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ABSTRACT: This study was conducted to inves-
tigate the effects of a direct-fed microbial (DFM) 
product (Bacillus subtilis strain DSM 32540)  in 
weaned pigs challenged with K88 strain of 
Escherichia coli on growth performance and in-
dicators of gut health. A total of 21 weaned pigs 
[initial body weight (BW) = 8.19 kg] were housed 
individually in pens and fed three diets (seven repli-
cates per diet) for 21 d in a completely randomized 
design. The three diets were a corn-soybean meal-
based basal diet without feed additives, a basal diet 
with 0.25% antibiotics (neo-Oxy 10-10; neomycin + 
oxytetracycline), or a basal diet with 0.05% DFM. 
All pigs were orally challenged with a subclinical 
dose (6.7 × 108 CFU/mL) of K88 strain of E. coli 
on day 3 of the study (3 d after weaning). Feed in-
take and BW data were collected on days 0, 3, 7, 
14, and 21. Fecal scores were recorded daily. On 
day 21, pigs were sacrificed to determine various 
indicators of gut health. Supplementation of the 
basal diet with antibiotics or DFM did not affect 
the overall (days 0–21) growth performance of pigs. 
However, antibiotics or DFM supplementation in-
creased (P = 0.010) gain:feed (G:F) of pigs during 
the post-E.  coli challenge period (days 3–21) by 
23% and 24%, respectively. The G:F for the DFM-
supplemented diet did not differ from that for 

the antibiotics-supplemented diet. The frequency 
of diarrhea for pigs fed a diet with antibiotics or 
DFM tended to be lower (P = 0.071) than that of 
pigs fed the basal diet. The jejunal villous height 
(VH) and the VH to crypt depth ratio (VH:CD) 
were increased (P < 0.001) by 33% and 35%, re-
spectively, due to the inclusion of antibiotics in 
the basal diet and by 43% and 41%, respectively 
due to the inclusion of DFM in the basal diet. The 
VH and VH:CD for the DFM-supplemented diet 
were greater (P < 0.05) than those for the antibi-
otics-supplemented diet. Ileal VH was increased 
(P < 0.05) by 46% due to the inclusion of DFM in 
the basal diet. The empty weight of small intestine, 
cecum, or colon relative to live BW was unaffected 
by dietary antibiotics or DFM supplementation. 
In conclusion, the addition of DFM to the basal 
diet improved the feed efficiency of E.  coli-chal-
lenged weaned pigs to a value similar to that of 
the antibiotics-supplemented diet and increased je-
junal VH and VH:CD ratio to values greater than 
those for the antibiotics-supplemented diet. Thus, 
under E. coli challenge, the test DFM product may 
replace the use of antibiotics as a growth promoter 
in diets for weaned pigs to improve feed efficiency 
and gut integrity.
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INTRODUCTION

Postweaning diarrhea caused by Escherichia 
coli strains lead to tremendous economic losses in 
the swine industry due to decreased growth rate 
and increased mortality and morbidity of  weaned 
pigs (Fairbrother et  al., 2005; Pan et  al., 2017). 
Enterotoxigenic E.  coli (ETEC) K88+ is one of 
the major strains of  E. coli that causes diarrhea 
in weaned pigs (Marquardt et  al., 1999; Yang 
et  al., 2014). Antibiotics have been widely used 
as a strategy for dealing with postweaning diar-
rhea (Fairbrother et al., 2005; Wang et al., 2016). 
However, due to public concerns on the potential 
risks to human health coupled with the develop-
ment of  antibiotic resistance (Kemper, 2008; Li 
et al., 2015; Park et al., 2016), there is a need to 
adopt antibiotic-free feeding systems for pigs for 
pork production. The adoption of  antibiotic-free 
feeding systems for pigs requires the development 
of  feed additives that can be used as alternatives to 
in-feed antibiotics (Pettigrew, 2006; Stein and Kil, 
2006). One of  the promising key members among 
these alternatives is direct-fed microbials (DFM), 
also known as probiotics (FAO/WHO, 2002). For 
a DFM to be beneficial, it should have at least 
one of  the following functions in the gastrointes-
tinal tract (GIT): 1) enhance the growth of  bene-
ficial bacteria, 2) prevent the colonization of  GIT 
with pathogenic microorganisms, 3)  increase the 
digestive capacity and lower the GIT pH, 4) im-
prove mucosal immunity, or 5) enhance gut tissue 
maturation and integrity (de Lange et al., 2010). 
The DFM used in the swine industry are classi-
fied into three main categories, including lactic 
acid-producing bacteria, Bacillus species, and 
yeast (Kenny et al., 2011; NRC, 2012). Of  these, 
Bacillus species form spores, which enable them to 
be thermostable and survive at low pH. Bacillus 
species also produce antimicrobial peptides that 
kill pathogenic microorganisms, modify the com-
position of  GIT microorganisms that result in re-
duced competition for nutrients between host and 
microorganisms, and increase the production of 
mucin in GIT, which protect the GIT from inva-
sion by pathogens and other toxins (Grant et al., 

2018). Additionally, Bacillus species produce fib-
er-degrading enzymes that enhance the nutrient 
digestibility of  plant feedstuffs-based diets (Liu 
et al., 2018).

A DFM product (Bacillus subtilis strain DSM 
32540)  that can potentially inhibit the growth 
of the main commercially relevant pathogens of 
swine, has a very high proliferation rate in the pres-
ence of bile, and can effectively digest cellulose has 
been recently developed (protected in International 
Patent Application WO 2019/002471). However, in-
formation is lacking on the effect of including this 
newly developed DFM in diets for weaned pigs on 
growth performance and gut health. The objective 
of this study was to evaluate the effects of includ-
ing B. subtilis strain DSM 32540 in diets for ETEC 
K88-challenged weaned pigs on growth perform-
ance and indicators of gut health.

MATERIALS AND METHODS

Experimental procedures were reviewed and 
approved by the Institutional Animal Care and Use 
Committee at South Dakota State University (# 
17-051A).

Experimental Diets

In this study, three experimental diets were fed 
to the pigs (Table 1). The three diets were: a basal 
diet without any feed additives, a basal diet with 
antibiotics (neomycin and oxytetracycline), or the 
DFM product (B.  subtilis; DSM 32540; GutPlus; 
Evonik Nutrition & Care GmbH, Hanau-Wolfgang, 
Germany). The diets were isoenergetic and similar 
in nutrient content and formulated to meet or ex-
ceed the NRC (2012) recommended energy and nu-
trient requirements for nursery pigs. The diets were 
fed in mash form.

Experimental Animals and Procedure

A total of 21 pigs (Large White-Landrace  
female × Duroc male from Pig Improvement 
Company) weaned around 21 d of age and with 
an initial body weight (BW) of 8.19 ± 0.77 kg were 
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obtained from a commercial farm and housed in-
dividually in 21 pens in the rooms of the Animal 
Resource Wing, South Dakota State University. 

The pigs were fed three experimental diets for 21 
d in a completely randomized design (seven pens 
per diet).

All pigs were orally challenged with freshly 
grown K88 strain of E. coli on day 3 of the study 
as described by Lin et al. (2013). Diets and fresh-
water were offered to pigs ad libitum during the 
entire period. Pigs were observed four times per 
day during the experimental period for signs of 
illness, including diarrhea, lethargy, and dehydra-
tion. Animal BW and feed intake were determined 
on days 0, 3, 7, 14, and 21 of the study to calculate 
average daily gain (ADG), average daily feed in-
take (ADFI), and gain:feed (G:F). The occurrence 
and severity of postweaning diarrhea were assessed 
daily throughout the study on a pen basis by using 
the following fecal scoring system: 1 = firm feces, 
2 = soft feces, 3 = mild pasty diarrhea, 4 = pasty 
diarrhea, 5 = watery diarrhea and dehydration, and 
6 = most severe condition.

At the end of the feeding trial, all pigs were 
euthanized, and the following procedures took 
place. The gastrointestinal tract was divided into 
stomach, small intestine, cecum, and colon by using 
clamps to minimize digesta movement. The small 
intestine was stripped free of its mesentery and fur-
ther divided into three sections: 1) duodenum (from 
pylorus to 80  cm distal to the pylorus), 2)  ileum 
(from the ileal–cecal junction to 80  cm cranial to 
this junction), and 3) jejunum (the rest of the small 
intestine). A  segment of 2  cm was collected from 
the middle of jejunum, and from ileum at 15  cm 
proximal to the ileo–cecal junction. The collected 
segments were prepared as described by Woyengo 
et al. (2011) for the determination of gut histomor-
phology. Samples of digesta from the distal ileum 
and the cecum were collected from each pig asep-
tically into sterile plastic containers. The ileal and 
cecal digesta samples were used to determine ileal 
and cecal pH; cecal digesta samples were then stored 
frozen at −20  °C for later determination of vola-
tile fatty acid (VFA) concentration. The stomach, 
all sections of the small intestine, cecum, and colon 
were emptied of their digesta and weighed. Also, 
the spleen and liver were obtained, blotted dry with 
paper towels, and weighed.

Sample Analyses

Crude protein (method 990.0;AOAC 
International, 2007) and total amino acid analyses 
of diets were determined by ion-exchange chroma-
tography with postcolumn derivatization with nin-
hydrin. Amino acids were oxidized with performic 

Table 1.  Composition of the experimental diets 
(as-fed basis)

Dieta

Item NC PC DFM

Ingredient, %    

 Corn 48.70 48.70 48.70

 Soybean meal, 46% crude protein 32.05 32.05 32.05

 Whey powder 10.00 10.00 10.00

 Soybean oil 2.84 2.84 2.84

 Wheat bran 3.00 3.00 3.00

 Limestone 0.41 0.41 0.41

 Dicalcium phosphate 1.41 1.41 1.41

 Salt 0.19 0.19 0.19

 Vitamin premixb 0.05 0.05 0.05

 Mineral premixc 0.15 0.15 0.15

 L-Lysine·HCl 0.50 0.50 0.50

 L-Threonine 0.20 0.20 0.20

 DL-Methionine 0.30 0.30 0.30

 L-Tryptophan 0.09 0.09 0.09

 L-Valine 0.11 0.11 0.11

 Neomycin + oxytetracycline – 0.25  

 DFM – – 0.05

Calculated nutrient composition   

 Crude protein, % 20.49 20.49 20.49

 Ether extract, % 5.35 5.35 5.35

 Acid detergent fiber, % 3.39 3.39 3.39

 Neutral detergent fiber, % 8.69 8.69 8.69

 Electrolyte balance, mEq/kg 200 200 200

 Net energy, kcal/kg 2,462 2,462 2,462

 SID amino acid, %    

  Lys 1.35 1.35 1.35

  Met 0.55 0.55 0.55

  Met + Cys 0.81 0.81 0.81

  Thr 0.85 0.85 0.85

  Trp 0.30 0.30 0.30

  Ile 0.75 0.75 0.75

  Val 0.92 0.92 0.92

  Leu 1.48 1.48 1.48

  His 0.45 0.45 0.45

  Phe 0.84 0.84 0.84

 Total Ca, % 0.75 0.75 0.75

 Total P, % 0.68 0.68 0.68

 Digestible P, % 0.35 0.35 0.35

SID, standardized ileal digestible.
aNC = negative control diet, PC = NC supplemented with 0.25% 

antibiotics, DFM  =  NC supplemented with 0.05% DFM product 
(B.  subtilis; DSM 32540). Antibiotics and DFM were added on top 
of basal diet.

bProvided the following per kilogram of diet: 11,011 IU vitamin A, 
1,652 IU vitamin D3, 55 IU vitamin E, 0.04 mg vitamin B12, 4.4 mg 
menadione, 9.9 mg riboflavin, 61 mg pantothenic acid, 55 mg niacin, 
1.1 mg folic acid, 3.3 mg pyridoxine, 3.3 mg thiamin, and 0.2 mg biotin.

cProvided the following per kilogram of diet: 165 mg Zn as ZnSO4, 
23 mg Fe as FeSO4; 17 mg Cu as CuSO4, and 44 mg Mn as MnSO4.
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acid, which was neutralized with Na metabisulfite 
(Llames and Fontaine, 1994; Commission Directive, 
1998). Amino acids were liberated from the protein 
by hydrolysis with 6 N HCl for 24 h at 110 °C and 
quantified with the internal standard by measuring 
the absorption of reaction products with ninhydrin at 
570 nm. Tryptophan was determined by HPLC with 
fluorescence detection (extinction 280 nm, emission 
356  nm) after alkaline hydrolysis with barium hy-
droxide octahydrate for 20 h at 110 °C (Commission 
Directive, 2000). Spore count in diets was determined 
by VDLUFA method 28.2.2 (VDLUFA, 1976).

Samples for histomorphology were analyzed 
for villous height (VH) and crypt depth (CD) as 
described by Woyengo et  al. (2011). The villous 
height to CD ratio (VH:CD) was calculated. Cecal 
digesta samples for VFA analysis were thawed and 
centrifuged and the resulting digesta fluid was pre-
pared and analyzed for VFA (acetate, propionate, 
butyrate, and branched-chain VFA) as described 
by Woyengo et al. (2016). The pH in the ileum and 
cecum digesta were determined using a pH meter 
(AB 15; Fisher Scientific, Pittsburgh, PA).

Statistical Analysis

All data obtained from this study were subjected 
to analysis of variance using the GLM procedure 
of SAS (SAS Inst. Inc., Cary, NC). The initial BW 
was treated as a covariate. Means were separated 
by the Tukey test. The residual versus the predicted 
plot procedure in SAS was used to identify outliers. 
The frequency of diarrhea was analyzed using the 
FREQ procedure of SAS and treatments were sep-
arated using the Xi2 statistic. Significance and ten-
dencies were set at P ≤ 0.05 and 0.05 < P ≤ 0.10, 
respectively, for all statistical tests.

RESULTS

The analyzed crude protein values for the 
diets in Table  2 are close to the calculated values 
in Table 1. Growth performance data is presented 
in Table  3. There was no effect of dietary treat-
ment on the final BW of pigs. The ADG, ADFI, 
and G:F for pigs fed basal diet with antibiotics 
or DFM did not differ from those of pigs fed the 
unsupplemented basal diet during the entire study 
period (days 0–21). However, the supplementation 
of the basal diet with antibiotics or DFM increased 
(P  <  0.05) the G:F of pigs during the postchal-
lenge period (from day 3 to 21) but did not affect 
the ADG and ADFI of pigs during this postchal-
lenge period. The G:F for DFM-supplemented diet 

did not differ from that for the antibiotic-supple-
mented diet. Diarrhea data are presented in Figs. 1 
and 2. Supplementation of the basal diet with anti-
biotics or DFM tended to decrease (P = 0.071) the 

Table 2. Analyzed composition of the experimental 
diets (as-fed basis)

Dieta

Item NC PC DFM

Dry matter, % 89.96 89.74 89.92

Crude protein, % 21.29 21.61 21.51

Amino acid, %    

 Lys 1.54 1.58 1.59

 Met 0.60 0.59 0.60

 Met + Cys 0.94 0.93 0.95

 Thr 1.00 0.97 0.99

 Trp 0.35 0.36 0.35

 Arg 1.34 1.37 1.35

 Ile 0.89 0.90 0.89

 Leu 1.68 1.70 1.70

 Val 1.09 1.08 1.09

 His 0.56 0.57 0.53

 Phe 0.98 0.99 0.99

Spore count B. subtilis, CFU/g 0.00 0.00 1.3E+06

Background Bacilli, CFU/g 5.7E+03 1.7E+03 <1E+03

aNC = negative control diet, PC = NC supplemented with 0.25% of 
antibiotics, and DFM = NC supplemented with 0.05% DFM product 
(B. subtilis; DSM 32540).

Table 3.  Effect of different dietary treatments on 
growth performance of E. coli-challenged weaned 
pigs

Item

Dieta

SEM P-valueNC PC DFM

BW, kg      

 Day 0 8.02 8.00 8.62 0.299 0.28

 Day 3 8.48 8.23 8.48 0.141 0.38

 Day 7 8.54 8.55 8.68 0.294 0.97

 Day 14 10.46 10.55 10.44 0.627 0.67

 Day 21 14.30 14.38 14.95 0.960 0.63

ADG, kg      

 Days 0–21 0.283 0.288 0.310 0.050 0.91

 Days 3–21 0.308 0.333 0.347 0.048 0.86

ADFI, kg      

 Days 0–21 0.429 0.378 0.403 0.050 0.73

 Days 3–21 0.483 0.421 0.448 0.053 0.72

G:F, kg/kg      

 Days 0–21 0.653 0.740 0.766 0.037 0.14

 Days 3–21 0.633b 0.778a 0.785a 0.033 0.01

abWithin a row, means without a common superscript differ 
(P < 0.05).

aNC = negative control diet, PC = NC supplemented with 0.25% of 
antibiotics, and DFM = NC supplemented with 0.05% DFM product 
(B. subtilis; DSM 32540).
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frequency of diarrhea (fecal score of 3–6) from 
day 0 to 21. The frequency of diarrhea was 22% 
for basal diet, 12% for basal diet with antibiotics, 
and 15% for basal diet with DFM. In addition, the 
survival rate of the pigs fed the basal diet was 75%, 
whereas 100% survival was observed for the pigs 
fed the antibiotic or DFM-supplemented diet. In 
the basal diet, two out of seven pigs died 1 and 2 d 
postchallenge, and results from necropsy confirmed 
that this was due to the E. coli challenge.

Data on the effects of diets on small intes-
tinal histomorphology is shown in Table  4. The 
VH and VH:CD ratio of jejunum were increased 
(P  <  0.001) by antibiotics or DFM supplementa-
tion. However, the CD was not affected by supple-
mentation with antibioitcs or DFM. The jejunal 
VH and VH:CD ratio for the DFM-supplemented 
diet were greater (P < 0.05) than those fed the anti-
biotic-supplemented diet. Ileal VH was increased 
(P  <  0.05) by DFM supplementation. However, 
CD and VH:CD ratio of ileum were unaffected by 
any of the two supplementations. The effects of 
diets on visceral organ weights and gastrointestinal 

pH of pigs at 21 d of age are presented in Table 5. 
The weights of the liver, stomach, small intestine, 
cecum, and colon were not affected by antibiotics 
or DFM supplementation. Spleen weight was in-
creased (P < 0.05) by antibiotics supplementation. 
Moreover, the addition of antibioitcs to the basal 
diet reduced (P < 0.05) the ileal digesta pH value. 
Cecal digesta pH was unaffected by antibiotics or 
DFM supplementation.

Figure 1. Proportion of fecal scores of pigs fed diets without or 
with antibiotics or DFM. Fecal score: 1 = firm feces, 2 = soft feces, 
3 = mild pasty diarrhea, 4 = pasty diarrhea, 5 = watery diarrhea and 
dehydration, 6 = most severe condition. NC = negative control diet, 
PC = NC supplemented with 0.25% of antibiotics, and DFM = NC 
supplemented with 0.05% DFM product (B. subtilis; DSM 32540).

Figure 2. Frequency of diarrhea of pigs fed diets without or with 
antibiotics or DFM. Fecal score: 1 = firm feces, 2 = soft feces, 3 = mild 
pasty diarrhea, 4 = pasty diarrhea, 5 = watery diarrhea and dehydra-
tion, 6 = most severe condition. NC = negative control diet, PC = NC 
supplemented with 0.25% of antibiotics, and DFM  =  NC supple-
mented with 0.05% DFM product (B. subtilis; DSM 32540).

Table 4.  Effect of different dietary treatments on 
gut histomorphology of E. coli-challenged weaned 
pigs

Item

Dieta

SEM P-valueNC PC DFM

Jejunum      

 VH, µm 305c 406b 435a 2.131 <0.001

 CD, µm 177 177 182 2.862 0.470

 VH:CD, µm/µm 1.72c 2.29b 2.40a 0.037 <0.001

Ileum      

 VH, µm 298b 389ab 437a 42.78 0.095

 CD, µm 170 164 171 16.18 0.95

 VH:CD, µm/µm 1.98 2.64 2.53 0.261 0.18

abcWithin a row, means without a common superscript differ 
(P < 0.05).

aNC = negative control diet, PC = NC supplemented with 0.25% of 
antibiotics, and DFM = NC supplemented with 0.05% DFM product 
(B. subtilis; DSM 32540).
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The effects of dietary treatment on cecal digesta 
VFA concentration on day 21 of the experiment are 
presented in Table 6. The concentrations of acetic 
acid, propionic acid, butyric acid, isobutyric acid, 
and isovaleric acid were not affected by antibiotics 
or DFM supplementation. Supplementation of 
the NC diet with antibiotics or DFM lowered 
(P  <  0.05) the valeric acid concentration in cecal 
digesta.

DISCUSSION

In the current study, the supplementation of 
the basal diet with antibiotics or DFM resulted in 
improved feed efficiency of pigs during the postch-
allenge period, which could partly be explained by 
the reduced frequency of diarrhea and increased 
jejunal VH by the supplementation. Diarrhea is 
positively correlated with increased water and nu-
trient secretion in GIT or is negatively correlated 
with nutrient digestion and absorption or both 
(O’Loughlin et al., 1991; Fairbrother et al., 2005); 
all these led to reduced feed efficiency. Also, diar-
rhea due to ETEC is positively correlated with im-
mune response, which, in turn, is associated with 
an increase in the proportion of dietary energy and 
nutrients that are utilized for maintenance (im-
mune response) and a decrease in the proportion 
of dietary energy and nutrients that are utilized 
for growth (skeletal tissue deposition; Kiarie et al., 
2011) and, hence, reduced feed efficiency. Small in-
testinal VH is positively correlated with the surface 
area for nutrient absorption and, hence, the effi-
ciency of dietary nutrient utilization (Pluske et al., 
1996a; Wu et  al. 1996). In addition to reducing 
diarrhea and increasing the VH, the DFM can im-
prove the G:F by enhancing nutrient digestibility 
through the production of enzymes that digest 
carbohydrates, such as nonstarch polysacchar-
ides (Tang et  al., 2019). The improvement in the 
G:F of pigs due to the inclusion of antibiotics in 
diets fed in the current study was expected because 

Table 6. Effect of different dietary treatments on VFA in cecal digesta of E. coli-challenged weaned pigs

Item

Dieta

SEM P-valueNC PC DFM

VFA concentration, mM/g of dry matter      

 Acetic acid 2.49 2.58 1.87 0.525 0.531

 Propionic acid 1.59 1.33 0.94 0.302 0.266

 Butyric acid 0.63 0.60 0.57 0.119 0.930

 Branched-chain VFA

  Isobutyric acid 0.03 0.04 0.02 0.008 0.173

  Valeric acid 0.23a 0.09b 0.10b 0.040 0.051

  Isovaleric acid 0.03 0.03 0.02 0.007 0.288

Molar ratios of VFA, %      

 Acetic acid 50.7 54.9 52.4 2.022 0.426

 Propionic acid 31.0 27.5 27.0 2.470 0.450

 Butyric acid 12.9 14.3 16.8 1.856 0.268

 Branched-chain VFA      

  Isobutyric acid 0.47 0.97 0.41 0.189 0.141

  Valeric acid 4.32a 1.47b 2.85ab 0.613 0.037

  Isovaleric acid 0.61 0.84 0.53 0.165 0.420

abWithin a row, means without a common superscript differ (P < 0.05).
aNC = negative control diet, PC = NC supplemented with 0.25% of antibiotics, and DFM = NC supplemented with 0.05% DFM product 

(B. subtilis; DSM 32540).

Table 5.  Effect of different dietary treatments on 
visceral organ weights and gastrointestinal digesta 
pH of E. coli-challenged weaned pigs

Itema

Dieta

SEM P-valueNC PC DFM

Organ weight, g/
kg of BW

     

 Spleen 1.76b 2.53a 2.03ab 0.231 0.09

 Liver 26.9 28.7 26.3 1.125 0.33

 Stomach 7.31 8.88 8.00 0.575 0.18

 Small intestine 35.4 41.2 41.2 2.918 0.29

 Cecum 2.08 2.39 2.08 0.181 0.40

 Colon 14.1 15.7 14.4 1.098 0.54

Digesta pH      

 Ileal 6.63 6.02 6.26 0.176 0.08

 Cecum 5.58 5.65 5.51 0.086 0.38

abWithin a row, means without a common superscript differ 
(P < 0.05).

aNC = negative control diet, PC = NC supplemented with 0.25% of 
antibiotics, and DFM = NC supplemented with 0.05% DFM product 
(B. subtilis; DSM 32540).
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antibiotics have been added in diets for weaned 
pigs to improve gut health and feed efficiency (Heo 
et al., 2013). Dietary antibiotics may improve the 
feed efficiency partly by suppressing the growth 
of certain intestinal microorganisms that are 
pathogenic or compete with the host for nutrients 
(Dibner and Richards, 2005; Li, 2017). The im-
provement in the G:F of pigs due to supplemental 
DFM in the current study is in agreement with pre-
vious studies using diets supplemented with DFM 
that contained B. subtilis (Guo et al., 2006; Wang 
et al., 2011; Lee et al., 2014). However, the results 
of  the current study are contrary to those reported 
from the study of Walsh et al. (2007), who did not 
observe an increase in the feed efficiency of weaned 
pigs due to the supplementation of DFM that con-
tained B.  licheniformis and B.  subtilis to diets at 
0.05%. Bontempo et al. (2006) suggested that the 
efficacy of DFM with regard to improving growth 
performance of weaned pigs may partly depend on 
the dosage and composition of DFM. The DFM 
product fed in the current study contained B. sub-
tilis and was added in diets at 0.05%, whereas the 
DFM product fed in the study of Walsh et al. (2007) 
contained B. licheniformis and B. subtilis. Thus, the 
differences among the studies with regard to the ef-
fects of  DFM on feed efficiency could be explained 
by differences in the composition of DFM prod-
ucts. The G:F for DFM-supplemented diet did not 
differ from that of  antibiotics-supplemented diet 
during the postchallenge period, implying that the 
dietary DFM product in the current study can im-
prove the feed efficiency of E. coli-infected weaned 
pigs to that of  antibiotic-containing diet.

Infection of weaned pigs with pathogenic 
strains of E.  coli, including K88+ strain, causes 
diarrhea as the toxins produced by pathogenic 
E. coli lead to increased secretion of fluids into the 
small intestine and reduced (re)absorption of fluids 
(O’Loughlin et al., 1991; Fairbrother et al., 2005). 
The postweaning diarrhea is more severe dur-
ing the first 2 wk postweaning (Fairbrother et al., 
2005). In the current study, the frequency of diar-
rhea by E. coli-challenged weaned pigs was reduced 
by dietary inclusion of antibiotics or DFM. In the 
small intestine, most cells in villous have absorptive 
function, whereas most cells in the crypt have secre-
tory function, implying that an increase in VH:CD 
ratio results in an increase in net absorption of nu-
trients and fluids (De Jonge, 1975; Woyengo et al., 
2011; Park et al., 2020). Thus, the increase in the 
jejunal VH:CD ratio observed in the current study 
due to antibiotics or DFM supplementation could 
partly explain the reduction in the frequency of 

E. coli-derived diarrhea. The results from the cur-
rent study are in agreement with those from pre-
vious studies that reported a reduction in diarrhea 
(or frequency) in weaned pigs fed DFM (Bhandari 
et al., 2008; Yang et al., 2014; Pan et al., 2017).

Cell proliferation occurs in the crypt and, 
hence, a decrease in VH:CD ratio indicate a net de-
crease in mitotic activity in mucosa and, hence, the 
weight of the small intestine (King et al., 2008). In 
the current study, however, the weight of the small 
intestine relative to the live weight of weaned pigs 
was unaffected by antibiotic or DFM supplemen-
tation despite the fact that VH:CD ratio was in-
creased by the antibiotic or DFM supplementation. 
Kiarie et al. (2011) also did not observe a change in 
the weight of the small intestine relative to the live 
weight of weaned pigs due to the supplementation 
of diets with antimicrobial agents or DFM. Thus, 
it appears that the small intestinal VH:CD ratio 
can change without a change in the total weight of 
small intestinal relative to live BW. The weight of 
the large intestine (cecum and colon) relative to that 
of live BW was also unaffected by DFM supple-
mentation, which could be attributed to the lack of 
effect of DFM on VFA production. The VFA, es-
pecially butyric acid, stimulates cell proliferation in 
the large intestine (Sakata, 1987; Kien et al., 2007). 
Similarly, Awad et  al. (2009) did not observe any 
change in the weight of the large intestine relative 
to the live weight of weaned pigs due to the supple-
mentation of diets with DFM.

One of the functions of the spleen in animals is 
to induce immunity in response to infection (Lewis 
et al., 2019). Thus, the size of the spleen in animals 
can potentially be increased due to infection, imply-
ing that the size of the spleen of E. coli-challenged 
pigs is expected to reduce due to the supplementa-
tion of diets with feed additives that alleviate the 
E. coli infection (Kiarie et al., 2011). In the current 
study, the supplementation of the NC diet with 
antibiotics increased the size of the spleen rela-
tive to the live BW, and the reason for this is not 
clear. The size of the spleen relative to live weight 
was not affected by the supplementation of the NC 
diet with DFM. It should be noted that DFM can 
alleviate GIT infections partly by stimulating the 
immune response (Grant et al., 2018), which may 
explain the lack of effect of DFM on the spleen. 
White blood cell production was not measured in 
the current study.

The VH in the small intestine of  weaned pigs 
is positively correlated with small intestinal lu-
minal energy and nutrients availability (Pluske 
et al., 1996b) and negatively correlated with small 
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intestinal proliferation of  pathogenic microorgan-
isms (O’Loughlin et al., 1991). Thus, in the current 
study, the increase in jejunal VH:CD by DFM sup-
plementation could have been due to an increase 
in the luminal availability of  energy and other 
nutrients or reduced proliferation of  the patho-
genic microorganisms, such as ETEC, or both by 
the supplementation. The DFM supplementation 
could have increased the luminal availability of 
energy and other nutrients by increasing their di-
gestibility (not measured in the current study) be-
cause feed intake was not affected by the DFM 
supplementation. As previously mentioned, the 
B. subtilis in the DFM product fed in the current 
study produces various fiber-degrading enzymes, 
including xylanase and cellulase. These fiber-de-
grading enzymes can hydrolyze the fiber in the 
upper part of  the small intestine, thereby releasing 
fiber-encapsulated nutrients for digestion and ab-
sorption (Woyengo and Nyachoti, 2011).

The jejunal VH:CD for pigs fed the DFM-
supplemented diet was greater than that of pigs fed 
the antibiotic-supplemented diet, implying that the 
DFM product fed in the current study was more 
effective than the antibiotics with regard to improv-
ing jejunal histomorphology of ETEC-challenged 
weaned pigs. The ileal VH:CD was unaffected by 
the antibiotic or DFM supplementation. Weaning 
stress and availability of nutrients in the lumen of 
the small intestine have a significant effect on the 
integrity of the upper part, but not the lower part, 
of the small intestine of weaned pigs (Wijtten et al., 
2011), which could partly explain the limited effect 
of DFM on ileal VH:CD. Also, it could be possible 
that the upper part of the small intestine of weaned 
pigs is more colonized by food-borne pathogenic 
E.  coli compared to the lower part, leading to a 
limited effect of the E. coli infection on the integrity 
of the lower part of the small intestine.

The DFM supplementation did not affect the 
acetic acid, propionic acid, and butyric acid pro-
duction and, hence, the pH in the cecal digesta. It 
had been assumed that the DFM would increase 
VFA and, hence, reduce the pH in GIT because the 
B. subtilis in DFM product fed in the current study 
can promote fiber fermentation because it has xyla-
nase activity (International Patent Application 
WO 2019/002471), and xylanase targets arabinox-
ylans that are the major nonstarch polysaccharides 
in corn (Knudsen, 2014). Diets fed in the current 
study were based on corn. However, the DFM may 
have increased the nutrients digestibility in the 
upper part of the small intestine (as evidenced by 
increased VH:CD without increased feed intake), 

leading to reduced availability of the substrate for 
fermentation in the lower part of the small intestine 
and in the large intestine. Results from previous 
studies have shown reduced hindgut digestibility or 
fermentation as a result of an increase in the di-
gestibility of nutrients in the small intestine by fib-
er-degrading enzyme supplementation (Woyengo 
et  al., 2016; Lee et  al., 2018). Indeed, the DFM 
supplementation numerically reduced the cecal 
digesta concentration of the aforementioned VFA 
(acetic acid, propionic acid, and butyric acid) and 
significantly reduced the cecal digesta valeric acid 
concentration, which could support this aforemen-
tioned hypothesis. Valeric acid is a byproduct of 
protein fermentation (van Straalen and Tas, 2010). 
Thus, its reduced concentration in cecal digesta im-
plies that the DFM increased protein digestion in 
the small intestine or inhibited the growth of pro-
tein-fermenting microorganisms in the cecum. The 
fermentation of proteins in the hindgut is negatively 
associated with gut health because the end products 
of protein fermentation, such as ammonia, indoles, 
and skatoles are toxic to animals (Heo et al., 2013). 
Thus, the DFM product fed in the current study 
may improve the health of pigs partly by reducing 
protein fermentation in the hindgut.

In conclusion, the supplementation of the basal 
diet with the DFM improved the feed efficiency, in-
creased the jejunal VH and VH:CD, and decreased 
the frequency of diarrhea of weaned pigs that were 
challenged with K88 strain of E. coli. The feed effi-
ciency of pigs fed the diet supplemented with DFM 
(B.  subtilis DSM 32540 strain) did not differ from 
that of pigs fed the antibiotic-supplemented diet, 
whereas the jejunal VH and VH:CD for pigs fed the 
DFM-supplemented diet was greater than that of 
pigs fed the antibiotic-supplemented diet. Thus, the 
use of B. subtilis DSM 32540 strain containing DFM 
product in diets for weaned pigs under E. coli chal-
lenge may replace the use of antibiotics in diets to im-
prove growth performance and gut histomorphology.
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