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The heart has its reasons which reason does not 

know. Pascal 

The craft of medicine 

The idea of using formal logic to solve medical prob- 
lems is anathema to many doctors; it is, after all, an 
intrusion to the mystical aura which shrouds our pro- 
fession. In this Milroy lecture, I will be arguing that 

magic is as important in medical practice today as it 
ever was. 

My first article, written as a medical student, was 
titled 'The doctor's role in terms of fundamental 

human needs' [1]. Here I argued that humans have a 
need of doctors which goes far beyond the purely 
physical aspects of disease?that we are all 'witch doc- 
tors'. Balint is associated, perhaps more than anyone, 
with the argument that clinicians should be psy- 

chotherapists and that a doctor's personality was a 
treatment in its own right?he referred to 'the drug- 
doctor' [2]. This may seem like a paradoxical intro- 
duction to a talk on formal mathematical logic in 

patient care. However, the difference in medical prac- 
tice between our century and those that came before is 
that medicine is no longer virtually all magic. We now 
have at our disposal a repertoire of powerful interven- 
tions, with immense capacity for good and harm. Thus 
the question is not, as someone once put it to me, 

'whether the whole of medicine can be reduced to a 

flow diagram'. It is readily conceded that most of the 
craft of medicine will always be an intuitive 

process?concerned as it is with the magic of our pro- 
fession. Decision logic is concerned with the diagnosis 
of well-characterised diseases and in the choice 

between potentially dangerous and costly treatments. 
There are a number of levels at which formal methods 

may contribute to clinical decision-making. At the low- 
est level structured questionnaires ensure complete 

data collection and can incorporate checklists to act as 
an aide-memoire. At a higher level, expert systems can 

improve the accuracy of diagnosis. This contribution 
will be concerned with a yet further extension of for- 

mal logic in medical practice?clinical decision analy- 
sis. First this method must be placed in context by con- 

sidering the other formal methods. 

Structured patient histories 

It has been shown that questionnaires greatly enhance 
the quantity and quality of medical information in 

many clinical settings [3]. Furthermore, checklists of 
clinical actions improve the quality of medical care. 
This was originally demonstrated with respect to 

prompts provided by computer in a clinic for the treat- 
ment of hypertension [4]. It has subsequently been 
shown that computer prompts and paper checklists 
are equally effective but that both are superior to 
unstructured methods [5]. However, it should be said 

that structured history-taking systems, particularly 
those implemented by computer, are not always better 
than unstructured methods. Thus, while such systems 
have been successful in obtaining well-defined data 
sets, such as those required for antenatal care, infert- 

ility, and preparation for surgery, they have been much 
less successful when expanded to incorporate general 
outpatient clinics, such as the general medical [6] and 

gynaecology clinics [7]. In these settings, the struc- 
tured questionnaire is called upon to emulate an 

essentially intuitive process?part of the craft of 
medicine which cannot be formalised. Dreyfus et al 

have argued convincingly in their influential book 
Mind over machine [8] that there will always be subject 
areas where intuition is better than an attempt at for- 
mal logic, and general outpatient histories are an 

example of this. Thus the attempt to take all medical 
histories by computer results in output where trivial 

symptoms are over-emphasised and where neither 

patient nor doctor feels that the computer has got to 
the nub of the problem. 

Diagnostic systems 

The next level of formal methods in medicine is the 

use of what may broadly be defined as 'expert systems'. 
These can be classified as: (a) those which try to emu- 
late human reasoning (there are many variations on 
this theme with titles such as 'algorithmic' and 'pro- 
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duction rule'); (b) statistical; and (c) parallel process- 
ing (neural networks). By far the most thoroughly 

eval- 

uated of these various systems are the statistical 
meth- 

ods based on Bayes' theorem. Prominent among 
these 

Bayesian systems is a programme of automated diagno- 
sis of abdominal pain, developed by Professor 

de Dom- 

bal and colleagues [9]. This is the only method 
which 

has been evaluated in a large, multicentre, ran- 

domised trial. This showed an improvement in the 

overall accuracy of the diagnosis of abdominal pain 

along with a reduction in both the number 
of false 

negative laparotomies and the incidence of delayed 
treatment of genuine appendicitis. Although 

these 

Bayesian systems have been applied to other 
areas of 

medical practice, such as the diagnosis 
of jaundice 

[10], the method has not been widely adopted by prac- 

tising clinicians. There are two possible explanations 
for this. The first is that the excellent results 

which 

have been attained are specific to a small number 
of 

medical conditions and that these good results are not 

generalisable. The second possibility is that 
clinicians 

are not yet willing to use this technology, despite 
its 

documented benefits. The latter proposition is sup- 

ported by the observation that Bayesian systems 
are 

not used widely even within the specialties (such 
as 

abdominal surgery) where their benefits 
have been 

most convincingly demonstrated. 
There are many 

examples of clear technical and 
scientific advances 

which have been translated into clinical action only 
after many years. A classic example 

is the discovery of 

antiseptics in the last century. 
In contrast, other 

advances are translated immediately into clinical prac- 

tice, and a good example is X-rays which 
were in rou- 

tine use within two years of their discovery. 
The social 

invention, whereby expert systems are likely 
to become 

more widely accepted, may have 
to await the develop- 

ment of comprehensive clinical information systems 
within hospitals and the resulting 

cultural change 

which will familiarise clinicians with direct 
interaction 

with computers. 

Clinical decision analysis 

Decision analysis represents a further development 
of 

formal logic in medical practice. It is 
the most threat- 

ening as it seeks to replace, or at 
least augment, clini- 

cal judgement by means of a mathematical 
model. It 

represents a fundamental, philosophical challenge 
to 

instinctive decision-making and, like all disciplines, 
it 

encompasses a language which 
enables its concepts to 

be communicated efficiently from one person 
to 

another. Decision analysis is concerned not only 
with 

the probabilities of various outcomes 
but also with how 

these are valued. It therefore contains within 
its frame- 

work a mathematical expression of the best treatment 
for a particular patient. This is called 

'the treatment 

with the greatest expected utility', and 
decision analy- 

sis is therefore sometimes referred to as 'expected util- 

ity theory'. 

Clinical decision analysis?how to do it 

Example 1 

A person who has played 21 (vingt-et-un, pontoon, 
blackjack) may have wondered, when dealt, say, cards 
worth ten and seven, whether to 'stick' (remain with 
their two cards) or 'twist' (buy another card). At any 
particular stage of the game (eg one opponent who 
has not yet played) the probability of victory with a 
score of 17 is known to the expert. Drawing another 
card (twisting) may improve the odds of success but 
runs the risk of pushing the score over 21 (going 
'bust'), with immediate loss of the game. Twisting may 
increase the stake and the potential winnings in some 
versions of the game. Let us imagine a situation where 
the gambler has a ?10 stake which can be doubled at a 
60% risk of going bust. It is obvious that the gambler 
should stick, but the decision diagram and arithmetic 
are shown in Fig. 1. The 'expected earnings' drop 
from ?10 with the decision to stick to ?8 if the gambler 
decides to 'twist'. Gamblers perform better if they cal- 
culate the odds and combine them correctly with the 
possible winnings. Decision analysis is not needed in 
this trivial example, but virtually all real-life situations 
are much more complicated and the expected earn- 
ings cannot be calculated in the head. 

Decision analysis is explicit and quantitative. It is 

explicit in that it forces the decision-maker to spell out 
the way decisions have been broken down into their 

component parts and then recombined. It is quantita- 
tive in that decision-makers are compelled to measure 
both key uncertainties and the values of possible out- 
comes. It is also prescriptive in that it aims to tell physi- 
cians what to do, not just describe what they do. There 
are four basic steps in a decision analysis: 

Fig. 1. Decision diagram for a gambler who may retain a 
?10 'stake' by 'sticking or run a 60% risk of losing the stake 
versus a 40% chance of doubling it by 'tzvisting'. The 
expected earnings of the first choice are (10 x 1) or 
?10 while those of the bottom are (20 x 0.4) and (0 x 
0.6) or ?8. If this situation were repeated a very large 
number of times, the gambler would lose ?2 

Stick 

<3 ?10 

Gamble 

Twist 

<X Bust 0.6 
Make 0.4 

<] ?20 

<3 ?0 

Fig. 1. Decision diagram for a gambler xvho may retain a 
?10 'stake' by 'sticking or run a 60% risk of losing the stake 
versus a 40% chance of doubling it by 'tzvisting'. The 
expected earnings of the first choice are (10 x 1) or 
?10 while those of the bottom are (20 x 0.4) and (0 x 
0.6) or ?8. If this situation were repeated a very large 
number of times, the gambler would lose ?2 
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1 Identify and bound the decision problem. 
2 Structure the decision problem over time. 
3 Measure the uncertainties (probabilities and utili- 

ties) needed to fill in the structure. 
4 Combine the uncertainties to choose a preferred 

course of action. 

How about some more realistic examples to explain 
classical decision analysis? 

Example 2 

Consider a 'wildcatter' or oil prospector who must 
decide whether or not to take up an 'option' to drill at 
a particular site. Before deciding, a test may be per- 
formed to obtain more information about the seismic 
structure of the potential drilling site- (in effect a diag- 
nostic test). However, the test is expensive to perform 
and does not provide perfect information (it is neither 
completely sensitive nor specific). Wildcatters cannot 
afford to make many mistakes if they wish to stay in 
business: like gamblers, they must maximise their 
chances of success. 
The canny wildcatter will begin by defining the 

problem. The choices lie between abandoning the 
'option' on the basis of what is already known about it, 
drilling, or carrying out the seismic test. The seismic 
test will show whether the terrain below has no dis- 

cernible structure (bad), an open structure (so-so), or 
a closed structure (very hopeful). The site might be 
dry, contain worthwhile deposits, or it might be 'soak- 
ing'. Furthermore, drilling costs may be high, 
medium, or low. 
The prospector can now construct the decision tree 

(Fig. 2). This is a flow diagram in which decisions and 
outcomes are represented in order, with early events to 

the left and later events to the right. Decision points 
are represented by square nodes and points where out- 
comes occur by chance by round nodes. In Fig. 2 the 
left-hand decision node represents the choice between 

doing the seismic test and deciding without this infor- 
mation. The lower circle is a chance node represent- 
ing the chance that the seismic test will give the vari- 
ous possible results. 

Before the expected earnings associated with the 
various choices can be calculated, it is necessary to 
know the probabilities of the chance events, along with 
the conditional probabilities (eg the probability that 
the site will be 'wet', given an 'open' seismic test 
result) and the net financial returns on oil sales. All 

possible outcomes are included so that the probabili- 
ties at each chance node always add up to 1. 

Calculation of the expected earnings is now straight- 
forward using the mathematics shown in the first 
example. Numerous software packages are available 
for the construction of decision trees and the resulting 
calculations. Those planning a new career in the oil 
business may wish to refer to the full worked example 
of the prospector's problem in Raiffa's classical book, 
Decision analysis [11]. 

Example 3 

Most high-earning professional occupations involve 
the responsibility for making decisions where much is 
at stake. Physicians will be quick to recognise similari- 
ties between many medical decisions and the problem 
faced by the wildcatter. Consider the management of 
progressive hepato-cellular jaundice which may be 
caused by either chronic hepatitis or cirrhosis. Steroids 
increase the two-year survival in the former condition 

Fig. 2. The basic decision for 
the oil prospector is the same as 
that for a doctor in many clinical 
situations: to obtain the result of 
a special test zuhich is 'costly' 
and not completely accurate, or 
to decide to manage without this 
extra information 

Fig. 2. The basic decision for 
the oil prospector is the same as 
that for a doctor in many clinical 
situations: to obtain the result of 
a special test which is 'costly' 
and not completely accurate, or 
to decide to manage without this 
extra information 
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from 67% to 85%, but they are ineffective against cir- 

rhosis, reducing the two-year survival 
from 50% to 

48% because they increase the risk of complications, 
such as gastric bleeding and thrombosis. 

We will 

assume that liver biopsy discriminates accurately 
between the two conditions but that it carries a mortal- 

ity in these sick patients of one in 1,000. Furthermore, 

history and examination suggest that the prior 
risk of 

hepatitis is 20% while that of cirrhosis is 80%. It 

should be immediately apparent that this problem is 
similar to that of the wildcatter: in both cases the first 

decision is whether or not to do a 'costly' diagnostic 
test. Therefore the flow diagram (Fig. 3) is similar?in 

both cases the diagnostic test enables the decision- 
maker to determine the 'diagnosis' before the defini- 
tive choice. The chance node therefore precedes the 

Fie; 3 This example concerns the expected survival rates associated 
with the decision to take a biopsy versus making the 

decision on the basis of clinical features and blood tests On the basis of the latter the clinician believes that the 
probability of hepatitis is 0.2 (20%) and 

that of cirrhosis is 0.8 (80%). Furthermore, the probabilities of survival 

for two years are as follows: 

Hepatitis with steroids 0.85 (85%) 

Hepatitis without steroids 0.67 (67%) 
Cirrhosis with steroids 0.48 (48%) 
Cirrhosis without steroids 0.50 (50%) 

If no biopsy were possible then we would 
wish to compare overall outcomes with and without steroids lower 

branch 

Survival expectancy with steroids 
is (probability of survival with hepatitis given steroids x probability of 

hepatitis)' + (probability of survival with cirrhosis given steroids x probability of cirrhosis), ie 
(0.85 x 0.2) + (0.48 x 0.8) 

= 0.554 (55.4%) 

Similarly, without steroids it is 

(0 67 x 0 2) + (0.5 x 0.8) 
= 0.534 (53.4%) 

Clearlv if we do not do a biopsy we must give steroids. 
We can therefore fold the survival figure of 0.554 back to 

the first branch and compare this with 
the greatest expected survival if we do a biopsy (top branch). We calculate 

first the survival expectancies at node A. If the biopsy specimen 
shows hepatitis we will treat with steroids, and if 

cirrhosis we will withhold this medicine. The 
overall survival when we put these two together becomes 

(0.2 x 0.85) + (0.8 x 0.50) 
= 0.57. 

, 

We then <?o to the proximal node and 'average 
out further 

(0 999 x 0.57) + (0.001 x 0) 
= 0.5694. 

Therefore the probability of survival with the biopsy 
decision exceeds that with no biopsy by 1.54%. 

Fio- * This pxnmhlp concerns the expected survival rates associated with the decision to take a biopsy versus making the 

decision on the basis of clinical features and blood 
tests. On the basis of the latter the clinician believes that the 

probability of hepatitis is 0.2 (20%) and 
that of cirrhosis is 0.8 (80%). Furthermore, the probabilities of survival 

for two years are as follows: 

Hepatitis with steroids 0.85 (85%) 

Hepatitis without steroids 0.67 (67%) 
Cirrhosis with steroids 0.48 (48%) 
Cirrhosis without steroids 0.50 (50%) 

If no biopsy were possible then we would 
wish to compare overall outcomes with and without steroids lower 

branch 

Survival expectancy with steroids 
is (probability of survival with hepatitis given steroids x probability of 

hepatitis)' + (probability of survival with cirrhosis given steroids x probability of cirrhosis), ie 
(0.85 x 0.2) + (0.48 x 0.8) 

= 0.554 (55.4%) 

Similarly, without steroids it is 

(0 67 x 0 2) + (0.5 x 0.8) 
= 0.534 (o3.4%) 

Clearlv if we do not do a biopsy we must give steroids. 
We can therefore fold the survival figure of 0.554 back to 

the first branch and compare this with 
the greatest expected survival if we do a biopsy (top branch). We calculate 

first the survival expectancies at node A. If the biopsy specimen 
shows hepatitis we will treat with steroids, and if 

cirrhosis we will withhold this medicine. The 
overall survival when we put these two together becomes 

(0.2 x 0.85) + (0.8 x 0.50) 
= 0.57. 

We then o-o to the proximal node and 'average 
out fur ther 

(0 999 x 0.57) + (0.001 x 0) 
= 0.5694. 

Therefore the probability of survival with the biopsy 
decision exceeds that with no biopsy by 1.54%. 
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choice node on this branch of the decision tree. With- 
out the diagnostic test the definitive choice comes first 
and the probabilities of alternative states follow. In 
making the calculations based on the decision tree, we 
could begin by working out the survival rates on the 
lower branch: ie if there were no opportunity to per- 
form a biopsy would the patient be expected to fare 
better with or without steroids? The calculation is 

again based on the method used in the 'casino' exam- 
ple and is shown in the legend to the figure: the pre- 
ferred treatment in the absence of information from 
the biopsy is steroids. However, when we 'fold back' to 
the first branch?biopsy or decide without?then the 
calculation shows that the chances of survival are max- 
imised by doing the biopsy. This example is discussed 
in more detail by Weinstein and Fineberg [12] who 
give the disclaimer that the example is offered for ped- 
agogic purposes only and not as a guide to clinicians 
in practice. 

All three examples have one thing in common: they 
wish simply to maximise an outcome variable: mone- 
tary return in the first two examples and survival in 
the third. Many decisions in medicine, however, have 
multiple objectives and these may be in competi- 
tion?policies designed to maximise one outcome may 
impair another. What does decision analysis have to 
say about the trade-offs inherent in these decisions? To 

consider this further let us again use a plausible exam- 
ple from clinical practice. 

Example 4 

Our problem here concerns a woman with very early 
cancer of the reproductive tract. This has been diag- 
nosed by means of an excisional biopsy but the pathol- 
ogist tells us that the probability of residual tumour is 
0.02 (2%), in which case the disease can be eradicated 
in one-half of cases by further surgery (hysterectomy 
and lymph-node resection). The operation has a mor- 

tality of 5 per 1,000. We could approach this problem 
in the same way as the hepatologist and the wildcatter: 
ie simply calculate the option associated with the great- 
est prospect of survival. This may be appropriate for a 
woman who has completed her family; the decision 
tree and calculation are shown in Fig. 4. We find that 

surgery maximises the prospects of survival but a 

younger person who cherishes the desire to have chil- 

dren may wish to make a trade-off in favour of retain- 

ing her fertility. Fortunately decision analysis contains 
within its theoretical framework a method to evaluate 

and incorporate these preferences or utilities. 

Measurement of utilities 

Our patient must define the utility of full health, steril- 

ity, and death. The best health state is given a utility of 
1 and the worst (presumably death) is given a utility of 
0. The problem is to know where between 0 and 1 

sterility should be placed. 

The best method for measuring people's utilities is 
the basic reference lottery where the relative utilities 
of three health states are worked out together [13,14]. 
We obtain the utility of infertile life by asking for a 
choice between that and various gambles between fer- 
tile life and immediate death until a level of indiffer- 
ence is reached. In practice a subject would be asked 
to imagine two doors through one of which she had to 
go. Behind the left-hand door there was no risk of 
death but she would be rendered sterile. Behind the 

right-hand door she would encounter a 50% chance of 
intact survival but also a 50% risk of death (Fig. 5). 
She is likely to select the left-hand door. The risks of 
death through the right-hand door would then be 
adjusted (decreased) until a point was reached where 
she was unable to decide which door to select. This 

might occur when the risk of death through the right- 
hand door was 2% and of intact survival 98%. We call 
this the level of indifference. We can say that our 

patient values sterile survival at 0.98 on a scale where 
full health was valued 1 and death is valued 0. 
There are alternative methods of measuring values, 

such as asking patients to mark health states on a lin- 
ear scale, but, unlike the reference gamble, this 
method is not axiomatically correct. People avoid the 
extremes of the scale and, because the trade-off inher- 
ent in the technique is not obvious to the subject, val- 
ues obtained this way are distorted. A better alterna- 

tive makes use of natural underlying scales such as 
money, or years of life. People's utilities for money and 
years of life are rarely linear. People are usually risk- 
seeking or risk-averse. For example, the gambler in the 
first problem is likely to be risk-seeking; the utility 
curve for such a gambler is nonlinear, eg ?50 might 
have twice the utility of ?35. People taking out insur- 
ance policies are by definition risk-averse with nonlin- 
ear utility curves shaping the other way?the value to 
me of a new ?25,000 car might be more than 25 times 
the ?1,000 insurance premium. The difference 
between the expected losses with and without insur- 
ance is equal to the long-term administrative costs and 
profits of the insurance company. 

Years of life expectancy is another frequently used 
underlying scale, but it can be shown that people tend 
to value the years immediately ahead more highly than 
those far in the future. This is another example of risk 
aversion, and utility scales must reflect this. 

Adding utilities to the decision analysis 

Utilities must be combined with the probabilities to 
select a preferred course of action, ie that with the 

greatest expected utility. We start by estimating the 

utility of each chance node which is calculated as the 
weighted average of the utilities of its possible out- 
comes, where the weights are the probabilities of each 
outcome. The mathematics is shown in the legend to 

Fig. 4, where we assume that our young patient has a 

utility for infertile life of 0.98. This implies that she 
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would run a 2% risk of death to retain her fertility. 
Under this assumption, surgery is no longer 

the pre- 

ferred option (as it was when our sole objective 
was to 

maximise chance of survival). 

Sensitivity analysis 

We have now shown how the problem is structured, 

probabilities are selected, values measured, and the 

course of maximum expected utility identified. The 

final part of a full decision analysis should include 
a 

sensitivity analysis, because conclusions are dependent 
on the probabilities and utilities used, and in real 

life 

we are never certain what these are. In a sensitivity 

analysis, each of the key probabilities and values is var- 

ied in turn within the range of reasonable uncertainty 
to test the robustness of the conclusion. Fig. 6 shows a 
one-way sensitivity analysis in which our wildcatter has 
examined the effect of a range of drilling costs on the 
expected value of the decision to drill for oil: a profit 
is expected over a wide range of plausible estimates. 
However, when we did sensitivity analysis for the can- 
cer example above, we found that the decision was 
very sensitive to the utility of sterility. When we extend- 
ed our model to take into account possible prefer- 
ences for mode of death (whether by cancer in the 
long term or complications of surgery in the shor t 
term) we found that previous conclusions were unal- 
tered throughout the plausible range: the decision is 
not sensitive to this factor [15]. 

MORTALITY EXPECTED 
UTILITY 

Fig. 4. Decision analysis for the decision to carry out hysterectomy 
and lymph node dissection versus conservative therapy in a 

woman with cancer of the reproductive tract. We believe that 
the risk that the tumour has spread beyond the original 

excisional biopsy (PS) is 2% (0.02). If it has done so, the probability of cure (PC) is 50% (0.50). The operative 

mortality (OM) is 0.5% (0.005). If we simply 
wish to maximise the chance of survival, then we could compare the 

mortality of conservative management (0.02) 
with that of further surgery 0.005 + (0.995 x 0.5 X 0.02) = 0.015. 

Clearly the latter maximises the chance of survival. However, 
if we assume that all forms of death are equally 

undesirable (UD = 0) and that the patient would run 
a 2% risk of death to avoid infertility (UI = 0.98), then the 

preferred decision changes. The utility for fertile 
life (UFL) is 1.0. The formula for the expected utility of 

conservative management is now: 

(UD x PS) + [UFL x (1 PS)] 
= (0x0.02) + (1 x 0.98) =0.98 

For surgical management the expected utility 
is: 

(UD x OM) + (1 OM){[(l PS) x UI] 

+ PS(PC x UI) [(1 PC) x UD]} 
= 0.005 x 0 + 0.995{(0.98 x 0.98) 
+ 0.02 [(0.5 x 0.98) + (0.5 x 0.0)]} 
= 0.9654 

This is a lower figure than the expected utility for conservative surgery which now becomes the preferred option. 
We could determine the chance of spread where the expected utilities would be equal?a threshold analysis. 

Fig. 4. Decision analysis for the decision to carry out hysterectomy 
and lymph node dissection versus conservative therapy in a 

woman with cancer of the reproductive tract. We believe that 
the risk that the tumour has spread beyond the original 

excisional biopsy (PS) is 2% (0.02). If it has done so, the probability of cure (PC) is 50% (0.50). The operative 

mortality (OM) is 0.5% (0.005). If we simply 
wish to maximise the chance of survival, then we could compare the 

mortality of conservative management (0.02) 
with that of further surgery 0.005 + (0.995 x 0.5 X 0.02) = 0.015. 

Clearly the latter maximises the chance of survival. However, 
if we assume that all forms of death are equally 

undesirable (UD = 0) and that the patient would run 
a 2% risk of death to avoid infertility (UI = 0.98), then the 

preferred decision changes. The utility for fertile 
life (UFL) is 1.0. The formula for the expected utility of 

conservative management is now: 

(UD x PS) + [UFL x (1 PS)] 
= (0x0.02) + (1 x 0.98) =0.98 

For surgical management the expected utility 
is: 

(UD x OM) + (1 OM){[(l PS) x UI] 

+ PS(PC x UI) [(1 PC) x UD]} 
= 0.005 x 0 + 0.995{(0.98 x 0.98) 
+ 0.02 [(0.5 x 0.98) + (0.5 x 0.0)]} 
= 0.9654 

This is a lower figure than the expected utility for conservative surgery which now becomes the preferred option. 
We could determine the chance of spread where the expected utilities would be equal?a threshold analysis. 
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Limitations of decision analysis 

Probability estimates 

Ideally each probability estimate used in making a 
decision should be derived from the literature; the 

example of early reproductive cancer was based on the 

problem of occult cervical tumours and in this case we 
were fortunate to find numerous relevant articles in 

the literature. The accuracy and precision of the esti- 
mates will depend on the study design. Large rand- 
omised controlled studies should be used with safe- 

guards against post-randomisation bias. Such studies 
are not always available, even when they are, judge- 
ment is required to extrapolate results from one time 
and place to another. It is frequently necessary to use 

semi-objective probability estimates in which probabili- 
ties obtained from the literature have to be modified 

according to local circumstances or changes in prac- 
tice. In the example of occult cervical cancer, we 

adjusted the published estimate of operation mortality 
downwards to take into account improvements in surg- 
ical technique, anaesthetics and intensive care since 
the studies were undertaken. Such adjustments must 
be arbitrary but they cannot be avoided. One of the 
most commonly heard and least justified criticisms of 
decision analysis is that the need to make revisions of 

probability estimates somehow invalidates the tech- 

nique. These adjustments invalidate decision analysis 
no more than they do conventional intuitive decision- 

making. The latter is also based on probabilities which 
are no more accurate for not being made explicit. 
Indeed, the process of making probabilities explicit is 
a reason to use rather than abandon decision analysis, 
since this exercise exposes the source of disagreement 
about treatment policy. The process of decision analy- 

sis, because it is transparent, encourages a comprehen- 
sive review of the literature: a great improvement on 
informal probability estimates based on incomplete 
data and subject to 'availability bias'?the systematic 
tendency of the human mind to overestimate the like- 
lihood of events which have occurred recently or 
which stand out from the ordinary. This is one of the 

many 'faulty heuristics' to which the human mind is 

prone [16,17]. The traditional review article has come 
in for much justified criticism and should be replaced 
by structured overviews in which literature review is 

systematic and where the results of similar studies are 
combined by the technique of quantitative meta-analy- 

Fig. 5. Diagram of the lottery method to 
determine an individual's trade-off between 
three outcomes: in this case sterility from 
treatment, intact life, and death. The 
intermediate outcome (sterility) is 

placed behind the left-hand door and 
the extreme outcomes (intact life/ 
death) behind the right-hand door. The 
risk of the intermediate outcome is fixed 
at 100% but the relative risks of intact 
life versus death (right-hand door) are 
varied from the extreme ends of a scale 

to the point where the subject cannot 
decide which door to take?her point of 
indifference. 
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life versus death (right-hand door) are 
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Fig. 6. A typical sensitivity analysis showing in this case 
how the expected value of the decision to drill for oil varies 
with drilling costs to the point?beyond the vertical 
line?where it is less than the expected value of not drilling. 
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how the expected value of the decision to drill for oil varies 
ivith drilling costs to the point?beyond the vertical 
line?where it is less than the expected value of not drilling. 
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sis. Decision and sensitivity analysis impose a further 
tier of rigour and relevance by showing what 

the 

results could mean for clinical practice in a logical, 
transparent and numerical way. 

Often the probability of an event is based not on 
one but on many items of information, 

ie on many 

tests'. When this is the case we use Bayes' theorem to 

calculate the probability of an event by combining 
prior probability (prevalence) and the result of all 
these tests. This is superior to intuitive methods since 
it avoids 'anchoring'?the systematic tendency of the 
human mind to give undue weight to the information 
which is collected first. The probabilities of different 

diagnoses produced by Bayes' theorem are eminently 
suitable for inclusion on decision trees and hence for 

decision analysis. 
There are, of course, times when objective probabili- 

ties cannot be derived from the literature at all and 

subjective numerical probabilities must be used. 
These 

can be obtained by deriving a consensus from 
a panel 

of experts in a way which 
minimises the biases men- 

tioned above (the Delphi method) [12]. 

Utility measurements 

We saw in the cancer example that the decision 

between conservative management and radical surgery 
was sensitive to the value placed by the patient on pre- 
serving her fertility. We also showed 

that if these utili- 

ties were to be used in decision analysis, then the 

trade-off (in this case risk of death versus preservation 
of fertility) must be explicit in the 

method by which 

the utilities were obtained. Nevertheless, even if such 
a 

method is used, no one can pretend that these utility 
estimates are themselves not subject to bias. For exam- 

ple, the way that a lottery is framed (eg 
risk of death or 

chance of survival) can influence the results. Never- 

theless, it is possible to test whether the subject has 

understood the choices by measuring the internal con- 

sistency of a series of responses in which the 
answers to 

one gamble should be predictable on the 
basis of the 

responses to two earlier gambles [18,19]. 
Another feature of utility measurement is that deci- 

sion analysis assumes that utilities remain proportion- 
ately the same as risk changes; for example, 

a patient 
who regards a Down's birth as twice 

as bad as the acci- 

dental miscarriage of a normal fetus would 
be expect- 

ed to regard a l-in-200 risk of Down's 
birth as equiva- 

lent to a l-in-100 risk of the loss of a normal fetus. 
This 

principle is called the 'constant proportion 
risk atti- 

tude'. Unfortunately there is evidence that human 
rea- 

soning does not strictly adhere to 
this principle [20]. 

We would argue that lack 
of a constant proportion risk 

attitude is irrational and a failure of human mental 

decision processes which 
can be overcome by decision 

analysis. Nevertheless, it is impossible to deny 
the 

sheer practical difficulty of obtaining utility 
functions 

from bewildered patients on a busy clinical service?a 

point to which we shall return. 

Representing life's infinite complexity 

Decisions in real life have almost infinite complexity. 
In the early cancer example, for instance, we took the 
importance of infertility into account and in the full 
analysis (not shown here) even incorporated relative 
dislike of different modes of death, but we could have 

gone further to enumerate the described complica- 
tions of surgery, their probabilities and utilities. We 
could also have considered other forms of treatment, 
such as radiotherapy. However, the resulting tree 
would have been very complicated?a messy bush! 
What we did was to use our judgement: we selected a 
question which is the subject of real disagreement and 
which seemed most important. Decision analysis 
requires explicit articulation of a thought process and 
some people think that this biases the result. Such 
people argue that the intuitive decision-maker is able 
to incorporate the full myriad of interconnected con- 
siderations. The trouble with this claim is that all the 

formal psychological studies of human reasoning show 
that, far from incorporating these subtleties, the mind 
makes major simplifying assumptions and is prone to 
numerous biases [16,20]. There is no intellectual justi- 
fication for hiding behind a mysterious mental mech- 
anism which has been shown to fail in careful experi- 
ments. Equally, the results of a decision analysis should 
not be accepted uncritically; the reader must deter- 
mine whether all these important treatments, proba- 
bilities, and outcomes have been incorporated, and 
whether the range of probability and utility measure- 
ment in a sensitivity analysis are reasonable. Decision 
analysis, for all its internal rigour, must be based on at 
least one assumption?which decision options and 
outcomes to include. 

Decision analysis and medical practice 

Care of individual patients 

Formal decision analysis, in its full rigour, is seldom 
used in everyday practice even by ardent advocates of 
the technique. The need to employ a series of lotteries 
for all possible outcomes, let alone incorporate 'coher- 
ence' measures, along with the incomprehension with 
which many patients might regard any such attempt, 
are powerful limiting factors. Prenatal diagnosis/clini- 
cal genetics are possible exceptions [21]; they are 
more overtly value-led than many other areas of 
medicine, and the patients are often young and articu- 
late. They themselves are not in the 'sick role'. Such 
subjects appreciate the clarity with which issues are 
highlighted, and for them counselling is more effec- 
tive [21]. Decision analysis exposes the reasons for any 
disagreement between parents about the need for pre- 
natal testing; different estimates of risk or differing val- 
ues can then be explored in more detail. Nevertheless, 
even in this circumscribed area of medical practice, 
use of decision analysis in its full rigour to aid the 

Journal of the Royal College of Physicians of LondonWol. 26 
No. 4 October 1992 407 



R. J. Lilford 

management of individual patients remains the excep- 
tion rather than the rule. What then is the use of the 

technique if it can seldom be used in real time? The 
value of decision analysis derives from the observation 
that much of medical practice is determined not in 

the consulting room but in the wider arenas of medi- 
cal and public debate, and it is here that the technique 
is most useful. 

Decision analysis and treatment policy 

Medical controversies are based on disputes over the 
best treatment for groups of patients with similar fea- 
tures, eg the management of women with occult can- 

cers or young people with chronic progressive liver 
failure. Decision analysis encourages decision-makers 
to structure the decision correctly by means of a deci- 
sion tree, to search for the relevant probabilities, and 
to acknowledge the importance of those values to 
which the decision is sensitive. Any debate can then be 
focused on the specific features of the decomposed 
problem, and mistakes will not occur from incorrectly 
analysing the correct data. The tradition in all civilisa- 
tions is to improve decisions through debate; if not, 
why discuss medical ethics, argue over controversial 
treatments, or debate serious issues in Parliament? 

Decision analysis provides the logical framework for 
these debates?for 'testing' one decision against 
another. If two experts disagree, then instead of resort- 

ing to slogans ('People die of cancer' . . . 'How would 

you like to have no leg?' . . . 'Women value their fertili- 

ty'), the precise source of disagreement can be pin- 
pointed. Often this will be because of a disagreement 
over the probabilities such as the probability of death 
from radical hysterectomy or liver biopsy. Even more 
often, different values will be found to be the source of 

disagreement. For example, we found that women 

selecting home birth had a lower utility for avoiding 
fetal death than those selecting hospital confinement 
[22]. 
The very act of structuring decisions properly may 

give valuable insight. For example, until decision 

analysis was conducted, the entire literature on breech 

delivery compared outcome following Caesarean sec- 
tion with that following vaginal delivery. The decision 
tree showed that trial of vaginal delivery should be 

compared with planned Caesarean section [23], since 

many cases with the worst fetal and maternal outcome 

will follow hurried intrapartum Caesarean section. 
The act of incorporating patients' values has an even 

greater effect on our ways of thinking. In the field of 

prenatal diagnosis the facile analysis that amniocent- 
esis should be recommended when the risk of Down's 

syndrome is greater than the risk of miscarriage from 
the procedure is wrong, since a decision theorist can 

immediately see that this implies an equal value for 
Down's syndrome and fetal loss?a situation which 

applies to only a few patients [19,21]. Decision theory 
emphasises those components of the decision which 

are value-led. A chest physician recently declared, on 
the basis of the lung function tests obtained from a 
patient with kyphoscoliosis, that he did not 'think the 
patient should contemplate pregnancy'. When 
pressed, he estimated the risk of death from preg- 
nancy at 0.5%. Clearly, he had no business to attempt 
to proscribe pregnancy since this was a value decision 
which should be based on, but not determined by, the 
probability estimate. These are examples of some sim- 
ple insights which decision analysis provides, but the 
technique is most powerful when complex medical 
controversies are examined. The example which we 
used (microscopic occult cancer) was inspired by a 
debate about the histological diagnosis of so-called 
'micro-invasive cancer'. The analysis shows how treat- 
ment can be individualised according to a range of 

histological and other criteria, and that any attempt to 
treat patients according to fixed cut-off criteria for 
histological diagnosis is doomed to failure. Decision 
analysis has been used to shed light on some impor- 
tant medical controversies. Some examples are listed 
in Table 1. 

Decision analysis and research 

Decision and sensitivity analyses show which factors 
influence expected utility most strongly, and therefore 
point the way to future research. In addition to show- 
ing us which research questions are most pressing, 
decision analysis can be used to determine the sample 
sizes for trials [34,35]. Any trial should be sufficiently 
large to detect the size of difference which would 
influence clinical practice. This can be determined by 

Table 1. Some published examples of decision analysis 

Pauker and Pauker [21] 

Heckerling and Verp [24] 

Bingham and Lilford [23] 

Hillner and Smith [25] 

Verhoef et al [26] 

Klein and Pauker [2V] 

Elstein et al [28] 

Speroff et al [29] 

Feldman and Freiman [30] 
Weinstein et al [31] 

Tompkins et al [32] 

Neutra [33] 

Amniocentesis for prenatal 
diagnosis 
Amniocentesis versus chorion 

sampling 
Management of the term 
breech 

Chemotherapy for breast 
cancer 

Mastectomy versus lumpectomy 
in breast cancer 

Anticoagulation for DVT in 
pregnancy 

Oestrogen replacement in the 
menopause 

Elective oophorectomy at 
hysterectomy 
Elective Caesarean section 

Coronary artery bypass surgery 
Antibiotic therapy for sore 
throats 

Management of appendicitis 
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decision theory. Clinicians are unlikely 
to place 

patients in trials if the trial has no chance of produc- 

ing a result which would influence 
clinical practice. 

Delta is the term used to describe the magnitude of 

the effect in a trial, and ideally delta should be of 

sufficient magnitude to change clinical practice. 
Let us 

imagine two treatments, A and B. Treatment 
B has 

greater side-effects than treatment 
A but may be more 

effective. Treatment B could be radical mastectomy 
for 

breast cancer, elective Caesarean section for 
the pre- 

mature breech delivery, or a new antihypertensive 
for 

use in pregnancy. Treatment A might be 
local excision 

of the breast tumour, the intention to deliver 
the 

breech vaginally, or 'tried and tested' pregnancy 
anti- 

hypertensives. In each case, value trade-offs among 
clinicians or (preferably) other subjects could 

be used 

to measure the size of delta which would make 
the cost 

of treatment B worthwhile. Let us imagine that 60% of 

women treated by 'lumpectomy' for T1 NO 
MO breast 

cancer will die of their disease. If the mean utility for 

survival without a breast is known, then it is possible to 

calculate the minimum improvement in survival which 

would justify mastectomy in preference 
to lumpecto- 

my. As in the previous example, a utility 
for life after 

mastectomy of 0.98* (life post-lumpectomy 
= 1 and 

death = 0) corresponds to a willingness to 
run a 2% 

risk of earlier death to avoid this disfigurement. How- 

ever, if the mean utility was 0.9, then we 
would know 

that half of the women would run a 10% risk of 
death 

from their cancer, above the baseline, 
to avoid the 

more radical operation. (It would, of course, 
be neces- 

sary for these women 
to understand that they were 

trading death many years in 
the future against imme- 

diate mastectomy.) Delta can be determined 
for these 

utilities as shown in Fig. 7. It will be noted that 
delta is 

not large; a change in mortality 
of 4% must be demon- 

strated to satisfy half of all women if 
the utility of life 

after a mastectomy is 0.9, whereas much 
smaller treat- 

ment effects are clinically important if the utility 
is 

0-98. It is obviously important to bear 
these considera- 

tions in mind when designing or interpreting clinical 

trials. A trial must not be larger than necessary 
to 

detect the clinically meaningful effect, but equally 
it 

should be large enough to detect 
effects which most 

women would consider worthwhile. At the very 
least it 

should be sufficiently powerful in combination (by 

meta-analysis) with other trials 
that might be under 

way or which are thought likely to 
take place. 

An important corollary of the 
use of decision theory 

in the design of trials is that the alpha (type 
1?false 

positive) and beta (type 2?false negative) 
errors 

should be equal [36]. This is 
in contrast to the usual 

teaching that a false positive 
result is more serious 

than a false negative if one of the treatments 
is more 

'costly', eg if it has worse side-effects. Under the 
scheme proposed here this greater cost is discounted 
in the size of delta. Once this is done it is no longer 
advantageous to plan for different type 1 and type 2 

errors, since a false negative trial result is no longer 
preferable to a false positive result. In addition, there 
is no intuitive way to relate the relative sizes of the type 
1 and 2 errors to clinical practice, whereas a reader 
can immediately relate delta to the effect which would 
be required to justify the use of new or more radical 
treatmentf. 

*A utility of 0.98 seems about right 
to us?as husbands we would go 

for a higher figure still. We are interested 
in getting direct estimates 

from women. 

j"The Bayesian approach to randomised trials is very much in keep- 
ing with the decision analysis approach. Decision analysts are attract- 
ed to the idea of starting a trial with a 'prior' distribution of expecta- 
tions of the effects of competing treatments since they are similar to 
semi-objective probability estimates in decision analysis. Similarly, 
the presentation of the results as a frequency distribution of the 
'posterior' odds of the two treatments takes into account the consid- 
eration that alpha and beta errors should be equal. Lastly, standard 

(frequentist) statistics do not tell clinicians the probability that the 
difference is as big as measured. In a trial where we had no prior 
knowledge at all (ie where we were equipoised around completely 
uninformative prior probabilities), a two-tailed p value of 0.05 

implies a 50% chance that the difference between two treatments is 
as big as or bigger than measured, 47.5% that it was smaller but in 
the same direction, and 2.5% the direction of the effect was wrong. 
However, as soon as we have some prior belief, even about the shape 
of the likely distribution, the above probabilities change. 

Fig. 7. Decision analysis for a trial of surgical treatments for 
early cancer of the breast. A trial is planned of 
mastectomy versus 'lumpectomy'. Most 'experts' think 
that the treatments are equivalent in terms of survival 
or mastectomy is slightly better. Therefore a trial 
needs to measure an improvement of delta with 
mastectomy, from the 60% base-line risk of dying from 
cancer following lumpectomy. If a small delta (eg 2% 
improvement in mortality) would justify the larger 
operation, then the trial will need to be very large. 

Fig. 7. Decision analysis for a trial of surgical treatments for 
early cancer of the breast. A trial is planned of 
mastectomy versus 'lumpectomy'. Most 'experts' think 
that the treatments are equivalent in terms of survival 
or mastectomy is slightly better. Therefore a trial 
needs to measure an improvement of delta with 
mastectomy, from the 60% base-line risk of dying from 
cancer following lumpectomy. If a small delta (eg 2% 
improvement in mortality) would justify the larger 
operation, then the trial will need to be very large. 
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Decision analysis and medical ethics 

Ethical disagreements sometimes hinge on value dif- 
ferences, and objective measurement of the relevant 
values may help understanding [37]. For example, the 
disutility ('cost') of abortion, measured by a basic ref- 
erence gamble between pregnancy termination and 
risk of mental handicap in the fetus, increases with 
gestational age [38]. Later in pregnancy the 'cost' of 

fetal death resulting from inaction after viability or in 

infancy is generally higher still, although a few women 
value death due to inaction, even after viability, as less 

costly. One must presume that they draw a distinction 
between acts of omission and commission. Moral 

philosophers, in contrast to clinicians, rarely accept 
this distinction. Such values in society, although chang- 
ing from place to place and time to time, may be rele- 
vant to ethical debate, and if so should be measured (a 
technique we call ethometrics) rather than guessed. It 
is unlikely that important ethical and philosophical 
questions will ever be resolved by measuring differ- 
ences in people's values; after all, we seek to influence 

public attitudes by ethical debate, not the other way 
round. However, at any one time public perceptions 
cannot be ignored if society as a whole is to have a 
stake in medical ethics. Furthermore, the philosophy 
may lead us to conclude that an issue is subject to 

gradualism, eg that abortion becomes gradually less 

acceptable as the fetus gets older. If this is so, then 

philosophers might also agree that the point on the 
scale where an action should be judged unlawful 
should be determined by the values of society. Deci- 
sion analysis may also give valuable insight into the 
ethics of trials. Bayesian trialists talk about 'prior' 
expectations before starting a trial. If the expected dif- 
ference is not zero, then we are not equipoised (agnos- 
tic) . If we start from the premise that equipoise is ethi- 

cally important, then a trial might still be ethical, even 
if we expect one treatment to be more successful than 
another: first, access to one of the treatments may be 

restricted, on the basis of inadequate resource, to 

patients in a trial; second, if one of the treatments has 

higher perceived 'cost' (eg side-effects), the trial is eth- 
ical provided our starting expectation is that the more 

costly treatment has an advantage sufficient to make 

up for (but not exceed) this cost, ie if our 'prior' odds 

equal delta in the breast cancer example. 

Distribution of scarce resources 

Readers interested in health economics will have 

recognised the similarity between the expected utility 
model which we have presented and cost-utility analy- 
sis [39,40]; indeed, the logical framework and mathe- 
matics are identical. Thus decision analysis can be 
extended from how to care for an individual patient to 
decisions affecting communities. At its simplest level 
the sensitivity analysis approach can be used to calcu- 
late the expected benefits of extending a screening 

programme, for example, for fetal anomaly [41,42] or 
cancer [43]. Full cost-utility studies are based on deci- 
sion trees where the expected values achievable by 
competing resource allocation decisions are compared 
[44-46]. The difficult part is to reduce years of life 

gained or suffering averted to a single scale. One 
approach is based on the Quality Adjusted Life Year 
(QALY). This requires, first, that the possible health 
states are modelled over time?the Markov process 
[47]; then the number of years spent in each state are 

adjusted for quality. 
Thus we do not simply calculate the number of 

years gained with different treatments but also take 
into account the quality of those years. 

As with utilities, the quality adjustment in QALYs 
can be derived in three ways: using rating scales for 
various hypothetical health states [48,49], the lottery 
method, and the time trade-off method. 

Rating scales. These have been used to derive valuation 
matrices for hypothetical health states varying in two 
dimensions: first, a disability rating varying in seven 

steps from 'no disability' to 'unconscious' and, second, 
a distress rating varying in four steps from 'no distress' 
to 'severe distress' [48]. Real health states are then 

placed on the valuation matrix and the relevant utility 
of a year in that state is read off. 

Lottery method. Patients are asked to imagine that they 
face a choice between a lifetime of impaired health 
and a gamble between a lifetime of full health and 
death. The probability (p) of full health at which they 
would be unable to decide defines the value of the 

impaired health state. If the answer is near 1 the 

health state is rated near to full health, while if it is 
near 0 the health state is rated little better than death. 

Time trade-off method. Patients are asked what is the 
smallest fraction (J) of a year of life at full health they 
would exchange for a full year in the relevant health 
state. The value of / defines the utility of the health 
state. 

The Markov process or Markov chain. For this method a 
limited set of health states and permitted transitions 
between these health states is defined. In our example 
a patient in the 'post cone biopsy' state may in any 
given year move into the state 'post cone biopsy one 
child', the state 'radical operation no child', and the 
state 'recurrence no child'. From the state 'radical 

operation no child' she can move into 'post operation 
no child', 'recurrence no child', or 'death', and so on. 
The probabilities of each move would be derived from 
the literature. In a simple Markov chain transition 

probabilities do not vary from year to year. In biology 
they usually do, with, for example, risk of recurrence 

being higher in the earlier years after diagnosis. Such 
variations can be accommodated in modern computer 

analyses. The utilities of each of these states would be 
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calculated by one of the above methods, 
but preferably 

by lotteries. 
Typical figures for a year in the following 

health 

states might be: 

post cone biopsy no child 
0.95 

operation no child 0.95 

post cone biopsy 1 child 0.99 

post cone biopsy 2 children 1.0 

post operation no child 0.95 

post operation 1 child 0.99 

post operation 2 children 1.0 

symptomatic residual disease 0.9 

dead 0 

The model is used by placing a hypothetical cohort 
of patients in a certain state at the beginning 

of the 

period of analysis (eg placing 10,000 patients 
in the 

post cone biopsy state) and following 
their course year 

by year. Besides the relevant transition 
rates (eg residu- 

al disease to death), age-specific mortality from other 

causes is fed into the model so that after a sufficiently 

long time all patients will have died. 
To allow for the 

lower utility of years far in the future 
a discount can be 

applied. The rate of this discount 
can also be calcu- 

lated individually by lotteries. 
The programme is run with 

various policies, eg 
immediate surgery, surgery 

after the first child, 

surgery after the second child, 
or no surgery at all. 

The total and average numbers 
of QALYs obtained 

with each policy are compared and that producing 
the 

most is chosen. 

Conclusion 

The language and methodology 
of decision analysis 

and, more specifically, of expected utility theory 
can 

change how we think. The discovery 
that there is a 

specific mathematical function (expected utility) 
which measures the benefits of a course of action 

can- 

not be ignored by those who wish 
to analyse their 

treatment choices. Since it emphasises the way that val- 

ues and probabilities underlie decisions, 
it is threaten- 

ing to those who like to work with 
certainties. Many 

doctors reject it, believing that they 
have made good 

decisions for many years without 
it. We hope that the 

examples in this lecture have shown 
that this may not 

be the case. Decision analysis has been widely used 
in 

business for years, and has entered 
the mainstream of 

medical thinking in North America and, 
more recent- 

ly, the Antipodes. It is incorporated 
in the medical cur- 

riculum in centres as far apart as Hamilton, Ontario 

and Dunedin in the South Island of New Zealand. 
We 

believe that doctors in Europe may come to love it or 

hate it, but cannot ignore it. 
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