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Purpose: To assess the ability of pix2pix conditional generative adversarial network
(pix2pix cGAN) to create plausible synthesized Scheimpflug camera color-coded corneal
tomography images based upon a modest-sized original dataset to be used for image
augmentation during training a deep convolutional neural network (DCNN) for classifi-
cation of keratoconus and normal corneal images.

Methods: Original images of 1778 eyes of 923 nonconsecutive patients with or without
keratoconus were retrospectively analyzed. Images were labeled and preprocessed
for use in training the proposed pix2pix cGAN. The best quality synthesized images
were selected based on the Fréchet inception distance score, and their quality was
studied by calculating the mean square error, structural similarity index, and the peak
signal-to-noise ratio. We used original, traditionally augmented original and synthe-
sized images to train a DCNN for image classification and compared classification perfor-
mance metrics.

Results: The pix2pix cGAN synthesized images showed plausible subjectively and
objectively assessed quality. Training the DCNN with a combination of real and synthe-
sized images allowed better classification performance compared with training using
original images only or with traditional augmentation.

Conclusions: Using the pix2pix cGAN to synthesize corneal tomography images can
overcome issues related to small datasets and class imbalance when training computer-
aided diagnostic models.

Translational Relevance: Pix2pix cGAN can provide an unlimited supply of plausible
synthetic Scheimpflug camera color-coded corneal tomography images at levels useful
for experimental and clinical applications.

computational techniques, overcoming issues of imbal-

Introduction

Computer-aided diagnosis (CAD) systems could
potentially complement medical image interpretation
and augment image representativeness and classifi-
cation, reducing workload, and improving diagnos-
tic accuracy in medical examinations,!# but require
large amounts of data for model training. Annotated
training data are scarce and costly to obtain. The
widespread availability of such data may facilitate
the development and validation of more sophisticated
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anced datasets and patient privacy concerns.” ® Tradi-
tional image augmentation techniques are commonly
performed to prevent class imbalance in datasets.
These techniques include various image transforma-
tions, such as rotation, translation, channel split-
ting, etc. Alternatively, generative adversarial network
(GAN), due to its proven ability to synthesize convinc-
ingly realistic images, has been used for image augmen-
tation.” 13

GANs are neural network models in which a genera-
tion network and a discrimination network are trained
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simultaneously. Integrated network performance effec-
tively generates new plausible image samples that are
useful for counteracting the domain shift.” Uncondi-
tional synthesis refers to image generation without any
other conditional information, in which the generator
uses random noise as input and outputs synthetic data
samples.'” However, if auxiliary conditional informa-
tion (most commonly an image) is provided during the
generation process, the GAN can be driven to output
images with desired properties. A GAN, in this case,
is usually referred to as a conditional GAN (cGAN).!!
Isola et al. introduced the pix2pix cGAN framework as
a general solution to supervised image-to-image trans-
lation problems.!? Its generator receives an image from
the input domain and translates it to the target domain
by minimizing the pixel-reconstruction error, as well
as the adversarial loss, fed back from the discrimina-
tor. The discriminator is also tasked with differenti-
ating between the fake output of the generator and
the desired ground-truth output image until reaching
an equilibrium with the generator.'> Keratoconus, a
corneal ectatic disorder, is characterized by progressive
corneal thinning, causing corneal protrusion, irregular
astigmatism, and decreased vision.'* The best current
and widely available diagnostic test to diagnose early
keratoconus is tomography (Scheimpflug or corneal
coherence tomography). These devices can measure
both anterior and posterior corneal surfaces, produce
a corneal thickness map, and reconstruct the anterior
surface.'> The Pentacam rotating Scheimpflug camera
(Oculus, Wetzlar, Germany) can provide optical cross-
sectioning tomography that displays corneal measure-
ment indices in a color-coded fashion: green, yellow,
and light blue indicate near-normal values, and red
and purple indicate the need for caution, typically
in the form of refractive 4-map displays.'® Several
studies have proven the sensitivity and specificity of
keratoconus detection using machine learning.>4!7-13
Recently, deep learning based on the whole image of
corneal color-coded maps obtained with a Scheimpflug
camera was used for accurate discrimination between
normal and keratoconic eyes.'® This emerging research
field may benefit greatly from medical image synthesis,
which can affordably provide an arbitrary number of
sufficiently diverse synthetic images that mimic the real
Pentacam images. This would permit successful train-
ing of a deep-learning network by mitigating the intrin-
sic imbalance in real imaging datasets, which contain
relatively fewer keratoconus and subclinical kerato-
conus images than normal images. Nevertheless, the
pix2pix cGAN has not been used in this context to
date.

We assessed the efficacy of a cGAN implement-
ing pix2pix image translation for image synthesis
of color-coded Pentacam 4-map refractive displays
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of clinical and early keratoconus as well as normal
corneas. The quality of the synthesized images was
attested subjectively and objectively across the differ-
ent generated image classes. The additive value of the
synthetic datasets to manage the shortage of original
keratoconus images was assessed by monitoring the
classification performance, of a DCNN after training
using synthetic, original images with or without tradi-
tional image augmentation techniques or combinations
of both. We also provided a plausible conventional
annotated version of the synthesized images for added
value in clinical applications.

Patients and Methods

Study Population

This study followed the tenets of the Declaration
of Helsinki, in compliance with applicable national
and local ethics requirements. The institutional review
board of Assiut University Hospital approved this
single-center retrospective analysis and waived the
need for patient consent. High-quality corneal Penta-
cam Scheimpflug (Pentacam HR, Oculus Optikgerite
GmbH, software V.1.15r4 n7) images of 1778 eyes
of 923 nonconsecutive, refractive surgery candidates,
and patients with unilateral or bilateral keratoconus,
obtained between July 2014 and March 2019, were
independently analyzed by two experienced corneal
specialists (H.A. and K.A; 8 years’ experience). Facil-
itated by anonymized clinical examination charts, the
anonymized images were classified into keratoconus
(K), early keratoconus (E), and normal (N) groups,
using the following criteria: keratoconus group (K),
those with a clinical diagnosis of keratoconus such
as a) the presence of a central protrusion of the
cornea with Fleicher ring, Vogt striae, or both by
slittamp examination or b) an irregular cornea deter-
mined by distorted keratometry mires and distortion
of retinoscopic red reflex or both. In addition, the K
group includedthe following topographic findings as
summarized by Pifiero and colleagues:?° focal steep-
ening located in a zone of protrusion surrounded by
concentrically decreasing power zones, focal areas with
diopteric (D) values > 47.0 D, inferior-superior (I-
S) asymmetry measured to be > 1.4D, or angling
of the hemimeridians in an asymmetric or broken
bowtie pattern with skewing of the steepest radial axis
(SRAX). Early keratoconus group (E) was defined as
subtle corneal tomographic changes as the aforemen-
tioned keratoconus abnormalities in the absence of
slit- lamp or visual acuity changes typical of kerato-
conus. Normal group (N) comprised refractive surgery
candidates and subjects applying for a contact lens



translational vision science & technology

Pix2pix Networks for Scheimpflug Cornea Tomography

fitting with a refractive error of less than 8.0 D sphere
with less than 3.0 D of astigmatism and without clini-
cal, topographic, or tomographic signs of keratoconus
or early keratoconus. After classification, the labeled
images were then reviewed by a third party (A.A.), who
identified images with conflicting labels and adjudi-
cated their classes by consensus.

Image Dataset Preprocessing Pipeline

The original dataset comprised 1778 Pentacam 4-
maps of refractive display images. Three-hundred-and-
four images were classified as clinical keratoconus (K),
584 images as early keratoconus (E), and 890 images
as normal (N). All image preprocessing was performed
using Python imaging library. All images were cropped,
keeping only a square composite image showing the 4-
maps without the color-scale bars. Then, images were
scaled to 512 x 512 pixels and saved. To remove the
background outside the 4-maps, the images were pasted
over a gray 512 x 512 background with an interven-
ing third parameter black mask image containing white
circles overlapping the four circles of the 4-map display
image, to present the 4-maps over a homogenous gray
background. All images were then denoised to remove
numeric and spatial landmark overlays, leaving only
the color codes by iterating over black then white pixel
values consecutively replacing the thresholded pixel
values with the average value of the nearest neighbor-
ing pixels using a Python script. This obviated the use
of conventional filters that produce a blurry image with
loss of information. At this stage, we isolated a set
of randomly chosen 90 images representing each class
equally (30 images from each class) to be used as the test
set for the classification DCNN. The remaining images
(original training set) were used for class-wise training
of the pix2pix cGAN and further training/validation
of the classification DCNN. Figure 1 depicts image
preprocessing steps.

Image Synthesis

Pix2pix cGAN Architecture

Pix2pix is a type of cGAN, where the generation of
the output image is conditional to an input (source)
image. The network is made up of two main pieces,
the Generator, and the Discriminator. The generator
transforms the input image to get the output image.
The discriminator measure the similarity of the input
image to an unknown image (either a target image from
the dataset or an output image from the generator) and
tries to guess if this was produced by the generator.
The generator is updated to minimize the loss predicted
by the discriminator for the generated images.!! To
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deal with overfitting, the generator is never shown the
training dataset clearly, instead dropout layers used
during both training and prediction act as the source
of randomness with the generator guided by the loss
functions throughout training progress.'?

The Generator

The generator is an encoder-decoder model using a
U-Net architecture’’ The model takes a source image
and generates a target image. It does this by first
downsampling or encoding the input image down to
the bottleneck layer, then upsampling or decoding the
bottleneck representation to the size of the output
image. The U-Net architecture does not have any fully
connected layers, which are replaced by upsampling
operators with added skip connections between each
convolutional layer.

The Discriminator

The discriminator network design is based on the
effective receptive field of the model, which defines the
relationship between one output of the model to the
number of pixels in the input image. This is called a
PachGAN architecture that maps each output predic-
tion of the model to a 70 x 70 square patch of the input
image (the patches overlap a lot since the input images
are 512 x 512). The benefit of this approach is that the
same model can be applied to input images of differ-
ent sizes, for example, larger or smaller than 512 x 512
pixels.

Loss Function

The discriminator model can be updated directly,
whereas the generator model must be updated via the
discriminator model. This can be achieved by defin-
ing a new composite model that uses the output of the
generator model as input to the discriminator model.
This composite model involves stacking the generator
on top of the discriminator. The generator is updated
to minimize the loss predicted by the discriminator
for the generated images marked as “original.” As
such, it is encouraged to generate more realistic images.
The generator is also updated to minimize L1 loss or
mean absolute error between the generated image and
the target image. This is accomplished by using the
weighted sum of both the adversarial loss from the
discriminator output and the L1 loss (100 to 1 in favor
of L1 loss) to update the generator. This weighing
encourages the generator strongly towards generating
more realistic translations of input images in the target
domain. We implemented the model architecture and
configuration proposed by Isola et al.,'”> with minor
modifications needed to generate color images of
512 x 512 pixels using Keras 2.3.1 and Tensorflow
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Figure 1.
overlay. E) denoising white maps overlay.

2.0.0 libraries.”!-?> The proposed model architecture is
illustrated in Figure 2.

Pix2pix cGAN Training

Three identical pix2pix cGAN models were trained
using all available images of each class (after exclud-
ing the test set as described). The preprocessed images
of each class were loaded as randomly paired images
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Image preprocessing pipeline: A) anonymized raw image. B) cropped image. C) background cleanup. D) denoising black maps

for the source and corresponding target images. The
loaded image pairs are scaled so that all pixel values
are between —1, +1 instead of 0, 255. Typically,
GAN models do not converge, instead, an equilib-
rium is found between the generator and discrimi-
nator.” Thus, we cannot easily judge when training
should stop. Therefore, we saved the model with its
weights regularly during training iterations to be used
to generate sample images for quality assessment. This
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Figure 2. A simplified plot of the proposed composite pix2pix model outlining its main components and workflow (created by Hazem
Abdelmotaal). 1: generated image. 2: discriminator loss (D = 0.5 x discriminator cross-entropy loss). 3: adversarial loss. 4: composite loss
function (generator loss = adversarial loss + lambda (10) x L1 loss). L1 loss = mean absolute error between the generated image and the

targetimage.

allowed selecting the best model weights that allow for
generating the best quality images. Model weights were
initialized via random Gaussian with a mean of 0.0
and a standard deviation of 0.02. Adam (Adaptive
moment estimation) optimizer version of stochastic
gradient descent’* with a small learning rate of 0.0002
and modest momentum (first momentum term (8;)
= 0.5 and second momentum term (8,) = 0.999). As
the training of the discriminator is too fast compared
to the generator, the loss for the discriminator is
weighted by 50% for each model update to slowdown
the discriminator training (discriminator loss = 0.5 x
discriminator loss). The number of training iterations

(epochs) was set at 200 with a batch size of 1. The
generator was saved every 10 epochs. Consequently,
we obtained 20 saved generator model files with their
weights.

Selection of Synthesized Images With the
Best Quality

As training progresses the generated image quality
is expected to improve, however, more training epochs
does not necessarily mean better quality images. In
fact, image quality may fall by further training after
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reaching optimum quality in earlier epochs. So, a final
generator model can be chosen based on generated
image quality, not total training epochs. Therefore, we
can choose a model based on the quality of the gener-
ated images. This can be accomplished by loading each
model and making ad hoc translation of source images
in the training dataset for subjective or objective assess-
ment.”

To select the generator epoch that produced the
best image quality, we used the Fréchet inception
distance (FID) score,”® which is a metric that calcu-
lates the distance between feature vectors calculated
for original and generated images. The score is calcu-
lated using the Inception V3 model used for image
classification. It specifically uses the coding layer of
the model (the last pooling layer before the output
classification of images) to capture computer-vision-
specific features of an input image. These activations
are calculated for a collection of original and generated
images. The activations are summarized as multivariate
Gaussian by calculating the mean and covariance of
the images. These statistics are then calculated for the
activations across the collection of original and gener-
ated images. The distances between these two distri-
butions are then calculated using the Fréchet distance,
also called the Wasserstein- 2 distance. A higher score
indicates lower quality images, conversely, a lower score
indicates that the two groups of images are more
similar, and the relationship may be linear. A perfect
score of 0.0 indicates that the two groups of images are
identical.

We used the FID score to select the best gener-
ator epoch for each image class to avoid bias intro-
duced by subjective evaluation. Also, differences in
image quality produced by the generator during succes-
sive training epochs may be undetectable by the human
eye, even with experienced observers. The best model
generators with weights that produced the best synthe-
sized image quality per class were employed for image
synthesis, and the synthesized image quality was evalu-
ated subjectively and objectively.

Subjective Visual Quality Evaluation

One hundred and fifty synthesized images represent-
ing each image group equally were visually evaluated
for global consistency and image content by the same
experienced corneal specialists (H.A. and K.A.) who
classified the original dataset. They subjectively evalu-
ated the overall quality of images on a scale of 1to 5 (1
= excellent, 2 = good, 3 = normal, 4 = poor, and 5 =
very poor). The quality of the original images was used
as the standard for score 1.
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Objective Evaluation Metrics for Synthesized
Images

To objectively assess the synthesized image quality,
all per-class images obtained from the selected model
generators were quantitatively evaluated using the
mean square error (MSE), structural similarity (SSIM)
index, and the peak signal-to-noise ratio (PSNR).?>?
The MSE represents the cumulative squared error
between the synthesized and original images. The SSIM
index measures the structural information similarity
between images, where 0 indicates no similarity and
1 indicates complete similarity. The PSNR measures
image distortion and noise level between images; a
higher PSNR value indicates higher image quality.’

Evaluation of Classification Performance

Deep neural networks trained with a combination
of real and synthesized images have a potential advan-
tage over networks trained with real images alone,
including a larger quantity of data, better-diversified
datasets, and preventing overfitting.

Classification Network Structure

To gauge the performance gains obtained by
employing pix2pix cGAN-based image augmenta-
tion, we benchmarked the images synthesized by the
employed algorithm using the VGG-16 network. The
VGG-16 (also called OxfordNet) is a convolutional
neural network that is 16 layers deep named after
the Visual Geometry Group from Oxford, who devel-
oped it. It was used to win the ImageNet Large Scale
Visual Recognition (iLSVR) Challenge in 2014.”® The
VGG-16 is widely employed in several medical image
classification tasks. The pretrained VGG-16 DCNN
with ImageNet weights was used and customized for
image classification. After modifying the input tensor
shape of the top dense layer, thereby forcing the
model to accept the shape 512 x 512 of the input
images, the last classifying layers of the model were
truncated and replaced by a flattened layer followed by
two fully connected layers (64 nodes- dense 1 and 2)
separated by a dropout layer and followed by a final
fully connected (3 nodes- dense 3) layer with softmax
activation adapted to output the three image classes.
The model architecture is shown in Figure 3. The model
was initialized with ImageNet weights. Model hyper-
parameters were fine-tuned manually searching for the
best values of momentum, dropout rate, and learn-
ing rate that fit with various input data instances. This
entailed using a first momentum term (B;) between 0.9
and 0.6 with the default second momentum term (3;)
= 0.999. The learning rate was reduced by a factor
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Figure3. The proposed custom VGG-16 model architecture used for 512 x 512 pixel image classification (created by Hazem Abdelmotaal).
Conv2D = convolution layer 4+ ReLU activation; Dense 1, 2 = fully connected layers + ReLU activation; Dense 3 = fully connected layer +

Softmax activation.
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Figure 4. The number of samples per training dataset. BO:
balanced original dataset; BS: balanced synthesized dataset; 10:
balanced original dataset; IOA: imbalanced original dataset with
traditional augmentation; IOFS: Imbalanced original dataset fully
augmented with synthesized images; IOPS: imbalanced original
dataset partly augmented with synthesized images; E: early kerato-
conus images; K: keratoconus images; N: normal cornea images.

of 0.2 when validation loss stops improving for three
epochs with a lower bound of learning rate = 0.001
to prevent increasing loss at high learning rates with

a subsequent drop in accuracy. The dropout rate used
ranged between 0.1 and 0.3.

Training Datasets

We trained the aforementioned classifier using six
different combinations of the original training set and
synthesized 4-map refractive display images (Fig. 4).

1. Balanced original dataset (BO): A balanced
version of the original training image samples,
where the number of 4-map refractive display
image samples per class was set to the maximum
number of available original training image
samples in the least represented class (K).

2. Imbalanced original dataset (10): All available
original training image samples were used.

3. Imbalanced original dataset with traditional
augmentation (10A): All available original train-
ing image samples were augmented by artificially
increasing their number using traditional image
augmentation, by slight rotation, width-shift,
height-shift, and scaling, without using vertical
or horizontal flip, to avoid unrealistic image
deformation.

4. Imbalanced original dataset partly augmented with
synthesized images (IOPS): A concatenation of
all available original training and augmented



translational vision science & technology

Pix2pix Networks for Scheimpflug Cornea Tomography

synthesized images in E and K classes, to enlarge
the number of image samples to equal the
maximum number of available original training
images in the most plentifully represented class
(N).

5. Imbalanced original dataset fully augmented with
synthesized images (IOFS): A concatenation of
all available original training and augmented
synthesized images in all classes to enlarge the
number of image samples per class to twice the
maximum number of original training images in
class N.

6. Balanced synthesized dataset (BS): A balanced
version of 3000 synthesized images representing
each class (total 9000 images) was used for train-
ing without using the original training dataset.
As the pix2pix model outputs images with 512
x 512 resolution, no rescaling of synthesized
images was needed before combining with origi-
nal images. During training, we used a 0.3 valida-
tion split, which is the fraction of the train-
ing data to be used as validation data.”” The
model will set apart this fraction of the train-
ing data, will not train on it, and will evaluate
the loss and any model metrics on this data at
the end of each epoch. Class weights were fed to
the model, therefore, imposing a cost penalty on
the minority class misclassification. These penal-
ties ask the model to pay more attention to
minority classes preventing the model from being
biased toward the majority class. The number
of training iterations (epochs) was set to 10.
The model was implemented using Keras 2.3.1
and TensorFlow 2.0.0 libraries.”’-?> Each trained
model was used for the classification of the test
set only once, and classification metrics were
recorded.

Performance Metrics

The VGG-16 classifiers’ performance on the test
set was analyzed, based on model accuracy, precision,
recall, F1 score, and receiver operating characteristic
curve (ROC) analysis.*

Synthesized Image Annotations

To obtain synthesized 4-map refractive display
images with a realistic appearance, we used an image
annotation algorithm for automated input of numer-
ical and landmark overlay using Python imaging
library. This essentially sought to reverse changes made
during original image preprocessing to yield synthe-
sized images with a realistic appearance that could be
used for other research and clinical training purposes.
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Firstly, the synthesized images were concatenated with
a squared background template containing all image
features outside the four circles containing the maps.
Then the numeric annotations were printed guided
by automated matching of the synthesized map pixel
values and the values of the relevant color scale at the
same conventionally selected points in each map. The
corneal pachymetric apex was marked by an opaque
white circle, the corneal thinnest location was marked
by a transparent black circle, and the maximum curva-
ture power on the front of the cornea (K-Max (front))
was marked by the conventional white opaque verti-
cal rhombus. All these landmarks were also calculated
from the synthesized color codes. Landmarks outlining
the pupil were fake circles chosen at random diame-
ter between 3 and 6 mm printed in all four maps
with a central striped cross indicating the presumed
position of the pupil center. One hundred and fifty
synthesized annotated images representing each image
group equally were randomly chosen and shuffled
with an equivalent number of original images and
presented to different experienced corneal specialists
(A.F. and D.E), and they were asked to classify the
images as real and fake. Another class-balanced synthe-
sized annotated dataset comprising 150 images was
supplied to the same readers for classification into
keratoconus, early keratoconus, and normal classes
and inter-rater agreement was estimated. Also, readers
were asked to report the overall quality scores of the
synthesized annotated images compared to original
unprocessed images in the same 1 to 5 score used
before.

Statistical Analysis, Computer Hardware, and
Software

All statistical analyses were performed using SciPy
(scientific computing tools for Python) and scikit-learn
(version 0.21.3).3! Scikit-learn is a Python module
for machine learning built on top of SciPy. Patient
data are presented as means and standard deviations.
Analysis of variance was used to compare means of
image group metrics. The Mann-Whitney U test was
used for the analysis of the means of the five-point
assessment score given by the two readers, and P
< 0.05 was considered significant. Inter-rater agree-
ment was estimated with Cohen’s k. Model perfor-
mance was assessed by estimating precision, recall,
F1 score, accuracy, and ROC curve. The one-versus-
all approach was applied to extend the use of ROC
curves into three classes (each class was taken as
a positive class while the other two classes were
jointly considered as the negative). Deep-learning
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computations were performed on a GPU composed
of a personal computer with a GeForce RTX 2060
SUPER graphics card powered by an NVIDIA Turing
architecture with a CUDA 11.0.126 drive.

Table 1 summarizes the characteristics of the study
population. Inter-rater agreement for classification
of original dataset was 0.92 (Cohen x 0.86). This
trivial ground-truth label noise ensured the presence
of robust characteristics that the pix2pix cGAN can
use for the class-specific style transfer in the synthe-
sized images. Also, these clear characteristics facili-
tate feature extraction by the classifier during VGG-16
training.
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Dataset Preprocessing

After preprocessing the original image dataset, we
obtained 304 class K, 584 class E, and 890 class
N images. The process of removing the background
annotation noise was not quite successful, with
the maps still exhibiting noticeable salt and pepper
background noise. However, this noise can act as a
source of data augmentation later when these images
are used for assessment of VGG-16 classification
performance to ensure that the model can learn robust
representations. We randomly selected 90 images from
the original dataset representing each class equally (30
images per class). These images were set apart to be
used as the test set for the classification DCNN. The
remaining images (274 class K, 554 class E, 860 class
N) were used as the training set for class-wise training

Table 1. Characteristics of the Study Population

Parameter Keratoconus Early Keratoconus Normal
Subjects/eyes (n) 158/304 303/584 462/890
Age (y) 29.7 + 2.2 303 + 2.8 333 £ 8.1
Kflat (D) 4595 + 6.6 4382 + 3.8 42,02 +£ 24
Ksteep (D) 49.28 £+ 6.5 4592 4+ 2.6 4446 + 1.6
Astigmatism (D) 3.50 + 3.25 1.50 £ 0.75 1.25 £ 1.50
TCT (um) 423.45 4+ 635.84 495.56 + 23.80 536.66 + 44.32
| - S value (D) 482 + 2.86 0.06 + 0.34 0.96 + 1.06

4.0

35

3.0
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Figure 5.

| - S value = inferior- superior asymmetry; K ;o = keratometric power in the flattest meridian, K .., = keratometric power
in the steepest meridian; TCT = thinnest corneal thickness. Data are given as mean = standard deviation.
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Figure 6. The Fréchet inception distance (FID) score changes during training. The arrows point to the epochs (training iteration) with the

best-generated image FID score per class.

of the pix2pix ¢cGAN and further training/validation
of the classification DCNN.

Pix2pix cGAN Training and Generator
Selection

Pix2pix ¢cGAN training for 200 epochs took on
average 12 hours for each class. The saved trained
generators were used to synthesize image samples. The
FID score was calculated for images obtained by each
of the 20 saved generators per image class. FID scores
tended to improve with training progress (Fig. 5);
however, the best FID score was reached at the 15%
epoch for the class K image generator, at the 16" epoch
for the class E image generator, and at the 20" epoch
for the class N image generator. Training of K and
E image generators beyond this point produced lower
FID scores, highlighting the importance of this metric
for defining the best generator epoch for image synthe-
sis. These generators were selected for further per-class
image synthesis in the study.

Subjective Image Evaluation

Figure 6 shows some samples of synthetically gener-
ated images. The images were globally consistent
because the model learned to introduce visual content
only in the four circular fields of the maps. The color
code distribution also shows high plausibility. It is
noticeable that the black and white background noise
present in the original preprocessed images almost
disappeared in the synthesized images meaning that the
model could identify these artifacts as irrelevant during
learning, effectively excluding them in the synthe-
sized images. Compared with the preprocessed origi-
nal image in Figure 1, we can see that these generated
output images are visually close to real ones. In the
five-point assessment of the overall image quality, the
mean of the scores given by the first reader was 2.24 +
0.44,2.96 + 0.98, 2.78 4+ 0.70, and by the second reader
2.08 £ 0.62, 2.56 £+ 0.20, 2.16 = 0.92 for the K, E, and
N classes synthesized images, respectively. This reflects
the good quality of synthesized images in all classes.
There was no significant difference between classes’
average scores given by both readers (P = 0.0921,
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Figure 7. Box-plot of peak signal-to-noise ratio, structural similarity index, and mean square error between the generated image sample

and equivalent sample of all available original images. Images were synthesized by best generator performance according to the best Fréchet
inception distance score. The notches in the box-plot represent the confidence interval around the median. The mean is marked by a triangle.

E = early keratoconus; K = keratoconus; N = normal cornea.

P =0.395 P=0477 for K vs. E, K vs. N, and E vs.
N, respectively). This reflects that the models generated
class-specific features efficiently.

Objective Image Evaluation Metrics

All available original preprocessed training image
samples in each class were used for pairwise compar-
ison with an equivalent number of synthesized images
of the same class by calculating the PSNR, SSIM, and
MSE. As all the quality scores had a normal distribu-
tion according to the Kolmogorov—Smirnov test, data
were expressed as mean + standard deviation (Fig. 7,
Table 2). The generated class E images had the least
distortion and noise and had the maximum positive
similarity to their corresponding original counter-
parts. However, the PSNR and SSIM metrics did
not differ significantly among image classes by one-
way ANOVA (F = 36.858, P = 1.06; F = 76.051,
P = 4.66, respectively). The average SSIM for all
synthesized images was 0.66 4 0.05, with a maximum
value of 0.82, confirming that our model generalized
properly and did not trivially memorize the training set
samples.

Classification

We assessed the performance of the VGG-16
DCNNs trained on six different combinations of origi-
nal and synthesized images in the classification of
the test set. Model accuracy, precision, recall, and F1
score are presented in Table 3. Plots of the corre-
sponding training and validation accuracy/loss scores
and ROC curves for the classification of the test set
are presented in Figure 8. The use of synthesized
images during training increased classification perfor-
mance, supporting their use for augmenting training
sets. Additionally, balancing the training set appeared
to have minimal value in improving classifier perfor-
mance, as compared to the overall increase in the train-
ing dataset volume, with the best results obtained by
integrating the two techniques. ROC plots showed that
adding synthesized images to the training set could
improve the trade-off between false-positive and true-
positive rates during the classification of the test set.
Furthermore, average per-class precision, recall, and
F1 score values showed that N images were easier to
classify, while differentiation between K and E images
was more challenging. F1 scores for class K classi-
fication of the test set were reduced when shifting
from training using the BO dataset to the IO dataset,
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Table 2. Characteristics of Generated Image Samples Compared to an Equivalent Sample of All Available Original
Images. Images Were Synthesized by Best-Selected Generators, Guided by the Fréchet Inception Distance Score of
Their Generated Images.

Image Class PSNR SSIM MSE

Keratoconus 12.87 =+ 149 0.74 £+ 0.04 1707719 £+ 17250.6
Early keratoconus 1037 £ 1.05 0.66 £+ 0.03 197984.3 + 13525.1
Normal 11.48 + 1.75 0.71 £ 0.04 187569.6. + 14085.4
All Classes 10.78 + .1.45 0.66 + 0.05 184855.1 + 20210.4

Note that the standard deviation is calculated as the population standard deviation (PSD), not the sample standard deviation
(SSD), representing the total variance rather than the sample image variance.

MSE = mean square error; PSNR = peak signal-to-noise ratio; SSIM = structural similarity index data are given as the mean
= standard deviation.

Table 3. Classification Accuracy, Precision, Recall,and F1 score of VGG-16 Model, for the Test Dataset After Training
Using Each Image Combination. Results Are Shown After Normalization

Training Dataset Image Class Precision Recall F1-Score Accuracy (%)
Keratoconus 0.93 1.0 0.96

BO Early keratoconus 1.0 0.92 0.96 97.33
Normal 1.0 1.0 1.0
Keratoconus 0.93 0.84 0.88

10 Early keratoconus 0.92 0.97 0.94 95.87
Normal 1.0 0.99 0.99
Keratoconus 0.97 0.42 0.58

IOA Early keratoconus 0.49 0.57 0.53 64.89
Normal 0.68 1.0 0.81
Keratoconus 0.99 0.98 0.98

IOPS Early keratoconus 0.98 0.99 0.99 98.67
Normal 0.99 1.0 0.99
Keratoconus 0.99 1.0 0.99

IOFS Early keratoconus 0.99 0.99 0.99 99.56
Normal 1.0 1.0 1.0
Keratoconus 1.0 0.99 1.0

BS Early keratoconus 0.99 1.0 1.0 99.78
Normal 1.0 1.0 1.0

BO: balanced original dataset; BS: balanced synthesized dataset; 10: unbalanced original dataset; IOA: imbalanced original
dataset with traditional augmentation; IOFS: unbalanced original dataset fully augmented with synthesized images; IOPS:
unbalanced original dataset partially augmented with synthesized images.

despite using the same number of original class K
images during training, mostly due to lower recall
and reflecting the impact of class imbalance. Tradi-
tional augmentation performed worst, with the model
failing to identify E images better than random guess-
ing, highlighting the limited usefulness of traditional
augmentation techniques for color-coded images with
precise spatial structural content. The model trained
solely on 9000 synthesized image datasets outper-
formed the models fed by other, less-plentiful image
combinations. Additionally, model overfitting during
training/validation was observed with relatively smaller

training dataset domains and was the main cause of
the need for hyperparameter fine-tuning during train-
ing phases.

Automated Annotation Algorithm

The generated images were copied, and an
automated annotation algorithm was used to give them
a conventional, clinically useful appearance. Figure 9
shows some randomly selected samples of syntheti-
cally generated images after annotation. Numerical
values and positions of markings are plausible and



translational vision science & technology

Pix2pix Networks for Scheimpflug Cornea Tomography

TVST | June 2021 | Vol. 10 | No. 7 | Article 21 | 13

BO training accuracy/ Loss

BO - ROC curve

| P o i LTS
\ r - R
\ - sassRRRARY
\ o ‘Jl-" A e o
\ —— - ¥ | . ¥ A
\ \ 8 o ”~
\ s 4 L
\ g ol o’ o
\ . s s
b { e 04
o) -~ ey
} oo s meage KO O e = 8 W 1 " e ROC Guree Gawe = O W
! o o e MOC G s = 8980 N T oy
el e ROC Curvn of s 8 aona = & 94 ¥ BOC Gurvs of Cast 3 avwa = 0 %)
o wic o OC Gwren o s § (e = © W9 be BOC cwrvm of Chans § Gwa = 3 99
“ -~ e WOC Curn o e 3 (ne = © Y9 e e WO Curvn o ot T Gaee = 3 99

BO - ROC curve (upper left corner)

—mesy

o o aernge W Crve wee = O Y
4e mecmavage MOC O fees = 3

afsssscccccssypommme

.”’:‘:f‘,'... .........

" n O aeage BOC turen (wee = © W9
o0 mamaeage BOC Curen (wwa = O 90

e, N e A o RO Corve of chunt § (e = 4 9% RO curvn of clans © (wewe = © W9
UL e N — P RO G of oot & (aoa = & 99 ROC curve of Cnes | (wons = & %
wd oot — e e WO Curn of Cont 2 (wwe = 100y BOC cwrwe of Cess 3 laens = 1 00

10 - ROC curve (upper left corner)

10 - ROC curve

10A - ROC curve

e
, — e
\ Lesrrasassssasnanestielaae
X7 -~ et
L P
\ -
\ -
\ -
\ o
\ -
' N o .~
N\ o —— O G e = 8 T o mo averagn SOC curve lawe = 8 7T)
L e o aveagn MOC curvn lwws = 8 1) w s avage BOC duren lwwe = 0 170
- RO v o s § G = 8 W ROC Curve oF Ces 8 fama = & 30
L ROC Guren oF s § G = 0540 RO Ourve oF Coss § lame = & 34
ol ot BOC e oF s 3 v = © 54 ROC cwrve of Cans 3 avne = § B0y

10A - ROC curve (upper left corner)

I0A training accuracy/ Loss

B
r o~

o wvwagn MOC curve e = 100
ew e i s WO furvn (e = | 504

10PS - ROC curve

S ——
e
¥

oo o avrage ROC Curve (wws = | 00
5 s avnge BOC Guren e = § 004

essmeanarrry

- - ROC Gurve oF Cown © Jawa = 3 008 WOC Curvn of G © (wwa = 1 000
e o ROC Gurvn o O 3 Javws = 3000 RO G of O L (wws = 1 00y
-t - BOC awrve of chn 3 bwwe = 5 00 RO (urvn of s 3 (s = 1 009

I0PS - ROC curve (upper left corner)

IOPS training accuracy/ Loss

£ poch

IOFS training accuracy/ Loss

I0FS - ROC curve

P P ———————
e —— o At
\ - P 3
\ / { -~ g
-~ s/
‘ o $ 7
\ - s/
\ e f
“< \ '.l ~ - e
\ \ -~ |
« u - avnge BOC cwren Gwws = § 00 ;’ o o average BOC curve faes = | 000
el oo i e WO (e S = 000 J o n et sverags BOC cwrvs wwe = § 08}
-_— -~ SO cwrve of Cans § (wns = | 00 4 BOC wrve of chans § fasms = | B
N e e, s BOC crve of o | (a1 of ROC cwrve of chows | fome = 1 869
-._x — o SOC Curve of Cwes 2 lns = &% - « WO Curve of st 7 Lasen = & ¥

IOFS - ROC curve (upper left corner)

BS training accuracy/ Loss

 Rate

BS - ROC curve

— — Yoo
— ’,’ .
- .
-
d"
o
- -
A g
-
e
° PP
\ o arage BOC curve Gwve = |00 B e L
Pon ae e average KOG e fes = 1 961 o S avenge SO Gurve Gama = 3 00
- e e BOC cwrvn oF Coe § lavne = 1 001 BOC (wve of closs © Gwwe = § 009
- N ()< s BOC Curve of s | (e = 1 084 BOC curwe of o | (wws = 100
— -t — / > = \ e BOC wrve of O 7 (wma = 1 00 ROC (wrwn of s 3 Gvwa = 1 000

BS - ROC curve (upper left corner)

Figure 8. Plots of receiver operating characteristic (ROC) curves for test set classification and the corresponding accuracy/loss scores during
the training/validation process by each dataset combination. During training, the accuracy increases, while the loss, representing the error,
decreases. The one-versus-all approach was applied to extend ROC curve use in this 3-class problem, in which each class is considered a
positive class while the other two classes are jointly considered as the negative class. Class 0 = keratoconus, class 1 = normal, class 2 =

early keratoconus. The right-side plots are close-up views of the upper left corner of the graph. BO: balanced original dataset; BS: balanced
—
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synthesized dataset; 10: imbalanced original dataset; IOA: imbalanced original dataset with traditional augmentation; IOFS: imbalanced
original dataset fully augmented with synthesized images; IOPS: imbalanced original dataset partly augmented with synthesized images.
Micro-average ROC curve = the precision (true positives [TP]/ TP + false positives [FP]) from the individual TP and FP of each class (precision-
micro = TPO + TP1 + TP2 / TPO + TP1 + TP2 + FPO + FP1 + FP2). Macro-average ROC curve = the average precision of the three classes

(precision-macro = (precision 0 + precision 1 + precision 2)/3).

Figure 9.

Examples of annotated synthetic images.

can aid human classification performance. Inter-rater
agreement for original/synthetic image discrimination
was 0.42 (Cohen x 0.18), indicating slight inter-rater
agreement; this implies that the original and synthe-
sized annotated copies are fairly similar. Inter-rater
agreement for classification of the synthesized dataset
was 0.90 (Cohen « 0.84); this implies that the synthetic

images contained robust characteristic features allow-
ing for accurate classification by human readers. In the
five-point assessment of the overall synthetic image
annotation quality, the mean of the scores given by the
first reader was 1.74 £ 0.55, 2.22 £ 0.12, 2.00 & 0.64,
and for the second reader 2.28 & 0.94, 3.16 + 0.20,
2.50 + 0.80 for the K, E, and N synthesized images
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classes, respectively. This reflects the good quality of
the annotation algorithm.

Discussion

The present study showed that applying the pix2pix
¢GAN to color-coded Scheimpflug corneal maps can
efficiently generate images with plausible quality in
N, K, and E classes. To date, no previous study has
reported the use of the pix2pix ¢cGAN in this type
of image translation task. The basic pix2pix frame-
work has been used for medical image denoising, recon-
struction, or segmentation, rather than for amplify-
ing the original dataset.*>-33 Although the background
annotation noise can easily be avoided by export-
ing Pentacam data from the beginning, rather than
using screenshots, we preferred to utilize the more
commonly used conventional annotated images to
facilitate retrospective studies of stored images by
interested researchers and allow comparison between
ground-truth annotated images and their synthe-
sized annotated counterparts. Fujioka et al. demon-
strated that, with increasing epoch number, the final
image quality increased. However, they postulated that
overlearning may occur if learning extended beyond
the ideal number of learning iterations.** Previous
studies used subjective scores by experienced raters
to select generator epochs producing the best image
quality.>®3 However, this method may introduce
bias, due to inter- and intraindividual rater varia-
tions. We used the newly developed FID score as an
objective metric to gauge the generated image quality
after each learning iteration, instead of relying on
human observers. We confirmed that continuing learn-
ing beyond the optimal epoch can result in a lower-
quality image-generating performance. Our method
could provide synthetic Pentacam corneal tomography
images with plausible subjective and objective qualities
in keratoconus, early keratoconus, and normal cornea
domains, comparable to other studies implementing
pix2pix networks for other image datasets.”® Yu et
al. documented better PSNR and SSIM when using
the pix2pix framework than the CycleGAN.>*¢ We
also postulate that unpaired training with the Cycle-
GAN does not have a data fidelity-loss term; there-
fore, preservation of small abnormal regions during
the translation process is not guaranteed. Rozema et
al.’7 used a stochastic eye model to generate realis-
tic random Gaussian distortions, which were superim-
posed on the anterior corneal surface to simulate statis-
tical and epidemiological properties of keratoconus.
Their model was capable of generating an unlim-
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ited number of keratoconus biometry sets. However,
parameter reduction in their model comes at the
expense of information loss which reduces parame-
ter variability. This modeling is different from our
approach, which maps high-dimensional images into
a latent space where high-level features are extracted
from individual pixels. This latent space is used to
morph original images into new analogous images
under constraints imposed by the loss functions and
the source image domain. This permits unlimited
synthesis of convincingly realistic and phenotypically
diverse images that retain high-level feature similar-
ity. In DCNNS, there is always a trade-off between
the training dataset size, model complexity, nature
of the data, and performance.” Our results showed
that increasing the training dataset size with synthe-
sized images resulted in robust classification perfor-
mance and decreased model overfitting, improving the
network’s generalizability to unseen test data, consis-
tent with other studies using different datasets.” In
our dataset, traditional augmentation resulted in poor
classifier performance, possibly due to the introduction
of inconvenient spatial variance, which may prevent
the classifier from identifying the most influential
image pixels, resulting in model underfitting. This was
inconsistent with the findings of other studies’-!-3
using different datasets and more training iterations
and hyperparameter modulation. Another perspective
could be that with traditional augmentation strategies,
the abnormality classifier may find it relatively difficult
to approximate the noise function in augmented images
as compared to approximating the image features
generated by GAN. In this respect, GANs provided a
more generic solution. However, as we used a limited
number of training iterations with no remarkable
changes to the model architecture, further analysis is
required to interpret the performance of the VGG-16
classifier, which was beyond the scope of our research.
We demonstrated the model overfitting to the smaller
training datasets and the limited value of implement-
ing class weights during training to counteract the class
imbalance. These findings strongly support the useful-
ness of the pix2pix cGAN for data augmentation,
providing instantaneous high-quality synthetic images
of the required amount. The overall subjective evalua-
tions of the synthesized images of all image classes were
promising. The presence of artifacts may be partially
due to the low amount of data and the transposed
convolutions used in the decoder part of the gener-
ator architecture.’ Subjective assessment of synthe-
sized images was satisfactory in agreement with objec-
tive evaluation results and other reports.”->*> Also, the
quality of the automated annotation algorithm was
promising, giving the synthesized images a realistic
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appearance that challenged human readers in discrim-
ination between original and synthesized images. By
simulating conventional maps, the annotation helped
human graders in the classification of synthesized
images successfully. A better annotation algorithm may
optimize similarity with original maps in the future.
Our study had some limitations. Generative models
are always limited by the information contained within
the training set, and how it captures the variability
of the underlying real-world data distribution. Given
that our data for both image generation and classifica-
tion were sourced from the same institution, it remains
an open question as to whether the results reported
here can be generalized to data from other institu-
tions, which may have different population statistics.
Additionally, the drawback of the FID score is that
the ground-truth samples are not directly compared
to the synthetic samples. The score indirectly evalu-
ates synthetic images based on the statistics of a collec-
tion of synthetic images compared to the statistics of
a collection of real images from the target domain.
The absolute VGG-16 classifier performance could
potentially be improved by additional architecture and
hyperparameter searches, but we focused on assess-
ing classification metrics trends rather than optimizing
end performance in this study. Finally, the reliability of
synthetic images may be improved by collecting data
from more cases.

Conclusions

We demonstrated that the proposed pix2pix cGAN
framework trained by using a small size of prospec-
tively labeled color-coded Scheimpflug camera corneal
tomography images shows promise in the genera-
tion of plausible keratoconus, early keratoconus, and
normal 4-map display corneal tomography images
at levels that could provide value in many experi-
mental and clinical contexts. The performance and
fidelity of the results were positively attested subjec-
tively and objectively across the different generated
image classes. Such a network could be a valuable
aid to provide synthetic datasets to manage the short-
age of labeled data and correct image class imbal-
ance, resulting in substantial improvement in classifi-
cation performance, while preserving patient privacy
and confidentiality. These findings are of paramount
importance in respect to training recent DCNNs with
deeper architecture and a large number of parame-
ters that may suffer from lack of generalization in
training with smaller datasets. Interestingly, we also
provided a plausible conventional annotated version
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of the synthesized images that may provide additive
practical value to the synthesized dataset. The natural
extension of our work is to construct more customized
models to improve the quality of generated images
and study their contained semantic structure to better
understand the transition pathways between image
classes.
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