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The involvement of sympathoadrenal axis activity in obesity onset was investigated using the experimental model of treating
neonatal rats with monosodium L-glutamate. To access general sympathetic nervous system activity, we recorded the firing rates
of sympathetic superior cervical ganglion nerves in animals. Catecholamine content and secretion from isolated adrenal medulla
were measured. Intravenous glucose tolerance test was performed, and isolated pancreatic islets were stimulated with glucose and
adrenergic agonists. The nerve firing rate of obese rats was decreased compared to the rate for lean rats. Basal catecholamine
secretion decreased whereas catecholamine secretion induced by carbachol, elevated extracellular potassium, and caffeine in the
isolated adrenal medulla were all increased in obese rats compared to control. Both glucose intolerance and hyperinsulinaemia
were observed in obese rats. Adrenaline strongly inhibited glucose-induced insulin secretion in obese animals. These findings

suggest that low sympathoadrenal activity contributes to impaired glycaemic control in prediabetic obese rats.

1. Introduction

Obesity is a worldwide epidemic and the most important
factor in metabolic syndrome onset. This syndrome is
part of a group of comorbid pathologies that include in-
sulin resistance, type 2 diabetes, and hypertension [1, 2].
According to the literature, the incidence of these diseases
could double by the year 2030 [3].

Over the past decade, the central nervous system (CNS)
has been recognised as a key player in controlling energy
homeostasis [4]. Although other brain areas are important,
the hypothalamus has been identified as the pivotal structure
regulating food intake and energy balance [5]. The arcuate
hypothalamic nucleus (ARC) senses peripheral nutrient and
hormonal signals, including insulin and leptin, which are
well-known adiposity signals [6, 7]. The ARC integrates

these peripheral signals, and this information is relayed to
several second-order hypothalamic targets that modulate the
autonomic nervous system (ANS) [8, 9].

The ANS plays a key role in homeostatic control, includ-
ing regulating heart rate, body temperature, blood pressure,
and respiration [10]. The ANS is primarily an efferent system
that transmits impulses from the hypothalamus to regulate
peripheral organ systems. The ANS is further subdivided into
two principal components, the parasympathetic (PNS) and
sympathetic (SNS) nervous systems. In general, activation of
the splanchnic nerve in the SNS mediates catabolic processes,
whereas stimulation of the vagus nerve in the PNS mediates
anabolic responses [11]. According to Teff, the central
control of insulin secretion is a well-known example of these
opposing processes, as vagal activation enhances insulin
release from pancreatic beta cells, whereas noradrenaline
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released from the SNS inhibits this process [11]. Several
studies have demonstrated a relationship between the SNS
and obesity [10, 12, 13]. Low SNS activity has been proposed
as a risk factor for future body weight gain, as classically
demonstrated by reports from Bray and collaborators that
were based on experimental evidence in rodents showing that
lesions in the hypothalamus lead to low SNS activity and
morbid obesity [14, 15].

The sympathoadrenal system includes the SNS and the
chromatffin cells from the adrenal medulla, which secretes
catecholamines (primarily adrenaline) into the bloodstream
[16]. Chromaffin cells are cholinergically innervated by
the splanchnic nerve from the SNS; acetylcholine released
upon stimulation of this nerve activates neuronal cholinergic
receptors in chromaffin cells, thereby inducing membrane
depolarisation and triggering catecholamine secretion [17].

Once secreted, the catecholamines bind to cell-surface
a- and p-adrenergic receptors. In general, activation of
B-adrenergic receptors induces lipolysis, bronchodilation,
vasodilation, thermogenesis, and increased cardiac output;
on the other hand, activating a-adrenergic receptors induces
vasoconstriction and inhibits insulin secretion [18]. High
insulin concentrations in fasting and fed states trigger
insulin resistance. Increased insulin secretion leads to altered
receptor function or postreceptor defects in insulin signalling
[19]. Therefore, pharmacotherapeutic approaches that target
insulin secretion and/or augment sympathetic output have
been pursued in an attempt to either promote weight loss or
attenuate weight gain [20]. The purpose of the present study
was to investigate sympathoadrenal function and its effect in
regulating insulin secretion in pre-diabetic obese rats.

2. Material and Methods

2.1. Animals. All animal protocols were performed in accor-
dance with the precepts of the Brazilian College of Animal
Experimentation (COBEA) and Brazilian Federal Law. Once
a day during the first 5 days after birth, monosodium L-
glutamate (MSG, 4 mg/g body weight) was injected subcu-
taneously into the cervical area of Wistar rat pups. Control
animals received saline solution. The pups were weaned at
21 days of age, and only males were used in the study.
Throughout the protocol period, the animals received water
and commercial chow (Nuvital, Curitiba, Brazil) ad libitum
(except when animals were fasted) and were placed in an
environmentally controlled room maintained at 23 + 3°C
with a 12-hour light/12-hour dark photocycle (with the
lights on from 07:00 to 19:00 h.).

2.2. Obesity. To evaluate the onset of obesity, 90-day-old
rats were anaesthetised by a lethal intraperitoneal injection
of sodium pentobarbital (45mg/100g body weight). The
epididymal and retroperitoneal fat pads were removed,
rinsed, and weighed to estimate obesity induced by MSG
treatment [21]. The Lee index was calculated using the
formula [(body weight)'/3/(nasoanal length)] x 1000 (where
body weight and length are in g and c¢m, resp.) and used as a
predictor of obesity in MSG rodents [22].
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2.3. Electrical Sympathetic Activity. After fasting for 12 hrs,
8 rats from each experimental group were anesthetised
with thiopental (45 mg/kg). Following the method of Leon-
Quinto et al., the sympathetic branch nerve from the
superior ganglion was dissected and placed on a pair of
hook-shaped silver recording electrodes (0.6 mm diameter)
[23]. The nerve was covered with silicone oil to prevent
dehydration. The electrode was connected to an electronic
device (Bio-Amplificator, Insight, Riberao Preto, Brazil) that
amplified the electrical signal up to 10,000 times after
filtering out low and high frequencies with a 1-80 kHz band-
pass filter. The neural output signal was acquired with an
Insight interface (Insight), viewed online, and stored on a
personal computer using a software program from Insight.
During data acquisition, the animals were placed in a Faraday
cage to block external electromagnetic interference. After
stabilisation, 40 recording frames were analysed from the
signal (over 5-10 minutes) for spike counting. Nerve activity
was quantified as the number of spikes counted during 5
seconds. For each rat, the average number of spikes per 5
seconds counting trial was used to calculate nerve firing rate.

2.4. Adrenal Glands. Both adrenal glands were removed and
weighed. During handling, the glands were kept on an ice
bath in standard Krebs-HEPES solution containing (in mM)
Cl-, 154.2; Na*, 144.0; Ca?*, 2.5; Mg*", 1.18; SO4%, 1.2
K*, 3.5; glucose, 11.1; HEPES, 25.0; bovine serum albumin
(BSA) 0.5%. The right glands from both experimental
groups (n = 15 for each group) were used to measure the
total catecholamine (adrenaline and noradrenaline) content
using the trihydroxyindole fluorescence method [24]. The
parameters used were 420 nm for excitation and 510 nm
for emission. For total catecholamine content, the glands
were homogenised in 350 uL of 10% acetic acid using an
ultrasonic processor and centrifuged at 10,000 xg for 1 min.
The data were obtained by plotting the values on a linear
regression line generated from a standard adrenaline curve.
The left adrenal glands were used for experiments measuring
secretion (n = 10 for each group). The adrenal medulla
was dissected using a stereoscopic lens and ophthalmological
surgical instruments. To aid in manipulation, the isolated
medullae were impaled on steel needles and left to rest for
40 minutes in standard Krebs-HEPES solution.

2.5. Stimulation of Catecholamine Secretion. Costar 96-well
cell culture plates were used. Each well contained 200 uL
of standard Krebs-HEPES or modified Krebs-HEPES solu-
tion containing 100 uM carbachol, a synthetic analogue
of acetylcholine, 25mM caffeine, a well-known inducer
of calcium release from the endoplasmic reticulum, and
elevated (50 mM) K*, which triggers plasma membrane
depolarisation. The pH of these solutions was maintained
between 7.0 and 7.2 at room temperature. The medullae
were incubated three times for 5 minutes each in a three-
well sequence in standard Krebs-HEPES solution and then
incubated for 5 minutes in modified Krebs-HEPES solution.
The medullae were then placed in 220 yL of 10% acetic acid
and homogenised by sonication (at 60 MHz for 10 min) to
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extract nonsecreted catecholamines. Acetic acid (20 yL) was
added to each well to preserve the secreted catecholamines.
Samples of secreted and remaining catecholamines were
assayed by the fluorometric method described above.

2.6. Western Blot Analysis. Another batch of left adrenal
glands (n = 10 for each group) was processed for Western
blot analysis to quantify tyrosine hydroxylase (TH) and a-
PKC protein levels as previously reported [25], with some
modifications. Briefly, the glands were homogenised in
0.3 mL phosphate buffer (pH 7.4) containing 1 yL protease
inhibitor cocktail (1 mg/mL each of aprotinin, leupeptin,
and trypsin inhibitor) and centrifuged at 1120 xg for
15 min at 4°C. Protein concentration in the supernatant was
determined by the Bradford method [26]. The proteins in
the supernatant were separated by SDS-PAGE using 20 and
100 yg total protein for TH and a-PKC, respectively. The
proteins were electroblotted to a nitrocellulose membrane
(Hybond-P ECL membrane, Amersham Biosciences, UK),
and the membranes were incubated with Tris-buffered saline
(TBS) containing 5% (w/v) nonfat dry milk for 90 min to
block nonspecific binding sites. The membranes were then
washed with TBS and incubated overnight at 4°C in primary
antibody (monoclonal mouse anti-TH, Sigma-Aldrich, USA,
or mouse anti-a-PKC, Santa Cruz Biotechnology, USA)
diluted at 1:2000 in TBS containing 0.5% nonfat dry
milk. The membranes were then washed and incubated in
secondary HRP-conjugated goat antimouse antibody (Santa
Cruz Biotechnology, USA) diluted at 1:2000 in TBS con-
taining 0.5% nonfat dry milk for 1 hr at room temperature.
Finally, the TH and a-PKC bands were visualised by chemilu-
minescence (ECL Plus Kit, Amersham Biosciences, Sweden)
followed by exposure to autoradiographic film (Hyperfilm
ECL, Amersham Biosciences). The area and intensity of the
bands were quantified using Abeletro software (UFJF-Juiz de
Fora, Brazil). Except where stated otherwise, all reagents were
purchased from Sigma Chemical Co. (St. Louis, Mo, USA).

2.7. Plasma Adrenaline Measurement. Blood samples were
collected from 10 rats per group. After separating the plasma
(200-300 uL per animal), it was stored under refrigeration
and transferred to microtubes containing sodium metabisul-
fite antioxidant. High-performance liquid chromatography
(HPLC) was used to measure the adrenaline contained in
100 L samples [27].

2.8. Glucose Tolerance Test. The intravenous glucose tol-
erance test (ivGTT) was performed after a 12-hour fast
(from 19:00 to 07:00 h). The rats (n = 10 for each group)
underwent surgery to implant a cannula into the right
jugular vein. At 24 hours after surgery, a glucose load (1 g/kg
body weight) was delivered throughout the cannula. Animals
in a second group received an intraperitoneal injection of the
a-adrenergic agonist oxymetazoline (Oxy, 16 nM/kg body
weight) 5min prior to the glucose load. Blood samples
(300 uL) were collected from the same cannula before the
glucose load (t0) and 5 (t5), 15 (t15), 30 (t30), and 60 (t60)
min after the glucose injection; the t0 sample was used to

TaBLE 1: Effects of neonatal MSG treatment on adults rats.

Control MSG

Body weight (g) 278.60 = 4.41 208.60 = 3.31*
Lee index 281.20 = 1.07 300.70 + 1.62*
Epididymal fat pad N
(/100 g bw) 1.58 £ 0.05 2.53 £ 0.06
Retroperitoneal fat pad N
(/100 g bw) 1.34 = 0.04 2.10 = 0.04
Glycaemia (mg/dL) 101.80 + 2.26 108.60 + 6.99
Insulinaemia (ng/mL) 5.30 + 0.72 15.06 + 1.80*
Adrenal glands (mg) 23.9 +0.39 12.06 + 0.36*
Adrenal glands N
(mg/100 g bw) 8.57 £ 0.12 5.79 £ 0.14

Data represent mean + SEM. To all parameters, 20 rats were used for both
groups. student’s ¢-test was used. * P < 0.05 compared to control.

measure plasma glucose and insulin concentrations by the
glucose-oxidase technique (Kit Bio Diagnostic Chemistry
Industry, Parana-Brazil) and RIA, respectively, [28, 29].

2.9. Pancreatic Islet Isolation and Insulin Secretion. Rat pan-
creatic islets were isolated as previously described [30].
Batches of 4 islets (n = 20 batches of islets from 5 different
rats) were preincubated for 60 min in 1 mL normal Krebs
solution containing (in mM): 120 mM NaCl; 4.8 mM KC;
2.5mM CaCly; 1.2mM MgCly; 24 mM NaHCOs; 5.6 mM
glucose. This solution was gassed with O,/CO; (95/5%) to
maintain pH at 7.4 and supplemented with BSA (0.12%,
w/v) and used in the following steps. After equilibrating
to a low glucose concentration solution, the islets were
incubated for 60 min in Krebs solution containing 5.6 or
8.3 or 16.7mM glucose. After preincubation, other islet
batches were incubated for 60 min in the presence of the
a-adrenergic agonist. Adrenaline (1.0 uM) was added to the
islets incubated in the Krebs solution with 16.7 mM glucose
and 0.1 uM of the adrenergic S-blocker propranolol, which
was used to avoid S-adrenoceptor potentiation effects on
insulin secretion [31]. This concentration of adrenaline
(L.ouM) blocks glucose-induced insulin secretion [32].
Insulin concentrations were measured by RIA from aliquots
prepared from the incubations.

2.10. Statistical Analysis. All results are presented as the mean
+ SEM. Differences were considered statistically significant
when P < 0.05. One-way ANOVA with Bonferroni post
hoc test and Student’s ¢-test were performed using GraphPad
Prism version 5.00 for Windows (GraphPad Software, San
Diego, Calif, USA).

3. Results

As shown in Table 1, MSG treatment increased the epididy-
mal and retroperitoneal fat pad mass by 60.5 and 57.2%,
respectively, compared with control animals (P < 0.001).
Indeed, the Lee index increased by 6.9% in obese rats
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FIGURE 1: Sympathetic activity in MSG-obese rats. The bars represent the frequency of nerve discharges in mean + SEM (n = 8 animals
per group). Student’s ¢-test was used. *P < 0.05 compared to control, by Student’s ¢-test. Representative records of nerve discharges from a

control and MSG-obese animal are shown.
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FIGURE 2: Adrenal medulla total catecholamine content, basal catecholamine secretion, and blood circulating adrenaline concentration in
MSG-obese rats. The bars represent mean + SEM (n = 10-15 animals per group). *P < 0.05 compared to control, by Student’s ¢-test.

compared with controls (P < 0.05). These results confirm
the effectiveness of neonatal MSG treatment in inducing
adult obesity. Obese rats showed a nearly 3-fold increase
in insulinaemia compared with control rats (P < 0.05);
in contrast, glycaemia was unchanged in both groups.
Moreover, adrenal gland mass was reduced 49.5% in pre-
diabetic obese rats compared with control rats (P < 0.001).

Recordings of sympathetic nerve activity are shown in
Figure 1. In both resting, and fasting states, the sympathetic
firing rate was 58.8% lower in pre-diabetic obese rats
compared with control rats (P < 0.05).

Figure 2 shows total catecholamine stores in the adrenal
glands, basal catecholamine secretion from isolated adrenal

medullae and fasting plasma adrenaline levels. Total adrenal
catecholamine content was increased by 40.3% in pre-
diabetic obese rats compared with controls (P < 0.01).
However, the pre-diabetic rats showed a 60% reduction in
basal catecholamine secretion from the adrenal medulla and
32% lower plasma adrenaline concentration compared with
the control animals (P < 0.05).

Figure 3 shows that carbachol, caffeine, and potassium
each induced higher levels of catecholamine release in obese
rats compared with control rats. Specifically, carbachol,
caffeine, and potassium led to a 1.7-, 2.4-, and 2.5-fold
increase in catecholamine secretion, respectively, from pre-
diabetic obese adrenal medullae relative to controls.
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FIGURE 3: Adrenal catecholamine secretion in MSG-obese rats. The bars represent mean + SEM (n = 8-10 animals per group). *P < 0.05

compared to control, by Student’s ¢-test.

As shown in Figure 4, TH protein levels decreased 37.6%
in pre-diabetic rats compared with control rats (P < 0.05). In
contrast, a-PKC protein levels did not differ between the two
groups.

Figure 5 shows that isolated islets from both groups
responded in a dose-dependent manner when stimulated
by glucose; however, the dose-response curve was much
steeper in islets from pre-diabetic obese animals than in
lean animals. In low (5.6 mM) glucose, insulin secretion
was similar between obese and control islets. On the
other hand, pre-diabetic obese islets secreted 127 and
56% more insulin in high-glucose solutions of 8.3 and
16.7mM, respectively, compared with control pancreatic
islets (P < 0.05). Adrenaline inhibited glucose-stimulated
insulin secretion in islets from both groups; however, this
inhibition was more pronounced in islets obtained from
pre-diabetic obese rats. The insulin secretion stimulated by
16.7 mM glucose was inhibited by 72 and 47% in pancreatic
islets isolated from pre-diabetic obese and control animals,
respectively, (P < 0.05).

Figure 6 shows the results of the ivGTT test. Following
a glucose load of 1 g/kg body weight, glycaemia increased in
both groups; however, in pre-diabetic obese rats, the plasma
glucose concentration was 78% higher than the control
group (P < 0.05) at 5 min. The fasting glycaemia was restored
at 30min and was maintained until the latest time point
measured (60 min) for both groups. The glucose intolerance
in pre-diabetic obese rats can be clearly appreciated by con-
sidering the area under the curve (AUC) of glycaemia during
ivGTT (Figure 6), which shows that obese animals had 65%
higher glycaemia than control rats (P < 0.05). Moreover,
oxymetazoline induced 30 and 93% more AUC glycaemia in
pre-diabetic obese and control rats, respectively, (P < 0.05).

Blood insulin levels during ivGTT are also presented in
Figure 6 and show that plasma insulin levels increased in

parallel with the rise in glucose levels in both groups; more-
over, as with glucose levels, plasma insulin levels increased
to a greater magnitude in obese rats. Plasma insulin levels
were 280, 76, and 190% greater in pre-diabetic obese rats at
5, 15, and 60 min, respectively, relative to control rats (P <
0.05). Insulin AUC was 320% higher in obese rats compared
with control rats (P < 0.05). The oxymetazoline effect
on insulinaemia is also presented as AUC data in Figure 6.
Oxymetazoline inhibited insulin levels by 76 and 35% in pre-
diabetic obese and control animals, respectively, (P < 0.05).

4. Discussion

Energy homeostasis is regulated by the neural brain network,
principally in the hypothalamus [6, 7]. In rodents, lesions
in the ARC during the neonatal period lead to obesity
in adulthood [33]. A frequently used model of obesity is
neonatal administration of MSG; this treatment kills neurons
in the ARC [33, 34]. These pre-diabetic obese rats have
massive adipose tissue accumulation, delayed development,
and elevated insulin levels [35-37], all of which were also
found in the present study. Low levels of growth hormones
are found in obese animals and are responsible for their
reduced size and muscle mass. Insufficient circulating growth
hormone levels also contributed to the reduced lipolytic
capacity that obese animals exhibit [35, 38].

Reduced SNS activity plays an important role in several
rodent models of obesity [15]. Genetic models of obesity
exhibit decreased SNS activity to brown adipose tissue (BAT)
and other peripheral organs [15, 39]. Levin demonstrated a
reduced turnover of noradrenaline in organs, including the
brain, of obesity-prone rats that preceded any increase in
body weight [40]. SNS dysfunction has also been observed in
obese humans. Saad et al. showed that sympathetic activity
is an indicator of energy expenditure in Caucasians [41].
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Figure 4: TH and a-PKC expression in MSG-obese rats. The (a,b) bars represent mean + SEM (n = 6-9 animals per group). *P < 0.05
compared to control, by Student’s ¢-test. Representative Western blots of TH and PKC are shown in the middle and lower panels, respectively.
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FIGURE 5: Glucose-stimulated insulin secretion and the inhibitory action of adrenaline on insulin secretion in MSG-obese rats. For each
glucose concentration, 20 measurements, from islets isolated from 5 animals were performed. The data are shown as mean = SEM. *P < 0.05
compared to control, by Student’s ¢-test.
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On the other hand, some authors have reported high SNS
activation to the heart, blood vessels, and kidneys, which
might be critical in the development of obesity-related
hypertension [42]. Indeed, Davy and Orr reviewed SNS
activity in human obesity and discussed the possibility of
SNS outflow being differentiated according to its target
organ, suggesting tissue specificity [10]. Direct evidence of
weak SNS activity was demonstrated in the present study by
recording the sympathetic firing rate in the superior cervical
ganglion of pre-diabetic obese rats. However, data obtained
from exercised, food-deprived, or fasted animals, as well as
animals treated with a sympathoexcitatory agent, showed

that when sufficiently stimulated, the SNS of MSG-obese
rodents can activate sufficiently to drive physiological
responses that are comparable to lean animals [21, 43—45].
Failed sympathoadrenal function has been described as
an important feature in the onset of obesity [46—48]. Accord-
ing to Jocken and Blaak, impaired catecholamine-induced
lipolysis can contribute to the adipose tissue development
[49]. Data obtained in our laboratory have demonstrated
that MSG-obese mice have decreased basal catecholamine
secretion from the adrenal medulla compared to nor-
mal mice [50]. Indeed, MSG-obese mice have diminished
adrenaline excretion and noradrenaline turnover in BAT



compared to control mice [51, 52]. Nicotine significantly
increases noradrenaline turnover, BAT oxygen consumption,
and resting metabolic rate and significantly reduces body
weight in MSG-obese mice without affecting food intake
[43]. In support of a general reduction in SNS activity
in obesity, we found decreased plasma circulating levels of
adrenaline in pre-diabetic obese rats. Some authors have
concluded that these results indicate low sympathetic activity
that leads, at least in part, to decreased energy expenditure
and fat mobilisation [51, 52].

Our results also show that obese rats have an increased
catecholamine secretion response to all of the secretagogues
that were tested in the adrenal medulla incubations. We
believe that excitation-secretion coupling in adrenal chro-
maffin cells of pre-diabetic obese rats is physiologically pre-
served, as catecholamine secretion could still be induced by
membrane depolarisation (triggered by elevated extracellular
potassium), activation of cholinergic receptors (by carba-
chol), and calcium release from intracellular stores (triggered
by caffeine). The relatively high total catecholamine content
that we measured in obese rats may be the result of low
SNS activity, which contributes to reduced catecholamine
secretion.

TH catalyses the rate-limiting step in the biosynthe-
sis of the catecholamines dopamine, noradrenaline, and
adrenaline [53]. We previously reported that adult obese
mice have decreased expression of the enzymes TH and
dopamine beta-hydroxylase [25]. Similar TH results were
observed in obese rats. The results of our current study
also show that, despite this decrease in TH expression,
catecholamine content is increased in the adrenal gland of
prediabetic obese rats, which can be the result of decreased
pre-synaptic stimulation of adrenal medulla chromaffin
cells. Dysfunction of the SNS efferent signal produces low
blood adrenaline levels, as observed in MSG-obese rats.
Furthermore, TH expression may be considered a marker
of cholinergic activity, as stimulation of acetylcholine recep-
tors induces both TH enzyme activation and TH protein
expression [54]. Acetylcholine released from the splanchnic
nerve interacts with cholinergic receptors in the adrenal
medulla, leading to activation of several protein kinases,
including protein kinase C (PKC) [55], which catalyses TH
phosphorylation and TH gene transcription [53].

No significant difference in a-PKC expression was
observed in adrenal chromaffin cells of MSG-obese rats
compared to controls; however, additional studies of PKC
activity are needed to confirm this finding, as this kinase
is activated primarily via the muscarinic signalling pathway.
Indeed, Akaike et al. showed that PKC activation results
in potassium channel phosphorylation, which reduces the
channel’s conductance and consequently induces membrane
depolarisation, the latter of which contributes to increased
catecholamine secretion [56].

Disruption of glycaemia homeostasis is a hallmark of
obesity and is primarily attributed to insulin resistance [57—
59]. We found that MSG-obese rats are glucose intolerant,
confirming previously published results [36, 60, 61]. The
elevated insulin levels found in MSG-obese rats can reflect
insulin resistance. Molecular studies have demonstrated that
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MSG-obese animals have a decrease in signalling of their
insulin-stimulated IRS/PI3K/Akt pathway in muscle and
adipose tissue, which may be an important hallmark of
insulin resistance of those animals [62]. Indeed, insulin
binding to membrane receptors in liver, skeletal muscle, and
adipocytes is decreased in MSG-obese rats [61].

The high insulin levels in pre-diabetic obese rats play
a central role in fat cell proliferation and insulin resistance
[62]. White adipose tissue in MSG-obese rats has elevated
lipogenesis capacity and compensatory responsiveness to
insulin by the Cbl and IRS2 pathways, which may mediate
the insulin antilipolytic effect [62]. When MSG-obese rats
undergo early vagotomy (at 30 days of life), hyperinsuli-
naemia is blocked, and fat accumulation is dramatically
reduced [63]. Indeed, surgery to remove fat in 15-week-
old MSG-obese rats improved their lipid profile and insulin
resistance [64].

Furthermore, these results show that hyperinsulinaemia
in obese rats is sustained by increased glucose responsiveness
in isolated pancreatic islets. Increased responsiveness to
glucose by pancreatic islets is also a feature of other obesity
models and may be an adaptation to altered ANS tonus
to endocrine pancreas with high parasympathetic activity
[65, 66]. Early vagotomy prevents high-glucose-stimulated
insulin secretion in MSG-obese rats [36]. Indeed, pancreatic
islets from Zucker (fa/fa) rats, a genetic animal model of obe-
sity, also have a high response to glucose, and islets from these
animals have high levels of glucose utilisation and oxidation,
which contribute to their observed hyperinsulinaemia [67].

Alpha-adrenergic activation has an inhibitory effect on
glucose-stimulated insulin secretion, and this is accentuated
in islets obtained from pre-diabetic obese rats, indicating
that SNS tonus to islets may be reduced in obese rats. Islets
isolated from both ob/ob mice and Zucker (fa/fa) rats, two
genetic models of obesity, have higher responsiveness to
the inhibitory action of noradrenaline [68, 69]. Cruciani-
Guglielmacci et al. investigated an animal model of obesity
obtained by a high-fat diet and reported that these animals
developed severe glucose intolerance and insulin resistance
that were due to increased glucose-induced insulin secretion.
The authors further showed that injections of the a2-
adrenergic receptor agonist oxymetazoline (even at low
concentrations) reduced glucose-induced insulin secretion
in the obese group; this effect was not observed in the control
group. Low SNS activity in rats that received a high-fat
diet may be responsible for their islet hypersensitivity to
oxymetazoline, as concluded by the authors [70]. Our results
also showed that oxymetazoline causes a profound decrease
in blood insulin concentration in pre-diabetic obese rats,
which suggests that insulin secretion is potently inhibited.

5. Conclusions

Our data support the hypothesis that MSG-obesity onset is
dependent on reduced sympathetic tonus, including sym-
pathoadrenal axis activity; however, physiologically, adrenal
medulla function is preserved in these rats. Our data show
that the low SNS activity observed in pre-diabetic obese
rats leads to reduced basal catecholamine secretion from the



Experimental Diabetes Research

adrenal medulla, which reflects a decreased concentration
of plasma adrenaline. Indeed, the latter may contribute to
the pancreatic islet’s high sensitivity to adrenaline, indicating
that the inhibitory effect of catecholamines on insulin
secretion may be impaired in pre-diabetic obese rats. In
addition to helping understand the mechanisms underlying
obesity, this study may be helpful in developing strategies for
treating and preventing the onset of obesity and diabetes by
targeting sympathoadrenal axis activation.

Conflict of Interests

The authors have no real or perceived conflict of interests to
disclose.

Acknowledgment

This research was supported by the Brazilian Science Foun-
dations CNPq, CAPES, and Fundagdo Araucéria.

References

[1] T. Coll, R. Rodriguez-Calvo, E. Barroso et al., “Peroxisome
proliferator-activated receptor (PPAR) f/8: a new potential
therapeutic target for the treatment of metabolic syndrome,”
Current Molecular Pharmacology, vol. 2, no. 1, pp. 46-55, 2009.

[2] J. De Flines and A. J. Scheen, “Management of metabolic
syndrome and associated cardiovascular risk factors,” Acta
gastro-enterologica Belgica, vol. 73, no. 2, pp. 261-266, 2010.

[3] C. Vernochet, S. B. Peres, and S. R. Farmer, “Mechanisms
of obesity and related pathologies: transcriptional control of
adipose tissue development,” FEBS Journal, vol. 276, no. 20,
pp. 5729-5737, 2009.

[4] H. R. Berthoud and C. Morrison, “The brain, appetite, and
obesity,” Annual Review of Psychology, vol. 59, pp. 55-92, 2008.

[5] G. Williams, C. Bing, X. J. Cai, J. A. Harrold, P. J. King,
and X. H. Liu, “The hypothalamus and the control of energy
homeostasis: different circuits, different purposes,” Physiology
and Behavior, vol. 74, no. 4-5, pp. 683-701, 2001.

[6] A.Abizaid and T. L. Horvath, “Brain circuits regulating energy
homeostasis,” Regulatory Peptides, vol. 149, no. 1-3, pp. 3-10,
2008.

[7] S. Obici, “Minireview: molecular targets for obesity therapy in
the brain,” Endocrinology, vol. 150, no. 6, pp. 2512-2517, 2009.

[8] H. Yoshimatsu, M. Egawa, and G. A. Bray, “Sympathetic nerve
activity after discrete hypothalamic injections of L-glutamate,”
Brain Research, vol. 601, no. 1-2, pp. 121-128, 1993.

[9] Q. Gao and T. L. Horvath, “Neuronal control of energy
homeostasis,” FEBS Letters, vol. 582, no. 1, pp. 132-141, 2008.

[10] K.P.Davyand].S. Orr, “Sympathetic nervous system behavior
in human obesity,” Neuroscience and Biobehavioral Reviews,
vol. 33, no. 2, pp. 116-124, 2009.

[11] K. L. Teff, “Visceral nerves: vagal and sympathetic innerva-
tion,” Journal of Parenteral and Enteral Nutrition, vol. 32, no.
5, pp. 569-571, 2008.

[12] E. Ravussin and P. A. Tataranni, “The role of altered sympa-
thetic nervous system activity in the pathogenesis of obesity,”
Proceedings of the Nutrition Society, vol. 55, no. 3, pp. 793-802,
1996.

[13] N. Tentolouris, G. Argyrakopoulou, and N. Katsilambros,
“Perturbed autonomic nervous system function in metabolic
syndrome,” NeuroMolecular Medicine, vol. 10, no. 3, pp. 169—
178, 2008.

[14] G. A. Bray, D. A. York, and J. S. Fisler, “Experimental obesity:
a homeostatic failure due to defective nutrient stimulation of
the sympathetic nervous system,” Vitamins and Hormones, vol.
45, pp. 1-125, 1989.

[15] G. A. Bray, “Obesity, a disorder of nutrient partitioning: the
MONA LISA hypothesis,” Journal of Nutrition, vol. 121, no. 8,
pp. 1146-1162, 1991.

[16] J. B. Young, “Developmental origins of obesity: a sympathoad-
renal perspective,” International Journal of Obesity, vol. 30, no.
4, pp. S41-549, 2006.

[17] E Sala, A. Nistri, and M. Criado, “Nicotinic acetylcholine re-
ceptors of adrenal chromaffin cells,” Acta Physiologica, vol. 192,
no. 2, pp. 203-212, 2008.

[18] J. E. Silva and S. D. C. Bianco, “Thyroid-adrenergic interac-
tions: physiological and clinical implications,” Thyroid, vol. 18,
no. 2, pp. 157-165, 2008.

[19] S. Schenk, M. Saberi, and J. M. Olefsky, “Insulin sensitivity:
modulation by nutrients and inflammation,” Journal of Clini-
cal Investigation, vol. 118, no. 9, pp. 2992-3002, 2008.

[20] M. Lee and J. Korner, “Review of physiology, clinical man-
ifestations, and management of hypothalamic obesity in
humans,” Pituitary, vol. 12, no. 2, pp. 87-95, 2009.

[21] D. X. Scomparin, S. Grassiolli, A. C. Margal, C. Gravena, A.
E. Andreazzi, and P. C. F. Mathias, “Swim training applied at
early age is critical to adrenal medulla catecholamine content
and to attenuate monosodium l-glutamate-obesity onset in
mice,” Life Sciences, vol. 79, no. 22, pp. 2151-2156, 2006.

[22] L.L.Bernardis and B. D. Patterson, “Correlation between “Lee
index” and carcass fat content in weanling and adult female
rats with hypothalamic lesions,” Journal of Endocrinology, vol.
40, no. 4, pp. 527-528, 1968.

[23] T. Leon-Quinto, C. Magnan, and B. Portha, “Altered activity
of the autonomous nervous system as a determinant of
the impaired f-cell secretory response after protein-energy
restriction in the rat,” Endocrinology, vol. 139, no. 8, pp. 3382—
3389, 1998.

[24] K. L. Kelner, R. A. Levine, K. Morita, and H. B. Pollard, “A
comparison of trihydroxyindole and HPLC/electrochemical
methods for catecholamine measurement in adrenal chromaf-
fin cells,” Neurochemistry International, vol. 7, no. 2, pp. 373—
378, 1985.

[25] A.C.P. Martins, K. L. A. Souza, M. T. Shio, P. C. E. Mathias, P.
I. Lelkes, and R. M. G. Garcia, “Adrenal medullary function
and expression of catecholamine-synthesizing enzymes in
mice with hypothalamic obesity,” Life Sciences, vol. 74, no. 26,
pp. 3211-3222, 2004.

[26] M. M. Bradford, “A rapid and sensitive method for the
quantitation of microgram quantities of protein utilizing the
principle of protein dye binding,” Analytical Biochemistry, vol.
72, no. 1-2, pp. 248-254, 1976.

[27] A. M. Krstulovic, “Investigations of catecholamine meta-
bolism using high-performance liquid chromatography. Ana-
lytical methodology and clinical applications,” Journal of
Chromatography, vol. 229, no. 1, pp. 1-34, 1982.

[28] A. M. Scott, I. Atwater, and E. Rojas, “A method for the
simultaneous measurement of insulin release and B cell
membrane potential in single mouse islets of Langerhans,”
Diabetologia, vol. 21, no. 5, pp. 470-475, 1981.



10

(29]

(32]

(33]

(34]

(35]

(36

(44]

M. P. Hermans, W. Schmeer, and J. C. Henquin, “Modulation
of the effect of acetylcholine on insulin release by the
membrane potential on B cells,” Endocrinology, vol. 120, no.
5, pp. 1765-1773, 1987.

S. Grassiolli, M. L. Bonfleur, D. X. Scomparin, and P. C.
De Freitas Mathias, “Pancreatic islets from hypothalamic
obese rats maintain K+ATP channel-dependent but not -
independent pathways on glucose-induced insulin release
process,” Endocrine, vol. 30, no. 2, pp. 191-196, 2006.

A. C. Margal, S. Grassiolli, D. N. Da Rocha et al., “The
dual effect of isoproterenol on insulin release is suppressed
in pancreatic islets from hypothalamic obese rats,” Endocrine,
vol. 29, no. 3, pp. 445-449, 2006.

A. Sieg, J. Su, A. Mufioz et al., “Epinephrine-induced hyper-
polarization of islet cells without K ATP channels,” American
Journal of Physiology, vol. 286, no. 3, pp. E463-E471, 2004.

J. Bunyan, E. A. Murrell, and P. P. Shah, “The induction
of obesity in rodents by means of monosodium glutamate,”
British Journal of Nutrition, vol. 35, no. 1, pp. 25-39, 1976.

J. W. Olney, “Brain lesions, obesity, and other disturbances in
mice treated with monosodium glutamate,” Science, vol. 164,
no. 3880, pp. 719-721, 1969.

M. Dolnikoff, A. Martin-Hidalgo, U. F. Machado, F. B. Lima,
and E. Herrera, “Decreased lipolysis and enhanced glycerol
and glucose utilization by adipose tissue prior to development
of obesity in monosodium glutamate (MSG) treated-rats,”
International Journal of Obesity, vol. 25, no. 3, pp. 426433,
2001.

S. Balbo, S. Grassiolli, R. Ribeiro et al., “Fat storage is
partially dependent on vagal activity and insulin secretion of
hypothalamic obese rat,” Endocrine, vol. 31, no. 2, pp. 142—
148, 2007.

S. Grassiolli, C. Gravena, and P. C. de Freitas Mathias,
“Muscarinic M2 receptor is active on pancreatic islets from
hypothalamic obese rat,” European Journal of Pharmacology,
vol. 556, no. 1-3, pp. 223-228, 2007.

D. Maiter, L. E. Underwood, J. B. Martin, and J. I. Koenig,
“Neonatal treatment with monosodium glutamate: effects of
prolonged growth hormone (GH)-releasing hormone defi-
ciency on pulsatile GH secretion and growth in female rats,”
Endocrinology, vol. 128, no. 2, pp. 1100-1106, 1991.

J. B. Young and L. Landsberg, “Diminished sympathetic
nervous system activity in genetically obese (ob/ob) mouse,”
The American journal of physiology, vol. 245, no. 2, pp. E148—
E154, 1983.

B. E. Levin, “Reduced norepinephrine turnover in organs and
brains of obesity-prone rats,” American Journal of Physiology,
vol. 268, no. 2, pp. R389-R394, 1995.

M. E Saad, S. A. Alger, E. Zurlo, J. B. Young, C. Bogardus,
and E. Ravussin, “Ethnic differences in sympathetic nervous
system-mediated energy expenditure,” American Journal of
Physiology, vol. 261, no. 6, pp. E789-E794, 1991.

K. P. Davy and J. E. Hall, “Obesity and hypertension: two
epidemics or one?” American Journal of Physiology, vol. 286,
no. 5, pp. R803-R813, 2004.

T. Yoshida, K. Yoshioka, N. Hiraoka, and M. Kondo, “Effect
of nicotine on norepinephrine turnover and thermogenesis in
brown adipose tissue and metabolic rate in MSG obese mice,”
Journal of Nutritional Science and Vitaminology, vol. 36, no. 2,
pp. 123-130, 1990.

I. S. de Andrade, J. C. G. Gonzalez, A. E. Hirata et al., “Central
but not peripheral glucoprivation is impaired in monosodium
glutamate-treated rats,” Neuroscience Letters, vol. 398, no. 1-2,
pp. 6-11, 2006.

(45]

(61]

Experimental Diabetes Research

A. E. Andreazzi, D. X. Scomparin, F. P. Mesquita et al,
“Swimming exercise at weaning improves glycemic control
and inhibits the onset of monosodium L-glutamate-obesity in
mice,” Journal of Endocrinology, vol. 201, no. 3, pp. 351-359,
2009.

J. B. Young and I. A. MacDonald, “Sympathoadrenal activity
in human obesity: heterogeneity of findings since 1980,
International Journal of Obesity, vol. 16, no. 12, pp. 959-967,
1992.

A. Astrup, “The sympathetic nervous system as a target for
intervention in obesity,” International Journal of Obesity, vol.
19, supplement 7, pp. $24-528, 1995.

J. B. Young, “Programming of sympathoadrenal function,”
Trends in Endocrinology and Metabolism, vol. 13, no. 9, pp.
381-385, 2002.

J. W. E. Jocken and E. E. Blaak, “Catecholamine-induced
lipolysis in adipose tissue and skeletal muscle in obesity,”
Physiology and Behavior, vol. 94, no. 2, pp. 219-230, 2008.

A. C. P. Martins, H. E. Borges, R. M. G. Garcia, S. R. Carniatto,
and P. C. E Mathias, “Monosodium L-glutamate-induced
obesity impaired the adrenal medullae activity,” Neuroscience
Research Communications, vol. 28, no. 1, pp. 49-58, 2001.

T. Yoshida, H. Nishioka, and Y. Nakamura, “Reduced nore-
pinephrine turnover in brown adipose tissue of pre-obese
mice treated with monosodium-L-glutamate,” Life Sciences,
vol. 36, no. 10, pp. 931-938, 1985.

E S. M. Leigh, L. N. Kaufman, and J. B. Young, “Diminished
epinephrine excretion in genetically obese (ob/ob) mice and
monosodium glutamate-treated rats,” International Journal of
Obesity, vol. 16, no. 8, pp. 597-604, 1992.

S. C. Kumer and K. E. Vrana, “Intricate regulation of
tyrosine hydroxylase activity and gene expression,” Journal of
Neurochemistry, vol. 67, no. 2, pp. 443-462, 1996.

L. Diaz-Flores, R. Gutiérrez, H. Varela, F. Valladares, H.
Alvarez-Argiielles, and R. Borges, “Histogenesis and morpho-
functional characteristics of chromaffin cells,” Acta Physiolog-
ica, vol. 192, no. 2, pp. 145-163, 2008.

K. A. Albert, E. Helmer-Matyjek, and A. C. Nairn,
“Calcium/phospholipid-depending protein kinase (protein
kinase C) phosphorylates and activates tyrosine hydroxylase,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 81, no. 24, pp. 7713-7717, 1984.

A. Akaike, M. Sasa, Y. Tamura, H. Ujihara, and S. Takaori,
“Effects of protein kinase C on the muscarinic excitation of rat
adrenal chromaffin cells,” Japanese Journal of Pharmacology,
vol. 61, no. 2, pp. 145-148, 1993.

G. M. Reaven, “The insulin resistance syndrome: definition
and dietary approaches to treatment,” Annual Review of
Nutrition, vol. 25, pp. 391-406, 2005.

R. K. Campbell, “Fate of the beta-cell in the pathophysiology
of type 2 diabetes,” Journal of the American Pharmacists
Association, vol. 49, pp. S10-S15, 2009.

S. P. Kalra and P. S. Kalra, “Neuroendocrine control of
energy homeostasis: update on new insights,” Progress in brain
research, vol. 181, pp. 17-33, 2010.

A. E. Hirata, 1. S. Andrade, P. Vaskevicius, and M. S. Dolnikoff,
“Monosodium glutamate (MSG)-obese rats develop glucose
intolerance and insulin resistance to peripheral glucose
uptake,” Brazilian Journal of Medical and Biological Research,
vol. 30, no. 5, pp. 671-674, 1997.

L. Macho, M. Fickova, D. Jezové, and S. Zorad, “Late effects
of postnatal administration of monosodium glutamate on
insulin action in adult rats,” Physiological Research, vol. 49, no.
1, pp. $79-585, 2000.



Experimental Diabetes Research

(62]

(70]

A. C.P. Thirone, J. B. C. Carvalheira, A. E. Hirata, L. A. Velloso,
and M. J. A. Saad, “Regulation of Cbl-associated protein/Cbl
pathway in muscle and adipose tissues of two animal models
of insulin resistance,” Endocrinology, vol. 145, no. 1, pp. 281—
293, 2004.

S. L. Balbo, P. C. Mathias, M. L. Bonfleur et al., “Vagotomy
reduces obesity in MSG-treated rats,” Research Communica-
tions in Molecular Pathology and Pharmacology, vol. 108, no.
5-6, pp. 291-296, 2000.

Y. W. Kim, J. Y. Kim, and S. K. Lee, “Surgical removal of vis-
ceral fat decreases plasma free fatty acid and increases insulin
sensitivity on liver and peripheral tissue in monosodium
glutamate (MSG)-obese rats,” Journal of Korean Medical
Science, vol. 14, no. 5, pp. 539-545, 1999.

B. Jeanrenaud, “Neuro-endocrine disorders in obesity,” Inter-
national Journal for Vitamin and Nutrition Research, vol. 29,
pp. 41-48, 1986.

P. Mitrani, M. Srinivasan, C. Dodds, and M. S. Patel, “Auto-
nomic involvement in the permanent metabolic programming
of hyperinsulinemia in the high-carbohydrate rat model,”
American Journal of Physiology, vol. 292, no. 5, pp. E1364—
E1377,2007.

C. J. Nolan, J. L. Leahy, V. Delghingaro-Augusto et al., “Beta
cell compensation for insulin resistance in Zucker fatty rats:
increased lipolysis and fatty acid signalling,” Diabetologia, vol.
49, no. 9, pp. 2120-2130, 2006.

E. G. Cawthorn and C. B. Chan, “Effect of pertussis toxin on
islet insulin secretion in obese (fa/fa) Zucker rats,” Molecular
and Cellular Endocrinology, vol. 75, no. 3, pp. 197-204, 1991.
T. M. Tassava, T. Okuda, and D. R. Romsos, “Insulin secretion
from ob/ob mouse pancreatic islets: effects of neurotransmit-
ters,” American Journal of Physiology, vol. 262, no. 3, pp. E338—
E343,1992.

C. Cruciani-Guglielmacci, M. Vincent-Lamon, C. Rouch, M.
Orosco, A. Ktorza, and C. Magnan, “Early changes in insulin
secretion and action induced by high-fat diet are related to a
decreased sympathetic tone,” American Journal of Physiology,
vol. 288, no. 1, pp. E148-E154, 2005.

11



	Introduction
	Material and Methods
	Animals
	Obesity
	Electrical Sympathetic Activity
	Adrenal Glands
	Stimulation of Catecholamine Secretion
	Western Blot Analysis
	Plasma Adrenaline Measurement
	Glucose Tolerance Test
	Pancreatic Islet Isolation and Insulin Secretion
	Statistical Analysis

	Results
	Discussion
	Conclusions
	Conflict of Interests
	Acknowledgment
	References

