concentration in stool; both were higher in professional athletes than in 
healthy non-athletes but no significant association between them was found47. Therefore, although a growing 
number of studies using both traditional permeability assays and biomarkers of intestinal inflammation quan-
tification conclude an increased gut permeability after performing intensive exercise11,48, further studies may 
clarify the remaining controversies of these results and find the most accurate method to monitor this variable.

With regard to the effects of exercise on the MALT, the majority of exercise studies focused on salivary secre-
tory IgA (SIgA) as a marker of MALT functionality6,49. It has been reported that intensive exercise and overtrain-
ing produces, in most studies, a decline in salivary SIgA levels49,50. The SIgA decrease reported in these studies 
has been attributed to a reduction in the pIgR expression, an essential receptor involved in the IgA transcytosis 
across the epithelial cells52, which could be due to either prolonged sympathetic nervous system overactivation 
and elevated cortisol concentration50 or indirectly mediated by cytokines induced by exercise52. In agreement 
with these previous studies49,50, we found a reduced IgA content in the whole submaxillary salivary gland tissue, 
that was not counteracted by higher IgM levels2, which has been reported to be both reduced56 and increased57 
after performing intensive exercise. Although IgA content in salivary glands is not the same that IgA content in 
the saliva, it indicates the ability to synthetize this mucosal antibody which will be later submitted to transcyto-
sis and exocytosis, throughout pIgR, to the ducts and eventually will be found in the saliva. Regarding another 

Figure 7.   Changes in the IgA (a), IgM (b) and IgG (c) concentration in mesenteric lymph node lymphocyte 
supernatants compared to the sedentary group. SED sedentary rats, T trained rats, TE T rats with a final 
exhaustion test, TE24 TE rats 24 h after the final exhaustion test. Data are expressed as mean ± standard error 
(n = 8). Statistical differences (Kruskal–Wallis followed by Mann–Whitney U test): *p < 0.05 vs SED group.



9

Vol.:(0123456789)

Scientific Reports |        (2020) 10:17950  | https://doi.org/10.1038/s41598-020-74837-9

www.nature.com/scientificreports/

mucosal compartment, we found no changes either in the pIgR expression in the wall of small intestine and in 
the IgA secreted in the intestinal lumen measured in GW. Therefore, further studies must clarify how exercise 
particularly affects salivary glands and the IgA synthesis, exocytosis and transcytosis therein.

On the other hand, other alterations by the intensive training and the possible overtraining were found in 
molecules expressed in the GALT. Thus, there was a reduction in RAR-α gene expression due to exhaustion (as 
observed immediately after the exhaustion test) and an inverse correlation between TGF-β levels and the time 
supported in the additional final exhaustion test (found 24 h later), meaning that those rats running longer had 
lower TGF-β expression. Both RAR-α and TGF-β are involved in IgA+ B cell differentiation and gut homing, 
and their decreased expression after exhaustion could be translated in a lower concentration of intestinal IgA 
later, as we observed 24 h after exhaustion without reaching significance.

At caecal level, intensive training tended to decrease the caecal IgA content but the final exhaustion test raised 
it. This increase could be partially due to changes in the caecal microbiota induced by the exhaustion that might 
involve the release of IgA previously coated to bacteria. In fact, although benefits of moderate exercise in the 
gut microbiota have been reported8,57, there is still limited knowledge regarding exhausting exercise-induced 
microbiota alterations. In this context, whereas some authors reported that high-intensity interval training 
could overcome some of the detrimental effects in the gut microbiota caused by high-fat diet-induced obesity in 
mice58, others have described that healthy mice submitted to a 4-week intensive swimming training hosted a less 
diverse microbiota59. Thus, further studies should be carried out to clarify the effects of intensive exercise and 
exhaustion in the gut microbiota composition and functionality, as well as the changes induced by exhaustion 
in the proportion of bacteria coated to IgA.

To take a more in-depth look into understanding exercise-induced GALT alterations, changes in the composi-
tion and functionality of mesenteric lymph node lymphocytes were assessed. Neither training nor exhaustion 
modified the proportion of the minority lymphocyte populations NK, Tγδ and Treg cells. However, we found 
an inverse correlation between the time supported in the final exhaustion test and the percentage of MLN Tγδ 
cells in just exhausted rats, probably due to cell apoptosis, in agreement with previous studies in which a decrease 
in this lymphocyte population in both blood and spleen was observed23. Treg cells are an essential subset in the 
maintenance of immune homeostasis and tolerance and their proportion was also inversely correlated with the 
performance in exhausted animals. Previous studies found that, in contrast to moderate exercise training60, inten-
sive training could decrease the number of circulatory Treg in both animal models61 and marathon runners62. 
This decrease was attributed at least partially to the higher cortisol production observed after exhaustion as we 
previously observed in similarly trained rats23, since an in vitro study demonstrated that dexamethasone (syn-
thetic glucocorticoid) exposure for 24 h decreases FoxP3+ expression in peripheral blood mononuclear cells63. 
On the other hand, unlike what has been previously described in spleen and blood23, MLN NK cell proportion 
was not modified by either intensive training or the final exhaustion.

Regarding the predominant lymphocyte populations, the intensive training programme and possible over-
training increased the proportion of Tαβ+ lymphocytes -and above all, Th cells since the Tc proportion was 
significantly lower—while it decreased that of B cells. Nevertheless, after the final exhaustion test, both B and T 
cell proportions were similar to that in sedentary rats. Other studies have reported a reduced T cell proportion 
in mouse submandibular lymph nodes after carrying out an intensive treadmill run test24. It could be hypoth-
esized that with exhaustion, MLN Th cells move to the blood thus decreasing (normalizing) their proportion 
in the MLN; however, we have previously described a reduction in both blood Th and Tc cell proportions due 
to exhaustion23. In this case, these changes might be explained by a redistribution of lymphocytes within other 
lymphoid and non-lymphoid organs25 and the lymphocyte apoptosis64,65 induced by the release of catecholamines 
and glucocorticoids due to the intensive exercise stress. In this regard, a previous study in animals with a similar 
training program showed higher cortisol levels 23,26.

Apart from the changes in MLN T and B lymphocyte proportions, intensive training and exhausting exer-
cise also modified their functionality. In the case of T lymphocytes, the intensive training programme, possibly 
inducing overtraining, decreased their proliferation capacity. Previous research has already reported the reduced 
lymphocyte proliferation capacity induced by intensive training66 and even acute bouts of exercise of a wide range 
of intensities67. This decrease could be partially due to the lymphopaenia and the higher cortisol levels found 
in rats which were similarly trained23,26, since glucocorticoids’ immunosuppressant properties target both cell 
trafficking and proliferation capacity67,68. On the other hand, the well-characterized exhausting exercise-induced 
acute lymphocytosis49,50, which we previously reported26, together with the increase in IL-2 secretion by MLN 
lymphocytes observed in the current study and by other authors69,70, may explain the sudden increase in prolif-
eration right after performing the final exhaustion test.

With regard to other cytokines released by stimulated MLNLs, we observed an increase in IFN-γ production 
by lymphocytes from trained animals, which was even higher in rats who performed the final exhaustion test. The 
IFN-γ/IL-4 ratio (Th1/Th2 balance) was also higher in exhausted animals, showing a Th1 bias in MLNs, probably 
evidencing a local inflammatory process. Concerning IL-10 secretion, it positively correlated with the perfor-
mance achieved in the final exhaustion test, again evidencing an intensity and/or running length-dependent 
exercise-induced immune disruption. The exhaustion-induced cortisol increase we previously reported23 could 
explain this association, since an in vitro study reported an increase in IL-10 expression in peripheral blood 
mononuclear cells after 24 h culture with dexamethasone63.

Finally, in order to assess the functionality of MLN B lymphocytes, IgA, IgM and IgG concentrations in cell 
supernatants were quantified. There was a higher MLN production of IgG due to both the intensive training 
and exhaustion, although these levels were lower 24 h later. There were no changes in IgA and IgM production 
due to exercise. These findings are in line with previously reported results in serum23. We hypothesized that, as 
previously reported in spleen23, MLN could be sensitive to the repetitive stress induced by the intensive training 
programme, which might upregulate the glucocorticoids and adrenergic receptors71 and this, in addition to the 
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higher cortisol levels observed in similarly exercised animals23, may explain the higher in vitro production of 
IgG by MLN lymphocytes.

In summary, intensive training for 5 weeks in female Wistar rats, followed or not by an additional exhaustion 
test, appears to have caused an overtraining condition which modified both mucosal immunity and the intestinal 
epithelial barrier integrity. In particular, the intensive training programme decreased the salivary IgA concen-
tration, impaired the claudins and occludin gene expression in the small intestine and altered the mesenteric 
lymph node lymphocyte composition while decreasing their proliferation capacity and increasing their IFN-γ 
secretion. The final exhaustion enhanced the caecal production of IgA while it impaired the zonula occludens 
expression and enhanced the IL-2 and IFN-γ secretion by mesenteric lymph node lymphocytes. These findings 
could partially explain the decline of the mucosal immunity and the gastrointestinal symptomatology induced 
by intensive exercise and in overtrained athletes. Further research might clarify whether a more intensive or 
longer exercise training can exacerbate the observed alterations and search for accurate nutritional strategies to 
counteract and even prevent them.

Methods
Animals.  Female Wistar rats (3 week-old at arrival) were provided by Envigo (Huntingdon, United King-
dom) and were maintained at the animal facility of the Faculty of Biology (University of Barcelona). Female rats 
were used because previous studies reported a better adaptation to treadmill running than male rats34,73 while 
the impact of exercise on immunological variables was not influenced by gender73. The animals were kept under 
controlled conditions of temperature and humidity, in a 12  h/12  h light/dark cycle. Animals (2–3 per cage) 
were given ad libitum access to food (Teklad Global 14% Protein Rodent Maintenance Diet, Teklad, Madison, 
WI, USA) and water. Body weight (BW) and food intake were monitored throughout the study. Animal proce-
dures were approved both by the Ethical Committee for Animal Experimentation of the University of Barcelona 
(CEEA/UB ref. 464/16) and the Catalonia Government (DAAM 9257). The number of animals was established 
according to the minimum required for providing statistically significant differences among groups, using the 
Appraising Project Office’s programme from the Universidad Miguel Hernández de Elche (Alicante, Spain). 
Moreover, the number of rats in each group was adjusted following the University Ethical Committee guidelines 
and applying the three Rs rule for experimenting in animals. All methods were carried out in accordance with 
relevant guidelines and regulations.

Training programme.  After a 2-week adaptation period, rats were submitted to a high-intensity exercise 
training (n = 24) or remained as a sedentary control group (n = 8; SED). A high-intensity training was induced 
in rats by running in a treadmill (LE8700, Panlab, Harvard, USA, and Exer3/6 treadmill Columbus, Ohio, USA) 
5 days per week for 5 weeks, involving two exhaustion tests per week, as previously reported23,26. Briefly, every 
Monday and Friday, the exercised group carried out an exhaustion test, which consisted of running 15 min at 
60% of the maximum speed average achieved in the previous Monday’s exhaustion test (the speed of the first 
Monday’s exhaustion test was 30 m × min−1), and from then on, the speed was progressively increased until 
exhaustion. On Tuesday, Wednesday and Thursday, rats trained for 20, 25 and 30 min, respectively, at 60% of the 
maximum speed average achieved in the previous Monday’s exhaustion test. At the end of the training period, 
runner animals were distributed into 3 groups (n = 8) with a similar ability to run: trained group (T, whose 
samples were obtained 24 h after a regular training), exhausted group (TE, whose samples were obtained imme-
diately after an additional final exhaustion test) and 24 h post-exhaustion group (TE24, whose samples were 
obtained 24 h after the additional final exhaustion test). The SED group was exposed to the same conditions of 
maintenance and isolation stress as runner rats. As a positive reinforcement, both runner and SED rats received 
at the end of training or isolation, a 50% solution of condensed milk (100 μL/100 g BW).

Sample collection and processing.  At the end of the study, animals were anaesthetized by intramuscular 
injection of ketamine (Merial Laboratories S.A. Barcelona, Spain) and xylazine (Bayer A.G., Leverkusen, Ger-
many) (90 mg × kg−1 and 10 mg × kg−1, respectively) and exsanguinated. The MLN, small intestine, SMG and 
CC were collected.

The lymphocytes from MLN were isolated in aseptic conditions by passing the tissue through a 40 µm sterile 
mesh cell strainer (Thermo Fisher Scientific, Barcelona, Spain), as previously detailed72. MLNL counting and 
viability were determined by a Countess Automated Cell Counter (Invitrogen, Thermo Fisher Scientific).

A 0.5 cm portion of the middle part of the small intestine was immediately kept in RNAlater (Ambion, 
Life Technologies, Austin, TX, USA) and stored at − 20 °C until the determination of gene expression of some 
molecules by Real-Time Polymerase Chain Reaction (RT-PCR). The distal part of the small intestine was used 
to obtain GW, as established previously in our laboratory73. Briefly, it was flushed with cold PBS (pH 7.2) to 
remove faecal content, opened lengthwise, cut into 1–2 cm pieces, weighed and incubated with 3 mL of PBS for 
10 min in a shaker at 37 °C (55 shakings × min−1). After centrifugation (538 g, 4 °C, 10 min), supernatants were 
collected and stored at − 20 °C until a1AT and IgA quantification.

SMG and CC homogenates were obtained using a tissue homogenizer (Polytron, Kinematica, Lucerne, Swit-
zerland and Pellet Pestle Cordless Motor, Kimble, Meiningen, Germany, respectively), as described in previous 
studies, and kept at − 20 °C until IgA quantification74.

MLNL phenotypic analysis.  MLNLs (5 × 105 cells) were extracellularly and intracellularly stained by using 
mouse anti-rat monoclonal antibodies (mAb) conjugated to fluorescein isothiocyanate (FITC), phycoerythrin 
(PE), peridinin-chlorophyll-a protein (PercP), allophycocyanin (APC) and brilliant-violet 421 (BV421), as pre-
viously described72. The following fluorochrome-conjugated mAb antibodies were used: FITC-TCRαβ, FITC-
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CD8β, FITC-CD25, PE-CD161a, PE-TCRγδ, PE-CD4, PerCP-CD8α, APC-CD4, and BV421-CD45RA (BD Bio-
sciences, Madrid, Spain) and APC-FoxP3 (eBioscience, Frankfurt, Germany). For extracellular staining, MLNL 
were incubated with saturating amounts of mAb in PBS containing 2% FBS and 0.1% NaN3 (darkness, 4 °C, 
20 min). For intracellular staining, cells previously labelled extracellularly with anti-CD4-PE and anti-CD25-
FITC mAb were treated with Foxp3 fixation/permeabilization kit (eBioscience). Then, intracellular staining with 
anti-Foxp3-APC mAb was carried out (darkness, 4 °C, 30 min), as described in previous studies75. All stained 
cells were fixed with 0.5% p-formaldehyde and stored at 4 °C in darkness until analysis by flow cytometry. A neg-
ative control staining without any mAb antibody and a staining control for each mAb were included. Analyses 
were performed using a Gallios Cytometer (Beckman Coulter, Miami, FL, USA) in the Flow Cytometry Unit of 
the Scientific and Technological Centres of the University of Barcelona (CCiT-UB) and by Flowjo v10 software 
(Tree Star, Inc., Ashland, OR, USA). Changes in lymphocyte phenotype by exercise are represented considering 
the SED group mean value as 1, therefore, all values are expressed as a fold change of the mean value with respect 
to the SED group.

MLNL stimulation and proliferation.  MLNL (105 cells/well) were incubated in quadruplicate in 96-well 
plates (TPP, Sigma-Aldrich, Madrid, Spain) and stimulated or not with ConA (5 µg × mL−1, Sigma-Aldrich) for 
48 h. T cell proliferation was quantified using a BrdU Cell Proliferation Assay kit (MerckMillipore, Darmstadt, 
Germany), according to manufacturer’s instructions. The proliferation rate was calculated by dividing the optical 
density of ConA stimulated cells with the optical density of non-stimulated cells. Changes in MLNL proliferative 
capacity by exercise are represented considering the SED group mean value as 1.

Moreover, after 48 h of incubation, supernatants from ConA-stimulated and non-stimulated conditions were 
collected and stored at − 80 °C in order to evaluate the cytokine production. Supernatants from non-stimulated 
conditions were also used to quantify IgA, IgM and IgG.

Cytokine quantification.  The production of IFN-γ, IL-2, IL-4 and IL-10 was determined in MLNL super-
natants by ProcartaPlex Multiplex Immunoassay (Affymetrix, eBioscience, San Diego, USA), according to the 
manufacturer’s protocol. Data were acquired by MAGPIX Cytometer (Affymetrix) in the CCiT-UB and analysed 
by ProcartaPlex Analyst v1.0 software (Affymetrix). The lower limits of detection were as follows: 3.34 pg × mL−1 
for IFN-γ; 1.82 pg × mL−1 for IL-2; 0.62 pg × mL−1 for IL-4; 6.01 pg × mL−1 for IL-10. The ratio of mean fluo-
rescence intensity (MFI) obtained from cells supernatants under ConA stimulation with respect to the non-
stimulated condition was calculated. Changes in MLNL cytokine profile by exercise are expressed considering 
the SED group mean value as 1.

Immunoglobulin quantification.  The concentrations of IgG, IgM and IgA in MLNL culture superna-
tants, GW, SMG or CC homogenates were quantified by a sandwich ELISA (Bethyl Laboratories Inc., Mont-
gomery, TX, USA). After assay development as previously described76, absorbance was measured on a micro-
plate photometer (Labsystems Multiskan, Helsinki, Finland) and data were analysed by Ascent v.2.6 software 
(Thermo Fisher Scientific, S.L.U, Barcelona, Spain) according to the respective standard curves. The immuno-
globulin content in SMG and CC was normalized by total protein concentration which was measured using the 
Pierce-660 nm ready-to-use Protein Assay Reagent (Thermo Fisher Scientific). Changes in each Ig concentration 
are expressed considering the SED group mean value as 1.

Gene expression in small intestine by real‑time polymerase chain reaction (RT‑PCR).  The 
intestinal expression of occludin, claudin-2, claudin-4, ZO-1, ZO-2, pIgR, TGF-β1, RAR-α and CCL25 was 
assessed in the small intestine. This tissue, kept in RNA later, was homogenized in a lysing matrix tube (MP 
Biomedicals, Illkirch, France) by a FastPrep-24 instrument (MP Biomedicals) for 30 s. Intestinal RNA was then 
isolated with the RNeasy mini kit (Qiagen, Madrid, Spain) following the manufacturer’s instructions. RNA 
quantification and purity were assessed using a NanoPhotometer (BioNova Scientific S.L., Fremont, CA, USA). 
RNA was reverse-transcribed in a thermal cycler (PTC-100 Programmable Thermal Controller, BioRad, Hercu-
les, CA, USA) using TaqMan Reverse Transcription Reagents (Applied Biosystems, AB, Weiterstadt, Germany) 
in order to obtain the corresponding cDNA.

The RT-PCR was carried out in duplicate for each sample using the ABI Prism 7900 HT quantitative RT-PCR 
system (AB) with the following specific PCR TaqMan primers and probes (AB): Ocln (Rn00580064_m1, Invento-
ried, I); Cldn2 (Rn02063575_s1, I); Cldn4 (Rn01196224_s1, I); ZO1 (Rn02116071_s1, I); ZO2 (Rn01501483_m1, 
I); Pigr (Rn00562362_m1, I); Tgfb1 (Rn00572010_m1, I); Rara (Rn00580551_m1,I); and Ccl25 (Rn01403352_
m1, I). SDS version 2.4 software (AB) was used to assess the gene expression. The gene expression of the target 
genes was normalized with respect to the housekeeping genes Gusb (β-glucuronidase, Rn00566655_m1, I) or 
β-actin (Rn00667869_m1, I), depending on their expression level, using the 2-ΔΔCt method77. For Cldn2 and ZO-1 
the gene expression of Gusb was used as housekeeping gene, whereas for the rest of the genes, β-actin expression 
was used. Changes in small intestine gene expression are expressed considering the SED group mean value as 1.

Small intestine permeability.  The concentration of a1AT in GW was assessed as a marker of intesti-
nal protein loss and mucosal permeability. The quantification was performed with the ELISA Kit for rat a1AT 
(Cloud-CloneCorp., Houston, TX, USA) following the manufacturer’s instructions. Absorbance was meas-
ured on a microplate photometer (LabSystems Multiskan) and data were interpolated by Ascent v.2.6 software 
(Thermo Fisher Scientific) according to the standard, which ranged from 500 to 7.8 ng × mL−1. Changes in GW 
a1AT concentration are expressed considering the SED group mean value as 1.



12

Vol:.(1234567890)

Scientific Reports |        (2020) 10:17950  | https://doi.org/10.1038/s41598-020-74837-9

www.nature.com/scientificreports/

Statistical analysis.  Statistical analysis of the data was carried out using IBM Social Sciences Software 
Program (SPSS, version 26.0, Chicago, IL, USA). Variance equality and normality of the data was tested by 
Levene’s and Shapiro–Wilk’s test, respectively. A one-way ANOVA test was applied and, if significant differences 
were detected, Tukey’s post hoc test was performed. Kruskal–Wallis test was used when results were neither 
equally nor normally distributed, followed by Mann–Whitney U test in the case of significant differences among 
groups. The Spearman correlation coefficient was used to assess correlations between the variables analysed 
and the performance achieved. When comparing variables from two groups throughout the study, the repeated 
measures ANOVA test was used to assess whether there was a significant interaction between time (day of study) 
and exercise condition (SED or runner). Once we confirmed there was a significant interaction (p < 0.05 in 
Greenhouse–Geisser test, Huynh–Feldt test and Lower-bound test), we performed the unpaired Student’s t test 
to detect between which days of study the differences between SED and runner rats were statistically significant. 
To compare variables during the study (e.g., maximum time lasted in the exhaustion tests), a repeated-measures 
ANOVA was applied followed by paired Student’s t test. Significant differences were considered when p < 0.05.
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