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Abstract: The identification of mutants through forward genetic screens is the backbone of Drosophila
genetics research, yet many mutants identified through these screens have yet to be mapped to the
Drosophila genome. This is especially true of mutants that have been identified as mutagen-sensitive
(mus), but have not yet been mapped to their associated molecular locus. Our study addressed the
need for additional mus gene identification by determining the locus and exploring the function
of the X-linked mutagen-sensitive gene mus109 using three available mutant alleles: mus109D1,
mus109D2, and mus109lS. After first confirming that all three mus109 alleles were sensitive to methyl
methanesulfonate (MMS) using complementation analysis, we used deletion mapping to narrow the
candidate genes for mus109. Through DNA sequencing, we were able to determine that mus109 is the
uncharacterized gene CG2990, which encodes the Drosophila ortholog of the highly conserved DNA2
protein that is important for DNA replication and repair. We further used the sequence and structure
of DNA2 to predict the impact of the mus109 allele mutations on the final gene product. Together,
these results provide a tool for researchers to further investigate the role of DNA2 in DNA repair
processes in Drosophila.

Keywords: mus109; DNA2; DNA repair

1. Introduction

The development of gene mapping techniques has a long and storied history in the
Drosophila melanogaster model system (reviewed in [1]), beginning with Alfred Sturtevant’s
fundamental publication of the first genetic map in 1913 [2]. In this work, Sturtevant showed
that genes are arranged in a linear order along chromosomes and that the recombination
frequency between two genes could be used as a measure of the distance between them.
This discovery created the foundation for other key advances in Drosophila gene mapping,
including the generation of detailed polytene chromosome cytogenetic maps [3,4], the
development of deletion kits covering the genome [5–7], and the sequencing of the D.
melanogaster genome [8].

However, despite these advances, the current D. melanogaster genome annotation
includes 14,184 genes that have not yet been mapped to the molecular genome (FlyBase
R6.43; [9]), including many genes that were discovered in forward genetic screens. In these
cases, alleles have been discovered that produce a phenotype of interest, but the molecular
locus responsible for this phenotype remains unknown. For example, several forward
genetic screens have been conducted to identify D. melanogaster mutants with defects in
DNA repair (e.g., [10–15]). In these screens, flies that showed reduced survival in the
presence of a mutagen—usually the alkylating agent methyl methanesulfonate (MMS)—
were identified as probable DNA repair mutants. To date, 58 of these mutagen-sensitive
(mus) stocks have been generated, yet the gene responsible for the mus phenotype is known
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for only 15 of these stocks [16,17]. Importantly, each mapped mus gene has encoded an
ortholog of a human DNA repair protein [17], including proteins implicated in disorders
such as Bloom syndrome [18], Fanconi anemia [16], and xeroderma pigmentosum [19].

The knowledge derived from studies of these 15 mapped mus genes demonstrates
the utility of mapping mus genes to facilitate DNA repair research in Drosophila. With this
in mind, we sought to map mus109, an X-linked essential gene with three extant alleles:
mus109D1 [13] and mus109D2 [14] are homozygous viable hypomorphic alleles, whereas
mus109lS is a homozygous lethal null allele [20]. mus109 mutants are characterized by
chromosomal instability in the absence of mutagen treatment [20–23], with the majority
of chromosome breaks occurring in heterochromatin [22]. Further, mus109 mutants are
sensitive to MMS, 4-nitroquinoline-1-oxide (4NQO), and γ irradiation [13,14,24,25], which
are mutagens that create DNA adducts (MMS and 4NQO; [26,27]) and oxidative damage (γ
irradiation; [28]). In this manuscript, we present detailed mapping data obtained through
complementation analysis, deletion crosses, and DNA sequence alignment showing that
mus109 is the uncharacterized Drosophila gene CG2990 (human DNA2). We further discuss
the potential functionality of the mus109 mutant alleles by comparing the mutations to
conserved catalytic regions in DNA2.

2. Materials and Methods
2.1. Drosophila Stocks and Maintenance

D. melanogaster stocks were maintained at 25 ◦C in bottles containing Nutri-Fly Bloom-
ington Formulation media (Genesee Scientific) with a 12h day/night cycle. Experimental
crosses were conducted in narrow vials containing corn syrup/soy media (Archon Sci-
entific). The following fly stocks were obtained from the Bloomington Drosophila Stock
Center (BDSC): mus109D1 (BDSC# 2320), mus109D2 (BDSC# 2307), mus109lS (BDSC# 4168),
Df(1)ED6991 (BDSC# 37535), Df(1)ED6989 (BDSC# 9056), Df(1)BSC539 (BDSC# 25067),
Df(1)BSC754 (BDSC# 26852), DGRP-59 (wild-type; BDSC# 28129), and FM7c, P{GAL4-
Kr.C}DC1, P{UAS-GFP.S65T}DC5, sn+ (BDSC# 5193).

2.2. Complementation Analysis

Five mus109 heterozygous females—carrying either the mus109D1, mus109D2, or mus109lS

chromosome over an X chromosome balancer marked with the dominant Bar eye phenotype—
were crossed to five hemizygous mus109D1 or mus109D2 males per vial to establish Brood 1 (day
0). On day 3, the flies were flipped into new vials to establish Brood 2. On day 4, Brood 1 vials
were mock treated with 250 µL water. On day 5, the adult flies were discarded from Brood 2
vials, and on day 6, Brood 2 vials were treated with 250 µL 0.05% methyl methanesulfonate
(MMS; Sigma-Aldrich). Adult offspring were frozen on day 18 (Brood 1) or day 21 (Brood 2)
and were subsequently scored for sex and eye phenotype. For each vial, relative survival was
calculated as the ratio of mus109 mutant to non-mutant flies in Brood 2, normalized to the same
ratio in the corresponding Brood 1 vial. Vials with fewer than 15 progeny in either Brood 1 or
2 were excluded from analysis, as in [29]. Statistical significance was determined by one-way
ANOVA with Tukey’s correction for multiple comparisons. Statistical analysis and graphing were
performed using GraphPad Prism 7.05.

2.3. Deletion Mapping

Four deletions covering the area predicted by Mason et al. [14] to contain mus109 were
selected: Df(1)ED6991, Df(1)ED6989, Df(1)BSC539, and Df(1)BSC754. Five heterozygous
females—carrying one of the deletions over an X chromosome balancer—were crossed
to five mus109D2 males per vial to establish Brood 1 (day 0). The remainder of the MMS
sensitivity assay proceeded as in the complementation analysis crosses.

2.4. DNA Sequencing

For the mus109D1 and mus109D2 alleles, DNA was extracted from single adult hem-
izygous males using the protocol described in [30]. For mus109lS, flies were balanced with
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the FM7c, P{GAL4-Kr.C}DC1, P{UAS-GFP.S65T}DC5, sn+ chromosome and homozygous
third-instar larvae were identified by the absence of green fluorescence. DNA was then
extracted from single homozygous third-instar larvae using the same protocol described
in [30]. From these extracts, the CG2990 coding region was amplified, purified with a
GeneJet Gel Extraction Kit (Thermo Scientific), and sequenced (Eurofins Genomics). The
primers used in PCR and sequencing are shown in Table S1. Sequences were aligned to
the FlyBase [31] CG2990 reference sequence and identified mutations were confirmed on a
second DNA sample.

2.5. Protein Alignment

Clustal Omega [32] was used to conduct amino acid sequence alignment between
DNA2 orthologs in wild-type D. melanogaster (NCBI Accession# NP_727386), Mus musculus
(NCBI Accession# NP_796346.2), Homo sapiens (NCBI Accession# NP_001073918.2), and
Caenorhabditis elegans (NCBI Accession# NP_496516.1). Alignment was visualized using
Jalview version 2.11.1.4 [33]. Domains were mapped and analyzed according to the domain
map devised by Zhou et al. [34] based on the structure of M. musculus DNA2.

3. Results and Discussion

Since the three mus109 alleles—mus109D1, mus109D2, and mus109lS—were identified
in the early 1980s [14,20,24], we first used complementation analysis to confirm that the
fly stocks were still mutagen-sensitive. All possible mus109 allelic combinations showed
sensitivity to MMS with significantly lower relative survival values compared to wild-
type (one-way ANOVA, F(5,50) = 255.7, p < 0.0001; Figure 1). Although the relative
survival values were not significantly different between the mus109 allele combinations
(p = 0.221), the relative survival values were lower in genotypes containing mus109lS than
in combinations without mus109lS (Figure S1), consistent with previous suggestions that
mus109lS is amorphic [20] whereas mus109D1 and mus109D2 are hypomorphic [21].
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mus109 allelic combinations and wild-type (WT). mus109lS/mus109lS could not be tested because the 
mus109lS allele is homozygous lethal. Each point represents one vial containing between 16 and 134 

Figure 1. Relative survival of flies exposed to 0.05% methyl methanesulfonate for the indicated
mus109 allelic combinations and wild-type (WT). mus109lS/mus109lS could not be tested because the
mus109lS allele is homozygous lethal. Each point represents one vial containing between 16 and
134 progeny (average = 55 progeny across all Brood 2 vials of all genotypes). The large horizontal
line is the mean, while the upper and lower lines show the standard deviation.

Next, deletion mapping was used to narrow the genomic location of mus109. Four
deletions spanning the approximately 630 kb region predicted to contain mus109 [14]
were each crossed to mus109D2 and assayed for sensitivity to MMS. With relative survival
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values of 0 in each case (Table S2), all four deletions failed to complement mus109D2.
Thus, the location of mus109 was narrowed to the approximately 62kb region shared
by all deletions (Figure 2). The FlyBase entries for the nine genes within this region
were reviewed to identify genes involved in DNA metabolism (Table 1), a characteristic
of all mapped mus genes. Notably, one of these genes, CG2990, is orthologous to the
well-characterized DNA repair gene DNA2 [17]. Similar to Drosophila mus109, DNA2 is
essential in yeast and mice [35,36], its downregulation causes genome instability in yeast
and human cells [37,38], and yeast Dna2 mutants are sensitive to MMS [39]. Collectively,
these observations suggested that CG2990 is an ideal mus109 candidate gene. To test our
hypothesis that mus109 was CG2990, we sequenced the CG2990 coding region in wild-type
flies and in each of the three mus109 alleles. In comparing these sequences, we identified
mutations resulting in premature stop codons in all three mus109 alleles as well as eight
missense mutations in mus109D1 (Figure 3A), all of which likely affect the functionality of
the mus109 gene product.
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Figure 2. Results of deletion mapping assay where four deletions were crossed to mus109D2. Each
deletion is shown as a red bar aligned with its genomic location on the Drosophila melanogaster X
chromosome in the jBrowse [40] screenshot above. The orange box highlights the region of overlap
between the four deletions, and the jBrowse area within this box is enlarged in the inset below. This
insert shows the nine genes contained in the overlapping region. “-” indicates non-complementation
of a deletion with mus109D2.

The DNA2 protein is an essential and conserved nuclease-helicase with roles in several
pathways that are crucial for maintaining genome integrity (reviewed in [41]). These
pathways include long-track end resection during homologous recombination [42], Okazaki
fragment processing [43], the recovery of stalled replication forks [44], and the maintenance
of mitochondrial DNA [45]. Underscoring the importance of this protein, human DNA2
mutations have been implicated in mitochondrial myopathy [46], microcephalic primordial
dwarfism [47], and some cancers [48]. DNA2 consists of a structure-specific nuclease and
helicase/DNA-dependent ATPase connected by a β-barrel stalk [34]. While the nuclease
activity is most critical to DNA2 repair functions [49–51], the helicase domains contribute
to the narrow tunnel-like structure of DNA2 that allows single-stranded DNA access to the
nuclease [34].

To explore the possible impact of the nonsense and missense mutations on mus109
mutant allele functionality, we mapped DNA2 domains onto CG2990 using the mouse
DNA2 protein structure [34] (Figure 3B). Like mouse DNA2, CG2990 contains a structure-
specific nuclease domain and a helicase/DNA-dependent ATPase domain connected by a
β-barrel stalk sequence, as well as two helicase motifs (1A and 2A) [34]. The two helicase
motifs are common to members of the Upf1 subfamily of helicases and contain an ATPase
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at their cleft [52]; however, helicase and ATPase activity are considered weak and non-
essential to DNA2 nuclease function [34,49].

Table 1. Predicted function of genes within mus109D2 and the non-complementing region.

Gene Summary *

asRNA:CR45185 Antisense long non-coding RNA; function unknown.

asRNA:CR45601 Antisense long non-coding RNA; function unknown.

CG2990 5′-3′ DNA helicase, 5′-flap endonuclease; orthologous to
HsDNA2 (DNA replication helicase/nuclease 2).

CG15312 Function unknown.

CG33557 DNA-binding transcription factor; orthologous to HsSCX
(scleraxis bHLH transcription factor).

Cht6 Chitinase; orthologous to HsCHIT1 (chitinase 1).

Gr9a Gustatory receptor.

Yp1 Yolk protein.

Yp2 Yolk protein.
* Information derived from gene ontology, summaries, and human orthologs sections of each gene’s FlyBase entry.
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Figure 3. CG2990 gene and protein structure. (A) CG2990 contains three exons and two introns.
Untranslated regions are shown in gray. Asterisks represent the missense mutations found in
mus109D1 mutants: E500D, L512F, S571G, E572Q, I633V, C755S, E825A, and K826E. mus109D1 and
mus109D2 are truncated by nonsense mutations (L871ter and Q583ter, respectively), while mus109lS is
truncated by a stop codon created by a 40 nucleotide deletion and four nucleotide (GAGG) insertion
after amino acid 251. (B) CG2990 protein structure. The location of the nuclease, stalk, helicase 1A,
and helicase 2A domains as identified in mouse DNA2 by Zhou et al. [34] are shown. Numbers above
the bar denote the amino acid position of domain boundaries. Red numbers below the bar represent
the predicted length of the CG2990 protein generated in each mus109 mutant. Full-length CG2990 is
1100 amino acids long.

We further compared the CG2990 and human DNA2 protein sequences. The amino
acid sequence alignment of CG2990 confirmed sequence homology to human DNA2
as well as with other model species (Figure 4). CG2990 contains the highly conserved
DEXXQ-box helicase motif, as well as all known active site residues as defined in Zhou
et al. [34]. Similarly, CG2990 contains most of the DNA contact site residues found in mouse
DNA2 [34]. The insertion/deletion mutation in mus109lS creates a premature stop codon
prior to the active site residues in the nuclease domain. This mutation likely abolishes
nuclease function, which is known to be essential for viability in yeast [49]. If so, this could
explain the homozygous lethal phenotype of mus109lS mutants. In contrast, the nonsense
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mutations in the mus109D1 and mus109D2 alleles occur after the conserved nuclease domain,
which may allow for functional nuclease activity. While the nonsense mutation in mus109D1

occurs in the second helicase domain, the I663V mutation in the stalk domain changes
a highly conserved amino acid (Figure 4), which may impact protein folding and/or
helicase functionality.

Considering our deletion mapping data and our identification of deleterious mutations
in CG2990, we conclude that mus109 is CG2990, the Drosophila ortholog of DNA2 [17]. This
knowledge will be immediately useful to the DNA repair community, as there are no
existing non-transgenic alleles of CG2990. With the identification of three (two hypomorphic
and one amorphic) alleles of CG2990, future genetic studies on the functions of DmDNA2
in DNA repair can be conducted. For example, comparisons between the mus109D1 and
mus109D2 alleles exposed to mutagens that impact DNA replication could be used to
dissect the function of the DmDNA2 helicase 1A domain, which is present in mus109D1

but not mus109D2. Likewise, investigations of the mus109D1 allele may further uncover
the importance of the DmDNA2 helicase 2A domain, as this domain is not predicted to
contribute to the tunnel structure needed for the nucleolytic activity of DNA2. Both of
these genetic studies would also benefit from complementary biochemical analyses of
the truncated DmDNA2 proteins produced in mus109D1 and mus109D2 mutants. Further,
because DNA2 has been shown to act as a tumor suppressor (reviewed in [41]), the nuclease
domain mutant allele may serve as a model with which to study DNA2-deficient cancer
processes. Future studies may also aim to investigate genetic interactions with DmDNA2
by creating flies mutant in both DNA2 and a critical gene in a redundant double-strand
break repair pathway, such as tosca (Exo1). These and other experimental possibilities will
greatly contribute to the growing body of work on DNA repair mechanisms and strengthen
the use of Drosophila as a model for biomedical research.
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