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Abstract
Resting	conventional	T	cells	 (Tconv)	can	be	distinguished	 from	T	regulatory	cells	
(Treg)	by	the	canonical	markers	FOXP3,	CD25	and	CD127.	However,	the	expression	
of	these	proteins	alters	after	T-	cell	activation	leading	to	overlap	between	Tconv	and	
Treg.	The	objective	of	this	study	was	to	distinguish	resting	and	antigen-	responsive	
T	 effector	 (Tconv)	 and	 Treg	 using	 single-	cell	 technologies.	 CD4+	 Treg	 and	 Tconv	
cells	were	stimulated	with	antigen	and	responsive	and	non-	responsive	populations	
processed	for	targeted	and	non-	targeted	single-	cell	RNAseq.	Machine	learning	was	
used	to	generate	a	limited	set	of	genes	that	could	distinguish	responding	and	non-	
responding	Treg	and	Tconv	cells	and	which	was	used	for	single-	cell	multiplex	qPCR	
and	to	design	a	flow	cytometry	panel.	Targeted	scRNAseq	clearly	distinguished	the	
four-	cell	populations.	A	minimal	set	of	27 genes	was	identified	by	machine	learning	
algorithms	to	provide	discrimination	of	the	four	populations	at	>95%	accuracy.	In	all,	
15	of	the	genes	were	validated	to	be	differentially	expressed	by	single-	cell	multiplex	
qPCR.	Discrimination	of	responding	Treg	from	responding	Tconv	could	be	achieved	
by	a	flow	cytometry	strategy	that	included	staining	for	CD25,	CD127,	FOXP3,	IKZF2,	
ITGA4,	 and	 the	 novel	 marker	 TRIM	 which	 was	 strongly	 expressed	 in	 Tconv	 and	
weakly	expressed	 in	both	 responding	and	non-	responding	Treg.	A	minimal	 set	of	
genes	was	identified	that	discriminates	responding	and	non-	responding	CD4+	Treg	
and	Tconv	cells	and,	which	have	identified	TRIM	as	a	marker	to	distinguish	Treg	by	
flow	cytometry.
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INTRODUCTION

T-	cell	 responses	 to	antigen	(Ag)	are	an	essential	compo-
nent	of	the	adaptive	immune	response.	The	type	of	T-	cell	
response	is	classified	by	the	cell	type,	transcription	factors	
and	cytokine	production,	and	is	influenced	by	the	state	of	
the	antigen	presenting	cells,	 the	nature	of	 the	Ag	 target	
and	the	environment	where	Ag	presentation	takes	place.	
A	key	aspect	of	the	CD4+	T-	cell	response	in	this	context	is	
the	balance	between	effector	and	regulatory	T	cells	(Treg)	
[1-	3].	Under	resting	conditions,	Treg	can	be	distinguished	
from	effector	T	cells	by	their	expression	of	the	transcrip-
tion	factor	FOXP3	[4],	constitutive	CD25	expression	[5,6]	
and	low	CD127	expression	in	Treg	[7].	However,	upon	ac-
tivation,	 effector	 cells	 upregulate	 FOXP3	 and	 CD25	 and	
downregulate	CD127,	leading	to	a	substantial	overlap	be-
tween	these	 two	cell	 types	[8].	Single-	cell	RNA	(scRNA)	
profiling	has	 the	potential	 to	 identify	distinct	profiles	of	
both	 cell	 types	 during	 resting	 and	 activating	 conditions	
[9,10].	Technologies	range	from	targeted	qPCR	or	scRNA	
sequencing	 panels	 to	 untargeted	 scRNAseq,	 such	 as	 the	
10X	Genomics	and	SMARTseq	technologies.	The	objective	
of	this	study	was	to	distinguish	resting	and	Ag-	responding	
T	effector	(Tconv)	and	Treg	using	single-	cell	technologies.

MATERIALS AND METHODS

Subjects and PBMC isolation

Human	 samples	 from	 healthy	 adult	 blood	 donors	 were	
obtained	 as	 buffy	 coats	 (BC)	 from	 the	 Deutsches	 Rotes	
Kreuz	for	the	isolation	of	peripheral	blood	mononuclear	
cells	 (PBMC)	 by	 density	 centrifugation.	 The	 use	 of	 the	
samples	was	approved	by	ethics	committee	with	informed	
consent	of	the	donors	(EK240062016).

Isolation and stimulation of 
conventional and regulatory T cells

MACS	 was	 used	 to	 isolate	 CD4+	 T	 cells	 with	 the	
CD4+	 T	 cell	 Isolation	 Kit	 and	 CD4−	 T	 cells	 with	
CD4  Microbeads	 (Miltenyi	 Biotec).	 CD4+	 cells	 were	
stained	 (CD4-	FITC	 (RPA-	T4,	 BD);	 CD25-	PE	 (M-	A251,	
BD);	CD127-	eFluor	450	(eBioRDR5,	eBioscience);	7AAD	
(BD)),	 washed	 and	 the	 CD4+CD25dim/−	 CD127+	 and	
CD4+CD25+CD127lo	 cells	 sorted	 and	 isolated	 by	 FACS	
(ARIAII,	BD).	CD4+CD25dim/−CD127+	cells	(Tconv)	were	
stained	 with	 proliferation	 dye	 eFluor®450	 (5  µM)	 and	
CD4+CD25+CD127lo	cells	(Treg)	with	eFluor®670	(10 µM)	
for	10 min	at	37°C.	After	washing	with	cold	RPMI	+	10%	

HS,	the	two	populations	were	pooled	in	proportions	 ini-
tially	measured	in	PBMCs	and	added	to	the	non-	CD4+	cell	
population	 (Table	S1A).	Tetanus	 toxoid	 (Sanofi	Pasteur)	
or	 influenza	 (Begripal	 2014/2015;	 Novartis	 Vaccines	
and	Diagnostics	GmbH)	Ags	were	added	at	1 µl/ml	and	
cells	 incubated	 for	 5  days	 in	 a	 96-	well	 U-	bottom	 plate.	
Cells	 were	 stained	 with	 CD8-	APC-	H7	 (SK1,	 BD),	 CD4-	
FITC	 (RPA-	T4,	 BD),	 CD25-	PE	 (M-	A251,	 BD),	 CD45RO-	
PE-	Cy7	 (UCHL1,	 BD)	 and	 7AAD	 (BD)	 for	 the	 analysis	
of	 activation	 and	 proliferation	 of	 the	 T-	cell	 subsets	 and	
sorting	 of	 proliferated	 responding	 (DyedimCD25hi)	 and	
non-	responding	Tconv	(eFluor®450)	or	Treg	(eFluor®670)	
cells	with	very	stringent	gating,	either	as	single	cells	(for	
analysis	by	SMARTseq	or	Biomark)	or	as	bulk	(for	analy-
sis	by	Rhapsody).

For	validation	experiments,	the	CD4+	Tconv	and	Treg	
cells	were	sorted	and	isolated	by	FACS	as	described	above	
and	 labelled	 with	 eFluor®670	 (5  µM).	 After	 washing,	
50 000 Tconv	or	Treg	were	cultured	separately	with	100 000	
unlabelled	CD4+	T-	cell-	depleted	PBMC	from	the	same	do-
nors	 and	 10  ng/ml	 Staphylococcal	 Enterotoxin	 B	 (SEB;	
Sigma-	Aldrich)	for	5 days	in	a	96-	well	U-	bottom	plate	with	
0·05 IU	of	IL-	2	in	the	Treg	culture	for	survival.	For	anal-
ysis	 by	 Multiplex	 qPCR	 by	 Biomark,	 cells	 were	 stained	
CD3-	BUV395	(SK7,	BD);	CD4-	BV786	(OKT4,	Biolegend);	
CD25-	BV650	 (M-	A251,	 BD);	 CD127-	BUV737	 (HIL-	
7R-	M21,	BD)	and	Tconv	or	Treg	responding	(DyedimCD25+)	
and	 Tconv	 non-	responding	 (DyebrightCD25−)	 and	 Treg	
non-	responding	 (DyebrightCD25+)	 cells	 were	 single	 cell	
sorted.	 For	 FACS,	 cells	 were	 stained	 for	 additional	 sur-
face	 markers	 with	 CD7-	PE-	Cy7	 (CD7-	6B7,	 Biolegend),	
CD49d-	APC-	Cy7	 (9F10,	 Biolegend)	 and	 IL1R2-	FITC	
(34141,	 Thermofisher	 Scientific)	 together	 with	 Fixable	
Viability	 Dye	 (eFluor	 506,	 eBioscience)	 and	 for	 intracel-
lular	 markers	 with	 FOXP3-	BV421	 (206D,	 Biolegend),	
IKZF2-	PE/Dazzle	 (22F6,	 Biolegend)	 and	 TRIM-	PE	
(TRIM-	4,	 Biolegend)	 after	 fixation	 and	 permeabilization	
using	the	FoxP3/Transcription	Factor	Staining	Buffer	set	
(eBioscience).

Gene expression analysis

Rhapsody

The	 four-	cell	 populations	 from	 one	 donor	 were	 bulk	
sorted	 into	separate	 tubes	pre-	coated	with	PBS	contain-
ing	 4%	 BSA	 and	 a	 Sample	 Tag	 per	 population.	 Cells	
were	 stained	 with	 the	 Sample	 Tags	 as	 described	 by	 the	
manufacturer	 (BD™	 Single-	Cell	 Multiplex	 Kit,	 BD-	
Biosciences),	 reassembled	 into	 one	 tube	 and	 processed	
using	 the	Human	Immune	Response	Panel	and	 the	BD	
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Rhapsody	Single-	Cell	Analysis	System	(BD-	Biosciences)	
according	to	the	manufacturer's	instruction.	The	libraries	
were	sequenced	in	75-	bp	paired	end	mode	on	the	Illumina	

NextSeq500	platform	and	the	Illumina	HiSeq	2500	plat-
form	 to	 obtain	 approximately	 40mio	 fragments	 for	 the	
mRNA	 libraries	 and	 approximately	 0.5mio	 fragments	

F I G U R E  1  Mixed	PBMC	culture	assay.	A	schematic	representation	of	TT-	stimulation	assay	composition:	FACS	isolated	CD4+CD25dim/−	
(Tconv,	red	cells)	and	CD4+CD25+CD127lo	(Treg,	blue	cells)	were	stained	with	different	proliferation	dyes	and	mixed	back	together	with	
non-	CD4	cells	(grey	cells)	in	a	typical	PBMC	composition.	TT-	Ag	(grey	star	shaped)	was	added	to	the	culture.	After	incubation	for	5 days,	
proliferating	and	non-	proliferating	Tconv	and	Treg	(proliferation	dye	dim	and	high	cells,	respectively)	were	single	cell	sorted	by	FACS.	
B	Gating	of	CD4+CD25dim/−CD127+	and	CD4+CD25+CD127lo	from	an	exemplary	staining	of	PBMCs;	shown	is	the	CD25	and	CD127 gate	
after	selecting	for	CD4+	cells.	C	FACS	gating	strategy	for	Tconv	and	Treg.	Cell	sorting	on	day	0	was	performed	using	FACS	to	isolate	
CD4+CD25dim/−	CD127+	Tconv	and	CD4+CD25+CD127lo	Treg	(middle	plot)	from	a	MACS	enriched	population	of	CD4+	cells	(left	plot).	
Post-	sort	purity	is	shown	in	the	right	plots.	D	FACS	gating	strategy	for	Tconv	and	Treg	on	day	5	after	stimulation.	Tconv	and	Treg	were	
identified	by	their	different	proliferation	dyes,	efluor	670	(Treg,	blue)	and	efluor	450	(Tconv,	red).	Cells	were	divided	into	respondings	
(Resp)	and	non-	respondings	(NR)	by	their	CD25	expression	and	dye	intensity.	Resp	and	NR	were	further	characterized	by	the	composition	
of	memory	cells	(CD45RO+,	right	plots).	The	number	of	donors	and	the	number	of	cells	included	in	the	data	analysis	for	each	technology	is	
shown	at	the	bottom.	Gating	statistics	are	shown	within	the	plots	for	B	and	C,	and	in	Table	1	for	D

(a)

(b)

(d)

(c)
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for	 the	 sample	 tag	 libraries.	 The	 BD	 Rhapsody	 targeted	
analysis	pipeline	 (v1.3;	https://bitbu	cket.org/CRSwD	ev/
cwl/src)	 was	 used	 to	 process	 the	 raw	 sequencing	 data.	
Cell	labels	and	unique	molecular	indices	were	identified	
from	the	R1	reads.	The	respective	R2	reads	were	mapped	
against	 the	 human	 BD	 Rhapsody	 Immune	 Response	
Panel	 sequences	 and	 against	 the	 human	 BD	 Rhapsody	
Sample	Tag	sequences	#5-	8.	Data	pre-	processing,	dimen-
sion	reduction,	clustering	(default)	and	differential	genes	
expression	 analysis	 were	 done	 using	 the	 Seurat	 pack-
age	 (Seurat	 2.3.).The	 21  genes	 in	 the	 panel	 were	 used	
for	 analysis.	 After	 normalization	 and	 scaling,	 principal	
component	analysis	(PCA)	was	used	to	perform	dimen-
sionality	reduction	of	all	the	data	and	then	projected	with	
Uniform	 Manifold	 Approximation	 and	 Projection	 for	
Dimension	 reduction	 (UMAP).	 Differentially	 expressed	
genes	were	found	using	the	FindMarker	function	with	a	
logfc	threshold	of	0·3	and	requiring	the	expression	of	the	
gene	in	≥30%	of	the	cells.

SMARTseq

Single	cells	from	the	four-	cell	populations	from	three	do-
nors	 were	 sorted	 into	 96-	well	 plates	 containing	 2	 µL	 of	
nuclease-	free	water	with	0·2%	Triton	X-	100	and	4 U	murine	
RNase	inhibitor	(NEB),	centrifuged	and	frozen	at	−80°C.	
The	 workflow	 was	 based	 on	 the	 previously	 described	
SMARTseq2	protocol	[11]	with	some	modifications.	After	
thawing,	2 µl	of	the	primer	mix	(5 mM	dNTP	(Invitrogen),	
0·5 µM	oligo-	dT	primer,	4 U	murine	RNase	inhibitor)	were	
added	to	each	well.	The	reverse	transcription	reaction	was	
performed	using	RNase	inhibitor	(9 U)	and	Superscript	II	
(90 U)	at	42°C	for	90 min,	followed	by	an	inactivation	step	
at	70°C	for	15 min.	The	number	of	pre-	amplification	PCR	
cycles	was	 increased	 to	22	and	 the	amplified	cDNA	was	
purified	using	Sera-	Mag	SpeedBeads	(GE	Healthcare)	and	
DNA	eluted.	0·7 ng	of	pre-	amplified	cDNA	was	used	for	
library	 preparation	 (Nextera	 XT	 library	 preparation	 kit,	
Illumina)	in	a	5	µL	volume.	Illumina	indices	were	added	

T A B L E  1 	 Features	of	targeted,	semi-	targeted	and	whole	transcriptome	single-	cell	gene	expression	methods	used

Biomark Rhapsody SMARTseq

Company Fluidigm BD,	Illumina Takara,	Illumina

Approach targeted semi-	targeted whole	transcriptome

Methodological	steps cDNA	synthesis	(poly(A)),	
multiplex	PCR,	qPCR

cDNA	synthesis	(poly(A)),	
multiplex	PCR,	sequencing

SMARTer	first	strand	cDNA	
synthesis,	cDNA	amplification,	
sequencing

Number	of	analysed	cells 96 1000–	20 000a 96/384

Number	of	input	cells	
required

1 Minimum	of	1000 1

Processing Can	be	postponed,	cells	can	be	
frozen	after	sort

Directly	after	FACS	sort Can	be	postponed,	cells	can	be	
frozen	after	sort

Number	of	genes Up	to	96 259	or	399b >25 000	(3000–	6000)

Reads/cell NA 2000–	20 000 0·5 million

Developmental	requirements customized	panel Ready	to	use Ready	to	use

Processing	time 1 day 3–	8 weeks 3–	8 weeks

Costs/cell	(€)	* 16 1·59/0·11c 9·76/4·55d

Note: Costs	per	cell	without	personnel	and	overheads.
The	characteristics	of	the	three	methods	used	are	shown.	Company:	commercial	companies	providing	reagents	and/or	technology;	Approach:	distinction	
between	a	targeted	(only	a	restricted	number	of	selected	genes	(here	48)),	a	semi-	targeted	(a	commercial	panel,	including	399	Immune-	related	or	259 T	
cell-		related	genes)	and	a	whole	transcriptome	(single-	cell	mRNA	seq)	approach;	Number	of	cells	analysed:	cells	analysed	per	experimental	unit	(Biomark:	
PCR	plate,	Rhapsody:	cartridge,	SMARTseq:	PCR	plate);	Number	of	input	cells	required:	the	minimal	number	of	cells	that	can	be	run	per	experimental	unit;	
Processing:	immediate	processing	required	or	freezing	of	cells	possible;	Number	of	genes:	genes	that	can	be	detected	with	the	method	(Biomark:	one	chip	
allows	the	analysis	of	96 samples	and	96 genes;	Rhapsody:	the	number	of	genes	depends	on	the	panel	used);	Reads	per	cell:	sequencing	depth	usually	applied;	
Developments	required:	customized	panel	needs	to	be	developed	for	Biomark	including	primer	design,	primer	efficiency	testing	and	mutual	primer	inhibition	
testing;	Processing	time:	time	required	from	the	sample	to	the	raw	data	obtention;	Costs/cell:	processing	costs	per	cell,	not	including	personnel	and	overhead	
costs.
aUp	to	12 samples	with	Barcodes	can	be	pooled	and	analysed.
b259 genes	in	the	T-	Cell-	Expression-		and	399 genes	in	Immune	response	panel.
cCosts	when	1000/20 000	cells	are	analysed.
dCosts	when	a	96-	/384-	well	plate	is	used.

https://bitbucket.org/CRSwDev/cwl/src
https://bitbucket.org/CRSwDev/cwl/src
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during	the	PCR	(72°C	for	3 min,	98°C	for	30 s,	12	cycles	
of	[98°C	for	10 s,	63°C	for	20 s	and	72°C	for	1 min],	and	
72°C	5 min)	with	1×	KAPA	Hifi	HotStart	Ready	Mix	and	

0·7 µM	of	dual	indexing	primers.	After	PCR,	the	libraries	
were	quantified,	pooled	in	equimolar	amounts	and	puri-
fied	twice	with	Sera-	Mag	SpeedBeads.	The	libraries	were	

F I G U R E  2  Genes	differentially	expressed	between	TT	responding,	non-	responding,	Tconv	and	Treg	cells.	(a)	UMAP	visualization	of	
cells	after	integrating	the	three	technologies,	Rhapsody,	SMARTseq	and	multiplex	qPCR	by	Biomark.	Cells	are	coloured	according	to	their	
cell	type	(responding	Tconv:	dark	red,	non-	responding	Tconv:	coral,	responding	Treg:	dark	blue	and	non-	responding	Treg:	royal	blue).	
(b)	UMAP	visualization	as	in	(a).	Cell	coloured	according	to	clusters	found.	(c)	Differential	expression	of	the	top	five	most	variable	genes	
between	the	four	cell	types	(Rhapsody	and	Biomark)	and	responding	and	non-	responding	cells	(SMARTseq)	are	shown	in	one	heatmap	for	
the	three	technologies.	Cell	Types	are	colour-	coded	as	in	A	for	Rhaspody	and	Biomark	and	according	to	clusters	for	SMARTseq

(a)

(b)

(c)
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sequenced	 on	 the	 NextSeq	 500	 Illumina	 platform	 to	 ob-
tain	75-	bp	single-	end	reads	aiming	at	an	average	sequenc-
ing	depth	of	0·5 million	reads	per	cell.	Alignment	of	the	
reads	 to	 the	 reference	 human	 genome	 (hg38)	 was	 done	
with	GSNAP	(v2018-	05-	30)	and	Ensembl	gene	annotation	
(version	 87)	 was	 used	 to	 detect	 splice	 sites.	 The	 aligned	
reads	 were	 quantified	 with	 featureCounts	 (v1·6.2)	 from	
the	 Subread	 package	 and	 the	 same	 Ensembl	 annotation	
was	 used	 to	 generate	 a	 counts-	matrix.	 Cells	 expressing	
only	a	few	genes	were	filtered	out	from	the	counts-	matrix	
using	 the	 clean.counts	 function	 in	 SCDE	 [12]	 (min.lib.
size  =  1000,	 min.reads  =  1,	 min.detected  =  1).	 Further	
processing	 of	 the	 counts-	matrix	 was	 performed	 using	
the	 following	 R	 packages:	 SingleCellExperiment	 [13,14]	
and	 scater	 [15].	 Briefly,	 the	 counts-	matrix	 was	 loaded	
and	a	single-	cell	experiment	object	was	constructed.	The	
ERCC	 spike-	in	 counts	 were	 added	 as	 an	 alternative	 ex-
periment	attributed	 to	 the	object.	Dimensionality	reduc-
tion	 was	 performed	 and	 the	 data	 were	 visualized	 using	
UMAP	 [16]	 implemented	 in	 the	 R	 package	 umap,	 ver-
sion	0.2.3.1.	Differentially	expressed	genes	were	identified	
using	 the	 findMarkers	 function	 from	 the	 scran	 package	
with	the	default	settings	while	blocking	for	plate	technical	
confounder.

Multiplex	qPCR	by	Biomark

Single	cells	were	sorted	into	96-	well	PCR	plates	contain-
ing	5 μl EB	buffer	(Qiagen),	immediately	snap-	frozen	on	
dry	 ice	 and	 stored	 at	 −80°C.	 Multiplex	 qPCR	 was	 per-
formed	as	described	[17]	with	some	modifications.	cDNA	
was	synthesized	using	Quanta	qScript™	cDNA	Supermix	

directly	 on	 cells.	 Total	 cDNA	 was	 pre-	amplified	 for	
20	cycles	 (1 × 95°C	 for	8 min,	95°C	 for	45  s,	 49°C	with	
0·3°C	 increment/cycle	 for	 1  min,	and	 72°C	 for	 1·5  min)	
and	1 × 72°C	 for	7 min	with	TATAA	GrandMaster	Mix	
(TATAA	Biocenter)	in	a	volume	of	35	μL	in	the	presence	
of	the	primer	pairs	for	40 genes	(25 nM	final	concentra-
tion	for	each	primer	as	described	[17]	but	without	CCR10,	
CCR3,	GATA3,	IL17F,	EOMES	and	NFTAC	and	for	valida-
tion	using	 the	primers	 listed	 in	Table	S2).	Pre-	amplified	
cDNA	(10 μl)	was	treated	with	1·2 U	of	exonuclease	I	and	
expression	 quantified	 by	 RT-	PCR	 on	 a	 Biomark™	 HD	
System	(Fluidigm	Corporation)	using	the	96·96	Dynamic	
Array	 IFC	 and	 the	 GE	 96x96	 Fast	 PCR  +  Melt	 protocol	
with	 SsoFast	 EvaGreen	 Supermix	 and	 Low	 ROX	 (BIO	
RAD)	and	5 µM	of	primers	for	each	assay.	Raw	data	were	
analysed	using	the	Fluidigm	Real-	Time	PCR	analysis	soft-
ware.	 Pre-	processing	 and	 data	 analysis	 were	 conducted	
using	KNIME	3.7.0,	R	version	3.5.1	and	RStudio	version	
1.2.1335	 (RStudio).	 For	 pre-	processing,	 a	 linear	 model	
was	 used	 to	 correct	 for	 confounding	 effects	 potentially	
introduced	 through	 processing	 batches.	 In	 brief,	 batch	
effects	 (dummy	 coding	 for	 each	 plate/batch)	 were	 mod-
elled	jointly	with	dose	effects	by	regressing	out	the	effect	
of	 plates	 on	 each	 individual	 gene	 while	 controlling	 for	
dose	 to	 obtain	 a	 corrected	 gene	 expression	 dataset	 [18].	
The	data	from	eight	subjects	were	pooled.	Dimension	re-
duction	was	performed	using	UMAP	as	described	above.	
Clustering	 was	 performed	 with	 hclust	 and	 ward.D2.	 To	
find	genes	significantly	differing	between	two	conditions	
in	qPCR	data,	 the	Hurdle	model	was	applied	 for	 regres-
sion	taking	count	data	with	over	dispersion	into	account	
[19].	To	find	cluster	marker	genes,	the	FindMarker	func-
tion	was	used,	implemented	in	scanpy.

Clusters
Responder T 
conv (%)

Responder 
T reg (%)

Non- responder 
Treg (%)

Non- responder 
T conv (%)

Rhapsody

1 98·7 12·9 0·2 0·0

2 0·4 72·8 0·3 0·0

3 0·6 14·0 96·1 2·9

4 0·2 0·3 3·4 97·1

SMARTseq

1 100 98·8 0·0 3·7

2 0·0 1·2 100 96·3

Biomark

1 48·3 10·1 0·0 0·0

2 29·0 63·0 19·2 3·3

3 11·4 12·3 30·0 7·5

4 11·4 14·5 50·8 89·2

T A B L E  2 	 Frequencies	from	each	
cell	type	found	per	UMAP	cluster	after	
Rhapsody,	SMARTseq	and	Biomark	
analysis
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Machine learning

Support	 Vector	 Machine	 (SVM)	 and	 Logistic	 Regression	
(LR)	were	used	with	their	implementation	in	Python's	scikit	
library.	For	feature	selection,	we	used	the	Recursive	Feature	
Elimination	 with	 Cross	 Validation	 (RFECV)	 algorithm,	
also	implemented	in	Python's	scikit	library.	Since	a	larger	

number	 of	 data	 points	 was	 obtained	 from	 the	 Rhapsody	
analyses,	the	Rhapsody	data	were	used	for	feature	selection	
and	building	models.	The	following	parameters	were	ob-
tained	after	modelling:	(i)	Accuracy—	how	many	cells	were	
correctly	predicted;	(ii)	Precision,	defined	as	TruePositive/
(TruePositive + FalsePositive);	and	(iii)	Recall,	defined	as	
TruePositive/(TruePositive + FalseNegative).

F I G U R E  3  Gene	expression	differences	between	Tconv	and	Treg	non-	responding	cells.	(a)	UMAP	visualization	of	both	cell	types.	
Tconv	are	coloured	in	red,	Treg	in	blue.	(b)	Raindot-	plots	showing	the	expression	of	exemplary	genes	significantly	differing	between	the	two	
cell	types	and	shared	between	both	(FOXP3,	IL7R,	IL2RA	and	GIMAP5),	SMARTseq	and	Rhapsody.	Genes	significantly	increased	in	Tregs	
are	shown	first.	Cell	Types	are	colour-	coded	as	in	(a).	y-	axis	shows	values	after	processing	raw	data,	differing	for	each	technology.	(c)	The	
Venn	diagram	represents	the	number	of	DE	genes	found	by	the	methods	and	the	number	of	genes	shared	between	them.	(d,	e)	Shown	are	
heatmaps	with	differentially	expressed	genes.	All	genes	significantly	differing	between	Treg	and	Tconv	in	non-	responding	TT-	stimulated	
cells	using	the	Rhapsody	(d),	or	the	20	top	upregulated	and	downregulated	genes	found	using	SMARTseq	(e).	From	top	to	bottom	are	genes	
with	the	highest	fold	change	(FC)	in	Tregs	and	from	bottom	to	top	in	Tconv.	Tconv	are	shown	in	red,	Treg	in	blue

(a)

(b)

(c)

(c) (d)
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RESULTS

In vitro isolation of non- responding and 
responding conventional and regulatory T 
cells

An	in	vitro	model	was	established	to	distinguish	and	iso-
late	Tconv	and	Treg	human	CD4+	T	cells	after	activation	
(Figure	1).	After	 isolation	and	separate	 labelling	of	Treg	
and	Tconv	cells	with	eFluor670	or	eFluor450,	cells	were	
reunited	along	with	the	non-	CD4+	T	cells	so	as	to	mimic	
a	classical	PBMC	stimulation	assay,	and	the	cell	mixture	
was	stimulated	with	Ag	for	5 days	(Figure	1b	and	Table	
S1A).	The	dyedimCD25high	for	responding	Treg	(eFluor670)	
and	Tconv	cells	(eFlour450),	the	dyebrightCD25high	as	non-	
responding	 Treg	 cells,	 and	 the	 dyebrightCD25low	 as	 non-	
responding	Tconv	cells	were	sorted	and	processed	(Figure	
1d	and	Table	S1B,C).	Responding	cells	against	the	model	
Ag	tetanus	toxoid	CD45RO+	and	were	observed	for	both	
Treg	and	Tconv	cells	(Figure	1d).

mRNA profiles 
distinguish non- responding and 
responding conventional and regulatory 
T cells

Three	 methods	 were	 used	 to	 profile	 mRNA	 (Table	 1).	
RNAseq	 was	 performed	 using	 the	 Rhapsody	 technol-
ogy	 (Rhapsody)	 and	 next-	generation	 sequencing	 using	
SMARTseq2	 (SMARTseq).	 Multiplex	 RT-	PCR	 using	 the	
Biomark	Fluidics	System	(Biomark)	with	a	previously	es-
tablished	panel	was	also	examined.	Each	method	was	able	
to	discriminate	cell	types	to	a	certain	degree	(Figure	2a).

The	greatest	discrimination	between	the	four	cell	types	
was	 achieved	 by	 Rhapsody,	 with	 clear	 separation	 of	 the	
Treg	and	Tconv	cells	confirming	 the	purity	of	 the	popu-
lations	(Figure	2a)	and	four	clusters,	each	containing	the	
majority	 of	 a	 distinct	 cell	 type	 (Figure	 2b	 and	 Table	 2).	

The	genes	that	best	discriminated	Treg	from	Tconv	were	
FOXP3,	IKFZ2	and	TXK,	whereas	the	top	genes	discrim-
inating	responding	and	non-	responding	cells	were	IL2RA	
and	CTLA4	 (Table	S3).	Responding	Tconv	were	 the	only	
cells	 that	could	be	separated	 from	the	others	by	a	 set	of	
almost	uniquely	expressed	genes	including	CSF2,	GZMB,	
IFNG,	ZBED2	and	IL22	(Figure	2c	and	Table	S3).

A	 clear	 distinction	 between	 responding	 and	 non-	
responding	cells	was	obtained	with	SMARTseq,	resulting	
in	 two	 characteristic	 clusters	 (Figure	 2).	 Several	 genes	
were	 almost	 exclusively	 expressed	 in	 the	 responding	
cells	 (Figure	 2c).	 These	 two	 characteristic	 clusters	 were	
maintained	 when	 analysing	 the	 three	 donors	 separately,	
and	the	majority	of	the	cell	 types	were	assignable	to	the	
corresponding	cluster.	The	 largest	 fraction	of	 incorrectly	
assigned	cells	was	 the	non-	responding	Treg,	with	27·8%,	
11·1%	and	5·6%	of	the	cells	from	donors	1,	2	and	3,	respec-
tively,	 found	 in	 the	 cluster	 containing	 responding	 cells	
(Table	S4).

The	 Biomark	 panel	 genes	 were	 less	 discriminatory	
with	overlap	between	the	four	cell	types	observed	in	the	
four	UMAP	clusters	(Figure	2c	and	Table	S3).	Therefore,	
the	Rhapsody	and	SMARTseq	data	were	used	 for	 subse-
quent	comparisons.

Genes distinguishing non- responding 
regulatory and conventional T cells

The	 Rhapsody	 and	 SMARTseq	 profiles	 were	 examined	
to	 find	 differentially	 expressed	 genes	 between	 non-	
responding	 Treg	 and	 Tconv.	 Although	 FOXP3	 alone	
provided	 reasonable	 discrimination	 with	 the	 Rhapsody	
technology,	 genes	 known	 to	 differ	 between	 the	 two	 cell	
types	 at	 the	 protein	 level	 (e.g.	 FOXP3,	 IL7R,	 IL2RA)	
showed	 some	 degree	 of	 overlap	 in	 their	 gene	 expres-
sion	 level	 between	 the	 non-	responding	 Treg	 and	 Tconv	
as	 measured	 by	 the	 Rhapsody	 and	 the	 SMARTseq	 tech-
nologies	(Figure	3	and	Table	S5).	Therefore,	we	explored	

F I G U R E  4  Machine	learning	for	discriminatory	genes	between	non-	responding	Treg	and	Tconv	(a)	Plot	showing	the	performance	
of	the	Recursive	Feature	Elimination	with	Cross-	Validation	(RFECV)	approach	using	the	Random	Forest	Algorithm	to	identify	the	most	
discriminatory	genes	to	distinguish	non-	responding	Treg	from	Tconv	cells.	The	y-	axis	shows	the	accuracy	(determined	by	identifying	the	
cells	that	are	correctly	classified)	and	the	x-	axis	shows	the	number	of	input	features	(genes).	The	light	blue	shaded	area	represents	the	
variability	of	cross-	validation,	one	standard	deviation	above	and	below	the	mean	accuracy	score	shown	in	the	curve.	(b)	A	bar	plot	showing	
the	relative	contribution	of	the	13	input	features	that	were	selected	and	used	for	training	classifiers	using	both	the	algorithms—	Support	
Vector	Machine	(SVM)	and	Logistic	Regression	(LR).	(c)	Receiver	Operating	Curve	(ROC)	for	the	classification	of	non-	responding	Treg	
from	Tconv	using	Support	Vector	Machine	(SVM)	from	the	features	determined	using	the	RFE-	RF	algorithm.	(d)	ROC	for	the	classification	
of	non-	responding	Treg	from	Tconv	using	Logistic	Regression	(LR)	from	the	features	determined	using	the	RFE-	RF	algorithm.	Red	curves	
correspond	to	performance	of	the	model	that	was	built	using	the	Tetanus-	Ag-	stimulated	cells	(trained	with	80%	of	the	input	data,	tested	
with	the	remaining	20%)	and	blue	dashed	curves	correspond	cells	that	responded	to	stimulation	with	the	influenza	Ag.	(e	and	f)	Shown	are	
heatmaps	with	the	13 selected	signature	genes	and	the	gene	expression	data	obtained	by	SMARTseq	after	stimulation	with	the	tetanus	(f)	or	
the	influenza	Ag	(f).	Tconv	are	shown	in	red,	Treg	in	blue
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two	machine	learning	algorithms.	We	used	the	Rhapsody	
data	 from	 non-	responding	 cells	 stimulated	 with	 TT	 and	
identified	13 genes	with	significant	differential	expression	

between	the	cell	types	found	by	Rhapsody	and	either	ad-
ditionally	by	SMARTseq	or	Biomark	(Table	S5	and	Figure	
S1)	 to	 develop	 a	 Recursive	 Feature	 Elimination	 with	
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Cross	Validation	(RFECV)	algorithm	(Figure	4a,b).	These	
13 most	discriminatory	genes	(FOXP3,	IL2RA,	IL32,	IL2RB,	
IL7R,	TIGIT,	IKZF2,	CTLA4,	GIMAP5,	IL12RB2,	LGALS1,	
FAS	and	TCF7)	were	used	in	SVM	and	LR	machine	learn-
ing	algorithms	on	the	data	split	 into	a	training	set	(2845	
of	the	3557	available	cells—	80%	of	the	data)	and	a	test	set	
(712	cells—	20%	of	the	data).	The	SVM	algorithm	correctly	
attributed	95·4%	of	 the	712	cells	 from	 the	 test	 set	 to	 the	
correct	cell	type	(Accuracy:	0·954;	Precision:	0·974;	Recall:	
0·934;	AUC:	0·987,	Figure	4c	and	Table	3)	and	the	LR	al-
gorithm	 97·2%	 of	 the	 cells	 (Accuracy:	 0·972;	 Precision:	

0·98;	Recall:	0·964;	AUC:	0·992,	Figure	4d	and	Table	3).	
The	 same	 13  genes	 were	 used	 on	 the	 SMARTseq	 data	
and	the	algorithms	were	able	to	correctly	attribute	a	high	
percentage	 of	 cells	 to	 their	 type	 (SVM:	 Accuracy,	 0·925;	
Precision,	 0·871;	 Recall,	 1·0;	 AUC,	 0·995;	 LR:	 Accuracy,	
0·963;	Precision,	0·946;	Recall,	0·981;	AUC,	0·992;	Table	
3).	These	13 genes	were	expressed	in	a	characteristic	and	
cell-	type-	specific	manner	(Figure	4e).

Application	 of	 the	 algorithms	 to	 3647	 cells	 non-	
responding	 to	 a	 stimulation	 with	 influenza	 Ag	 and	 an-
alysed	 by	 Rhapsody	 attributed	 95·2%	 of	 the	 cells	 to	 the	

F I G U R E  5  Gene	expression	differences	between	responding	and	non-	responding	Treg	cells.	(a)	UMAP	visualization	of	both	cell	types.	
Responding	are	coloured	in	dark	red,	non-	responding	in	yellow.	(b)	Raindot-	plots	showing	the	expression	of	exemplary	genes	significantly	
differing	between	the	two	cell	types	and	shared	between	SMARTseq	and	Rhapsody	(ICOS,	ZBED2	and	IL7R).	Genes	significantly	increased	
in	responding	cells	are	shown	first.	Cell	Types	are	colour-	coded	as	in	(a).	y-	axis	shows	values	after	processing	raw	data,	differing	for	each	
technology.	(c)	The	Venn	diagram	represents	the	number	of	DE	genes	found	by	each	method	and	the	number	of	genes	shared	between	
them.	(d	and	e)	Shown	are	heatmaps	with	all	genes	found	to	be	significantly	differing	between	responding	and	non-	responding	in	TT	
stimulated	Treg	cells	using	the	Rhapsody	(d)	or	the	20	top	upregulated	and	downregulated	genes	found	using	SMARTseq	(e).	From	top	to	
bottom	are	genes	with	the	highest	fold	change	(FC)	in	responding	and	from	bottom	to	top	in	non-	responding	cells.	Respondings	are	shown	
in	dark	red,	non-	respondings	in	yellow

(a)

(b)

(c)

(d) (e)
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correct	 cell	 type	 with	 SVM	 (Accuracy:	 0·952;	 Precision:	
0·977;	 Recall:	 0·928;	 AUC:	 0·990)	 and	 96·7%	 with	 LR	
(Accuracy:	 0·967;	 Precision:	 0·971;	 Recall:	 0·962;	 AUC:	
0·993).	The	same	procedure	was	repeated	with	SMARTseq	
data,	which	also	demonstrated	that	the	classifier	was	sen-
sitive	 and	 specific	 in	 discriminating	 the	 two	 cell	 types,	
thereby	confirming	that	both	the	machine	learning	algo-
rithms	can	discriminate	the	two	non-	responding	cell	types	
exposed	to	different	Ag	(Figure	4f	and	Table	3).

Ag- responding and non- responding Treg 
cells have distinct scRNAseq profiles

The	 transcription	 profiles	 of	 responding	 Treg	 cells	 dif-
fered	 markedly	 from	 those	 of	 the	 non-	responding	 cells	
(Figure	5	and	Table	S6).	Upregulation	of	the	Treg	marker	
ICOS	 was	 observed	 using	 both	 technologies	 (and	 also	
using	Biomark,	 see	Figure	S2).	Other	upregulated	genes	
in	either	or	both	technologies	included	the	transcription	

F I G U R E  6  Gene	expression	differences	between	Tconv	and	Treg	responding	cells.	(a)	UMAP	visualization	of	both	cell	types.	Tconv	are	
coloured	in	red,	Treg	in	blue.	(b)	Raindot-	plots	show	the	expression	of	genes	significantly	differing	between	the	two	cell	types	and	shared	
between	both	SMARTseq	and	Rhapsody	(FOXP3,	CSF2,	IL1R2	and	IL22).	Cell	Types	are	colour-	coded	as	in	(a).	y-	axis	shows	values	after	
processing	raw	data,	differing	for	each	technology.	(c)	The	Venn	diagram	represents	the	number	of	DE	genes	found	by	each	method	and	
the	number	of	genes	shared	between	them.	(d	and	e)	Shown	are	all	genes	found	to	be	significantly	differing	between	Treg	and	Tconv	in	
responding	TT-	stimulated	cells	using	the	Rhapsody	(d)	or	the	20	top	upregulated	and	downregulated	genes	found	using	SMARTseq	(e).	From	
top	to	bottom	are	genes	with	the	highest	fold	change	(FC)	in	Tregs	and	from	bottom	to	top	in	Tconv.	Tconv	are	shown	in	red,	Treg	in	blue

(a)

(b)

(c)

(d) (e)
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factors	TBX21	and	RORC,	activation	markers	such	as	HLA	
class	II	genes,	and	genes	associated	with	proliferation	such	
as	HMMR.	ZBED2	was	rarely	detected	in	non-	responding	
Treg,	but	expressed	in	around	50%	of	the	responding	Treg.	
A	 number	 of	 genes	 including	 the	 Tconv	 marker	 IL7RA	
were	downregulated	in	the	responding	Treg.	Of	note,	each	
technology	revealed	a	list	of	technology-	specific	DE	genes	
(Figure	5c–	e	and	Table	S6).

Using	 a	 recursive	 feature	 elimination	 algorithm	 with	
46  genes	 found	 by	 the	 Rhapsody	 technology	 as	 well	 as	
by	 either	 the	 SMARTseq	 or	 the	 Biomark	 technology,	
12 marker	genes	(GAPDH,	ITGAE,	ICOS,	IL2RA,	TYMS,	
LGALS1,	IRF4,	ANXA5,	AURKB,	BAX,	CXCR3	and	LAP3)	
were	sufficient	to	classify	the	Treg	into	responding	or	non-	
responding.	 Using	 an	 80–	20  split	 of	 the	 data	 into	 train-
ing	(1766	cells)	and	test	(422	cells)	sets,	both	SVM	and	LR	
machine	learning	algorithms	could	discriminate	respond-
ing-		 from	 non-	responding	 Tregs	 (SVM:	 Accuracy,	 0·988;	
Precision,	0·997;	Recall,	0·989;	AUC,	0·998;	LR:	Accuracy,	
0·986;	 Precision,	 0·992;	 Recall,	 0·992,	 AUC,	 0·999;	Table	
3).	Application	of	 the	algorithm	to	Treg	cells	 stimulated	
with	 an	 influenza	 Ag	 attributed	 >97%	 of	 the	 2018	 anal-
ysed	cells	to	their	correct	cell	type	(SVM:	Accuracy,	0·987;	
Precision,	0·997;	Recall,	0·989;	AUC,	0·995;	LR:	Accuracy,	
0·972;	 Precision,	 0·995;	 Recall,	 0·974;	 AUC,	 0·995;	Table	
3).	Application	of	the	method	to	cells	stimulated	with	ei-
ther	 of	 the	 two	 Ags	 but	 sequenced	 with	 the	 SMARTseq	
technology	also	led	to	discrimination	of	the	cell	types	with	
high	sensitivity	and	specificity	(Table	3).

Distinguishing responding regulatory and 
responding conventional T cells

Genes	that	distinguished	responding	Treg	from	respond-
ing	Tconv	were	of	particular	interest.	Both	Rhapsody	and	
SMARTseq	 could	 discriminate	 the	 majority	 of	 the	 cells	
from	these	two	cell	types	(Figure	6a).	The	level	of	FOXP3	
expression	 was	 the	 most	 discriminatory	 single	 gene	
found	 with	 both	 technologies,	 with	 markedly	 higher	
expression	 in	 responding	 Tregs	 than	 responding	 Tconv	
(Figure	 6b–	e	 and	 Table	 S7).	 Cytokine	 genes	 were	 also	
discriminatory	and	present	mainly	in	responding	Tconv	
cells,	with	IFNG,	CSF2,	IL22	and	IL32	differentially	ex-
pressed	in	both	technologies	and	IL13	and	IL21	differen-
tially	 expressed	 in	 SMARTseq.	 Similar	 genes	 were	 also	
identified	by	Biomark	(Figure	S3	and	Table	S6).	A	total	of	
46	DE	genes	were	observed	in	both	technologies,	an	addi-
tional	31	with	Rhapsody	only	and	1042	with	SMARTseq	
only	(Figure	6c,	Table	S6).	The	recursive	feature	elimina-
tion	algorithm	using	46 genes	with	significant	expression	
identified	a	minimum	set	of	seven	genes	(FOXP3,	IKZF2,	
ITGA4,	TRAT1,	LGALS1,	IL1R2	and	CD7)	that	provided	

discrimination	between	the	responding	Treg	and	Tconv	
cells.	Using	an	80–	20 split	of	the	data	into	training	(2119	
cells)	 and	 test	 (530	 cells)	 sets,	 both	 SVM	 and	 LR	 algo-
rithms	 were	 able	 to	 achieve	 high	 specificity	 and	 sensi-
tivity	 in	 identifying	 the	 two	cell	 types	 (SVM:	Accuracy,	
0·966;	 Precision,	 0·969;	 Recall,	 0·797;	 AUC,	 0·990;	 LR:	
Accuracy,	 0·974;	 Precision,	 0·945;	 Recall,	 0·873,	 AUC,	
0·971;	 Table	 3).	 The	 algorithms	 were	 also	 able	 to	 dis-
criminate	 influenza	 Treg	 and	 Tconv	 (SVM:	 Accuracy,	
0·975;	 Precision,	 0·904;	 Recall,	 0·793;	 AUC,	 0·961;	 LR:	
Accuracy,	 0·976;	 Precision,	 0·910;	 Recall,	 0·793;	 AUC,	
0·966;	 Table	 3)	 and	 were	 also	 effective	 on	 SMARTseq	
generated	data	(Table	3).

From	 the	 seven	 genes	 allowing	 discrimination	 of	 re-
sponding	 Treg	 from	 Tconv,	 all	 except	 IL1R2	 were	 also	
found	to	discriminate	non-	responding	Treg	from	respond-
ing	Tconv	by	at	least	one	method	(Table	S8).	This	compar-
ison	also	revealed	an	unexpected	increased	expression	of	
IL7R	in	non-	responding	Treg	as	compared	with	Tconv.

Validation of signature genes using the 
biomark technology and FACS

Genes	 discriminating	 responding	 and	 non-	responding	
Treg	 and	 Tconv	 cells	 by	 machine	 learning	 were	 tested	
using	 the	 Biomark	 technology	 and	 by	 FACS.	 Treg	
and	 Tconv	 cells	 were	 isolated	 by	 FACS	 sorting	 of	
CD4+CD25+CD127low	 and	 CD4+CD25dim/−CD127+	 cells,	
respectively,	 and	 each	 cell	 type	 was	 reunited	 separately	
with	non-	CD4+	T	cells.	The	cell	mixture	was	stimulated	
with	SEB	and,	after	5 days,	the	responding	and	the	non-	
responding	 Treg	 or	 Tconv	 populations	 were	 isolated	 by	
FACS	 sorting	 single	 cells	 (Figure	 S4a,b).	 In	 all,	 20	 cells	
from	each	population	were	processed	for	gene	expression	
profiling	 by	 Biomark	 qPCR	 (Figure	 7).	 Of	 the	 27  signa-
ture	genes,	24	were	 successfully	 transferred	 to	qPCR	on	
Biomark.	Six	(FOXP3,	IL2RA,	IL7R,	IKZF2,	GIMAP5	and	
TCF7)	 of	 13  signature	 genes	 tested	 to	 distinguish	 non-	
responding	Treg	from	non-	responding	Tconv	differed	by	
Biomark	qPCR;	4	(FOXP3,	IKZF2,	TRAT1	and	IL1R2)	of	
the	6 signature	genes	tested	to	distinguish	responding	Treg	
and	responding	Tconv	differed	by	Biomark	qPCR;	and	8	
(GAPDH,	ICOS,	IL2RA,	LGALS1,	IRF4,	AURKB,	BAX	and	
CXCR3)	of	the	12 genes	signature	genes	tested	to	distin-
guish	 responding	 from	 non-	responding	 Treg	 differed	 by	
Biomark	qPCR	(Figure	7a).	Projection	with	UMAP	of	this	
minimal	set	of	significant	genes	allowed	separation	of	the	
four	cell	types	(Figure	7b).

We	 used	 markers	 selected	 by	 machine	 learning	 that	
were	 available	 for	 flow	 cytometry	 of	 responding	 Treg	
or	Tconv	after	 the	same	SEB-	stimulation	strategy	as	de-
scribed	 for	 the	 Biomark	 analysis	 above.	 The	 staining	
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of	 the	 Treg	 markers	 FOXP3	 (p  <  0·0001)	 and	 IKZF2	
(p < 0·0001)	and	the	Tconv	markers	ITGA4	(p < 0·0001)	
and	TRIM	(TRAT1)	(p < 0·0001)	differed	between	the	re-
sponding	Treg	and	responding	Tconv	cells,	although	there	
was	 overlap	 between	 cell	 populations	 for	 each	 marker	
(Figure	 S4c).	 CD7	 and	 IL1R2	 were	 not	 consistently	 dif-
ferent	in	the	two	cell	populations.	A	gating	strategy	with	
CD127	(IL7RA)	and	CD25	(IL2RA)	and	the	four	signifi-
cant	markers	FOXP3,	IKZF2,	ITGA4	and	TRIM	(TRAT1)	
was	used	to	identify	the	majority	of	the	responding	Treg	
and	then	applied	to	responding	Tconv	population	(Figure	
7c).	The	Treg-	defined	gate	was	able	to	identify	72%	of	the	
responding	Treg	as	compared	to	0·09%	responding	Tconv.	
These	markers	were	also	discriminatory	when	used	in	a	
UMAP	projection	(Figure	7d).

DISCUSSION

Ag-	responding	and	non-	responding	Treg	and	Tconv	cells	
were	 distinguished	 by	 the	 single-	cell	 gene	 expression	
techniques.	 Algorithms	 based	 on	 the	 expression	 of	 less	
than	20 genes	could	accurately	identify	responding	Tregs	
from	non-	responding	Treg	and	responding	Tconv	cells.

We	developed	a	mixed	PBMC	Ag-	stimulation	culture	
assay	 that	 allowed	 us	 to	 track	 differentially	 dye-	labelled	
Treg	and	Tconv.	Responding	and	non-	responding	Treg	and	
Tconv	 could	 be	 identified	 and	 sorted	 via	 their	 label	 and	
dye	 dilution	 allowing	 single-	cell	 transcriptomic	 analysis	
of	the	four	populations.	We	used	this	approach	to	mimic	
in vitro	 antigen	 stimulation	 assays	 that	 use	 proliferation	
as	 their	 readout.	 We	 chose	 methods	 for	 semi-	targeted	
(RNAseq	on	a	relatively	large	panel	of	genes)	and	a	non-	
targeted	RNAseq	approach	for	the	gene	expression	analy-
ses	so	that	we	could	assess	the	merits	of	these	methods	in	
distinguishing	a	limited	number	of	related	cell	types	and	
provide	validation	of	findings	in	multiple	methods.

The	semi-	targeted	Rhapsody	method	yielded	four	clus-
ters,	 each	 highly	 enriched	 for	 one	 of	 the	 cell	 types.	The	
non-	targeted	SMARTseq	method	yielded	two	very	distinct	
clusters	separating	responding	and	non-	responding	cells.	
Examining	 the	 genes	 that	 distinguished	 the	 responding	
and	non-	responding	clusters	in	the	SMARTseq	data	sug-
gests	that	the	responding	and	non-	responding	discrimina-
tion	was	determined	by	a	number	of	genes	that	were	not	
present	 in	 the	 targeted	 methods.	 However,	 the	 targeted	
Rhapsody	single-	cell	method	appeared	to	have	advantages	
in	 distinguishing	 the	 four	 related	 cell	 types.	The	 advan-
tages	 and	 disadvantages	 of	 the	 targeted	 Rhapsody	 and	
non-	targeted	10x	Genomics	methods	 for	high-	resolution	
analysis	of	primary	CD4+	T	cells	have	been	discussed	[20].

An	important	feature	of	this	study	was	the	ability	to	
distinguish	 the	 responding	 and	 non-	responding	 Treg	
and	Tconv	with	algorithms	that	used	data	from	a	small	
set	of	genes.	We	focussed	on	the	ability	to	discriminate	
the	 responding	 Tregs	 since	 these	 are	 relevant	 to	 toler-
ance	 inducing	 therapies.	 In	 total,	 27  genes	 could	 dis-
tinguish	the	 four	CD4+	T-	cell	populations.	Responding	
Tregs	 were	 distinguished	 from	 non-	responding	 Tregs	
using	an	algorithm	based	on	12 genes	(GAPDH,	ITGAE,	
ICOS,	 IL2RA,	 TYMS,	 LGALS1,	 IRF4,	 ANXA5,	 AURKB,	
BAX,	CXCR3	and	LAP3)	 in	both	the	Rhapsody	and	the	
SMARTseq	 methods.	 Responding	 Tregs	 were	 distin-
guished	 from	 responding	 Tconv	 using	 an	 algorithm	
based	 on	 seven	 genes	 (FOXP3,	 IKZF2,	 ITGA4,	 TRAT1,	
LGALS1,	IL1R2	and	CD7).	Therefore,	by	measuring	ex-
pression	of	18 genes,	it	was	possible	to	provide	an	esti-
mate	of	the	frequency	of	Ag-	responding	Tregs	within	a	
mixed	CD4+	T-	cell	culture.	In	all,	24	of	the	genes	were	
tested	in	the	targeted	Biomark	qPCR	and	15	were	con-
firmed	to	distinguish	the	populations.	Moreover,	several	
of	the	genes	also	differed	at	the	protein	level	as	demon-
strated	by	flow	cytometry.	It	should,	therefore,	be	possi-
ble	 to	 design	 efficient	 and	 cost-	effective	 methods	 with	

F I G U R E  7  Verification	of	signature	genes	to	distinguish	cell	types	by	Multiplex	qPCR	(Biomark)	and	FACS.	(a)	Heatmap	showing	the	
expression	of	signature	genes	in	the	four	cell	types	(Tconv,	non-	responding	(coral),	Treg,	non-	responding	(royal	blue),	Tconv,	responding	
(dark	red)	and	Treg,	responding	(dark	blue))	measured	by	Biomark.	The	signature	genes	are	ordered	from	top	to	bottom	according	to	the	cell	
type	they	denote:	non-	responding	Treg	versus	Tconv,	responding	Treg	versus	Tconv	and	Treg,	non-	responding	versus	responding	(as	shown	
at	the	right	of	the	heatmap).	(b)	UMAP	visualization	of	the	cell	types	after	Biomark	analysis	using	genes	that	were	significantly	different	
between	cell	types	in	the	Biomark	analysis	(FOXP3,	IL2RA,	IL7R,	IKZF2,	GIMAP5,	TCF7,	TRAT1,	IL1R2,	GAPDH,	ICOS,	LGALS1,	IRF4,	
AURKB,	BAX	and	CXCR3);	cells	are	coloured	as	in	(a).	(c)	Exemplary	FACS	gating	strategy	allowing	the	distinction	of	responding	Treg	from	
responding	Tconv	after	a	5-	day	stimulation	with	SEB	using	the	markers	IL2RA,	CD127	(IL7R),	TRAT1,	ITGA4,	FOXP3	and	IKZF2.	The	top	
panels	show	the	gates	set	to	select	Treg	(blue	gates)	and	the	bottom	panels	shows	the	same	gates	applied	to	Tconv.	The	most	left	top	and	
bottom	panels	show	gating	of	responding	cells	(blue	on	top	for	Tregs	and	red	on	bottom	for	Tconv).	Frequencies	in	the	right	panels	refer	to	
the	frequency	of	CD4+CD25++CD127lowTRIMlowFOXP3+++IKZF2+++	cells	out	of	all	CD4+CD25++CD127low	cells	for	the	responding	Treg	
(72%)	and	responding	Tconv	(0·09%).	(d)	UMAP	visualization	of	responding	Treg	and	Tconv	cells	from	1	donor	analysed	by	FACS	using	
compensated	fluorescent	intensities.	In	the	top	left	panel,	the	cell	types	are	shown	(Tconv	in	red,	Treg	in	blue).	All	the	other	panels	show	the	
expression	of	the	markers	used	for	the	analysis.	The	colours	represent	a	relative	scale	of	fluorescent	intensities,	from	dark	blue	(low)	over	
light	blue	and	red	to	yellow	(high)
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minimal	 manipulation	 and	 without	 the	 requirement	
for	FACS	 isolation	of	 cells	 from	whole	blood	 to	obtain	
a	measure	of	Ag-	responding	Tregs.	A	 limitation	of	 the	
study	 is	 that	we	only	used	proliferation	and	5-	day	cul-
ture	assays	as	our	measure	of	response	and	it	is	unclear	
whether	discriminatory	algorithms	could	be	developed	
for	 shorter	 stimulation	 assays,	 other	 assay	 types	 or	 in 
vivo	responding	cells.

The	algorithms	that	separated	Treg	and	Tconv	included	
canonical	Treg	and	Tconv	markers	such	as	FOXP3,	IKFZ,	
CTLA4,	IL2RA	and	IL7R	plus	a	number	of	other	genes	so	
far	 not	 described	 as	 Treg	 or	 Tconv	 markers.	 The	 typical	
activation-	induced	genes	IL2RA	and	ICOS	were	found	in	
the	signature	allowing	to	distinguish	the	activation	state	
of	 Treg,	 again	 together	 with	 a	 number	 of	 novel	 marker	
genes.	 Our	 forward	 approach,	 defining	 the	 transcrip-
tome	 signatures	 from	 defined	 FACS	 sorted	 populations,	
is	unique	so	far.	Transcriptomic	signatures	for	Tregs	have	
been	 described	 for	 bulk	 cells,	 using	 defined	 populations	
of	 Treg	 and	 Tconv,	 memory	 or	 naïve,	 with	 or	 without	
stimulation	 and	 using	 Affimetrix	 and	 Nanostring.	 They	
contained	 31  genes	 that	 included	 FOXP3	 and	 IL7R	 plus	
a	number	of	other	genes	[21].	Others	have	applied	single-	
cell	approaches	to	whole	human	CD4+	T	cells	[22]	or	 to	
FACS-	sorted	 Tconv	 and	 Treg	 from	 mouse	 and	 humans	
[23].	 These	 studies	 also	 show	 the	 importance	 of	 canon-
ical	 markers	 to	 distinguish	 Treg	 from	 Tconv.	 Zemmour	
et	al	 further	demonstrated	a	sizeable	presence	of	 furtive	
Treg,	 which	 shared	 features	 with	 Tconv.	 Although	 the	
fresh	isolation	by	Zemmour	et	al	and	our	in	vitro	culture	
and	cell	sorting	approach	differed	substantially,	it	is	pos-
sible	that	the	Treg	observed	within	the	Tconv	clusters	rep-
resent	furtive	Treg.	We	expect	that	the	markers	described	
in	our	study	will	facilitate	the	definition	of	Treg	and	Tconv	
in	response	to	an	Ag	stimulus	or	in	resting	conditions	in	
similar	studies	in	the	future.

Novel	 genes	 found	 in	 Tregs	 were	 identified	 in	 our	
study.	 ZBED2	 was	 observed	 in	 around	 half	 of	 the	 re-
sponding	 Tregs	 but	 not	 in	 the	 non-	responding	 Tregs.	
It	 had	 even	 higher	 expression	 in	 responding	 Tconv	 as	
compared	 to	 Treg.	 ZBED2	 is	 a	 sequence-	specific	 tran-
scriptional	 repressor	 of	 IFN-	stimulated	 genes,	 which	
occurs	 through	 antagonism	 of	 IFN	 regulatory	 factor	
1	 (IRF1)-	mediated	 transcriptional	 activation	 [24].	 To	
our	 knowledge,	 ZBED2  has	 not	 previously	 been	 re-
ported	in	Tregs.	Also,	of	interest	are	the	LGALS1 gene,	
that	 encodes	 the	 lectin	 Galectin-	1,	 and	 the	 CD7  gene,	
which	 encodes	 the	 Galectin-	1	 receptor.	 LGALS1	 was	
upregulated	 in	 responding	 Treg	 as	 compared	 to	 non-	
responding	 Treg	 and	 downregulated	 as	 compared	 to	
responding	Tconv,	as	described,	 [25]	whereas	CD7	was	
upregulated	 in	 responding	 and	 non-	responding	 Treg	
compared	 to	Tconv.	 Galectin-	1	 is	 reported	 to	 attenuate	

NF-	kB	 activation	 through	 a	 feedback	 loop	 mechanism	
and	is	expressed	on	T	cells	[26].	Another	so	far	uniden-
tified	Treg-	specific	gene	 found	preferentially	expressed	
in	Treg	is	TXK.	The	resting	lymphocyte	kinase	Txk	is	a	
member	of	non-	receptor	tyrosine	kinases	that	facilitated	
downstream	signalling	after	TCR	or	other	receptor	acti-
vation	and	it	so	far	only	described	to	be	expressed	in	T	
or	NK	cells	[27].	FYB	is	another	gene	whose	product	reg-
ulates	 signalling	 downstream	 of	 the	TCR	 and	 that	 has	
not	yet	been	described	to	be	preferentially	expressed	in	
Treg.	The	molecular	adapter	Fyb/Slap	regulates	integrin	
clustering	and	adhesion,	coupling	TCR	stimulation	and	
avidity	 modulation	 [28].	 Here	 we	 find	 higher	 FYB	 ex-
pression	 in	responding	Treg	 than	 in	responding	Tconv.	
The	TRAT1 gene	that	encodes	TRIM	was	particularly	ef-
fective	as	both	a	transcriptional	and	FACS	marker.	It	has	
not	been	previously	described	as	a	marker	to	distinguish	
Treg	 and	 Tconv.	 TRIM	 was	 only	 weakly	 expressed	 in	
both	non-	responding	and	responding	Treg,	but	strongly	
expressed	in	non-	responding	and	responding	Tconv.	Its	
addition	 to	 the	 FACS	 panel	 along	 with	 CD25,	 CD127,	
FOXP3	and	IKFZ	provided	a	very	effective	selection	of	
responding	 Treg	 from	 responding	 Tconv.	 Although	 a	
membrane	protein,	its	surface	portion	is	very	short	and,	
therefore,	the	use	of	TRIM	as	a	marker	for	sorting	Treg	
may	not	be	feasible.

The	gene	sets	we	described	here	provide	an	important	
basis	to	classify	cell	types	from	future	whole	CD4+	T-	cell	
single-	cell	 transcriptome	data	and	 therefore	are	a	useful	
resource	to	characterise	T-	cell	responses	in	health	and	dis-
ease	and	after	immune	intervention.
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