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Abstract: Pregnane X Receptor (PXR) belongs to the nuclear receptors’ superfamily and mainly
functions as a xenobiotic sensor activated by a variety of ligands. PXR is widely expressed in normal
and malignant tissues. Drug metabolizing enzymes and transporters are also under PXR’s regulation.
Antineoplastic agents are of particular interest since cancer patients are characterized by significant
intra-variability to treatment response and severe toxicities. Various PXR polymorphisms may
alter the function of the protein and are linked with significant effects on the pharmacokinetics of
chemotherapeutic agents and clinical outcome variability. The purpose of this review is to summarize
the roles of PXR polymorphisms in the metabolism and pharmacokinetics of chemotherapeutic drugs.
It is also expected that this review will highlight the importance of PXR polymorphisms in selection
of chemotherapy, prediction of adverse effects and personalized medicine.
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1. Introduction

Pregnane X receptor (PXR), also known as nuclear receptor subfamily 1 group I
member 2 (NR1I2) and steroid and xenobiotic receptor (SXR), is an orphan receptor of the
nuclear receptor gene superfamily and plays a key role in the metabolism of xenobiotics
and endobiotics [1–6]. Human PXR (hPXR), a 49.7 kDa protein of 434 amino acids, is the
product of the NR1I2 gene which is located in chromosome 3 (3q12-q13.3) and consists
of approximately 40 kb [7,8]. hPXR is mostly expressed in normal liver tissue, the small
intestine and the kidney whereas the PXR expression in tissues like stomach, ovaries, lungs,
breast and peripheral blood cells is less frequent [9,10]. PXR expression in neoplastic tissues
has also been reported, which differs from the expression levels in normal tissues [6,11].

The structure of the PXR protein is presented in Figure 1. The enlarged, hydrophobic
pocket of PXR enables it to accommodate a larger and more diverse number of ligands
than the rest of the nuclear receptors, such as endobiotics, pharmaceutical and herbal
compounds, environmental factors and dietary supplements and other xenobiotics [12,13].
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Figure 1. Structure of PXR protein. PXR consists of a ligand-depended activation function 2 (AF-2) 
and a highly conserved DNA-binding domain (DBD) in the N-terminal with two zinc-fingers while 
the DBD is connected to the C-terminal ligand binding domain (LBD) using a hinge. 
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Figure 1. Structure of PXR protein. PXR consists of a ligand-depended activation function 2 (AF-2)
and a highly conserved DNA-binding domain (DBD) in the N-terminal with two zinc-fingers while
the DBD is connected to the C-terminal ligand binding domain (LBD) using a hinge.

2. PXR Function

As a master regulator of xenobiotic response PXR adjusts the expression of many phase I
and phase II drug metabolizing enzymes (DME), such as cytochrome P450, uridine diphos-
phate (UDP)-glucuronosyltransferases, sulfotransferases and carboxylesterases [13,14]. PXR
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also regulates drug-efflux pumps multi-drug resistance gene 1 (MDR1), MDR2, ATP-binding
cassette transporter C 2 (ABCC) and anion-transporting polypeptide 2 (OATP) [14–16]. All the
aforementioned enzymes, under the control of PXR play a significant role in the biotransfor-
mation, metabolism and clearance of therapeutic agents, including chemotherapeutic agents,
that may result in drug-drug, drug-herb and drug-food interactions, toxicity, adverse effects
and reduced efficacy [13,14,16,17]. The overall functions of PXR protein are presented in
Figure 2.
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lipid and glucose metabolism, bile acid detoxification, steroid homeostasis, inflammation and vitamin metabolism.

It has also been reported PXR’s participation in tumor cell proliferation and growth,
apoptosis and metastasis as well as in liver regeneration and hepatic proliferation, indicat-
ing the important role of PXR in cancer [14,18].

Various nonsynonymous polymorphisms have been identified in essential domains of
NR1I2, including DBD and LBD affecting either the DNA or the ligand binding process,
while mutations in the 5′ UTR could affect PXR expression, resulting in modifications in
drug metabolism and pharmacokinetics as well as contributing to drug resistance [3,12,19].
Polymorphisms located in gene exons can modify the LBD or the DBD domains of PXR,
changing the interactions between these domains and ligands, gene promoters and co-
regulators, while polymorphisms located in non-coding regions can affect the regulation of
transcription and translation [3,20]. In the 3′ UTR of NR1I2 gene, specifically in the miRNA
target sequence, several single nucleotide polymorphisms (SNPs) have been described to
alter post-transcriptional micro-RNA (mi-RNA)-mediated regulation of PXR expression,
creating or deleting regions of interaction with miRNAs, as NR1I2 rs1054190 (C > T) and
NR1I2 rs1054191 (G > A), respectively [21]. Studies have also identified NR1I2 SNPs in
exons, which initiate drastic changes in PXR in vivo but with very low frequencies in the
population thus requiring very large cohort studies of patients [20].
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3. Regulation

When PXR is not linked with an agonist its action is regulated by transcriptional
co-repressors like nuclear receptor co-repressor 1 (NCoR1) and NCoR2 which inhibit PXR’s
transcription via histone deacetylases (HDACs) activity [11,18]. When a ligand binds
to PXR, through the LBD, the receptor heterodimerizes with retinoid X receptor (RXR),
binds to xenobiotic response elements (XREs) and hormone response elements (HREs) and
changes the status of coregulators (like co-repressors and co-activators, such as steroid
receptor coactivator 1 and 3 [SRC-1 and SRC-3]), which remodel chromatin via histone
acetyltransferase (HAT) activity and regulate transcription [11,22–25]. Once the ligand
binds to the LBD, the AF-2 region at the C-terminus binds to specific amino-acid motifs of
transcriptional coactivators and corepressors, resulting in the correct arrangement of the
ligand in the PXR ligand-binding pocket [26–28]. PXR binds to different DNA response
elements, including direct repeats (DRs) DR-4, DR-5 and everted repeats (ERs) ER-6 and
ER-8 among others, while the receptor seems to have a higher binding preference for
DNA-binding motif of DR-(5n + 4) [28,29]. Activated Nuclear Factor-kappa B (NF-κB) is
reported to inhibit the activation and function of PXR, while inhibited NF-κB increases PXR
activity and transcription of target genes. This mutual negative crosstalk between PXR and
NF-κB indicated that PXR acts as a negative mediator of inflammation and immunity [30].

4. Post-Translational and Post-Transcriptional PXR Modifications

Apart from the direct ligand-depended activation PXR is subjected to post-translational
modifications (PTMs) resulting in variations of PXR transcriptional activities which are
presented in Figure 3 [31].
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Ubiquitination is mediated by the 26S proteasome and SUMOylation takes place in lysine residues.
Post-translational acetylation of PXR has been shown in vivo.

There is evidence that PXR acetylation interacts with PXR SUMOylation and may be
mutually excluded, but further research is needed [17,32].



Biomolecules 2021, 11, 1142 4 of 15

Micro-RNAs (mi-RNA) are reported to alter PXR expression via post-transcriptional
modifications usually targeting the 3′-untraslated region (UTR) sequence of human PXR
transcripts [33]. miR-30c-1-3p is identified as a PXR silencer, thus decreases the mRNA
levels of PXR and alters CYP3A4 expression [33]. Other post-translational PXR regulators
are miR-18a-5p, miR-148a, miR-34a, miR-150, miR-27a and miR-140-3p, which negatively
regulate PXR expression, resulting in decreased CYP3A4 expression [34–38]. miR-449a is
described to inhibit PXR through HNF4-a in human hepatocytes [39].

5. Agonists and Antagonists

PXR can bind to a variety of agonists due to the receptor’s large cavity, as mentioned
above. Some endobiotic PXR ligands are bile acids and their precursors, progesterone,
pregnenolone, 17-hydroxypregnenolone, cholesterol and it’s metabolites and lithocholic
acid [12,14,40]. Regarding xenobiotic PXR ligands, these may include prescription drugs
and anticancer agents like ritonavir, rifampicin, clotrimazole, cyclosporin, paclitaxel, Taxol,
tamoxifen, dexamethasone, troglitazone, statins, nifedipine, spironolactone, endocrine
disruptors and phenobarbital [12,40]. Other xenobiotic ligands are carotenoids, vitamins
like vitamin K2 and vitamin E, herbal medicines like St. John’s Wort, Kava Kava, Gugulipid,
Sweet Wormwood Herb, Schisandra and environmental pollutants such as organochlorine
pesticides and polybrominated diphenyl ether flame retardants [12,41].

In order to prevent PXR-mediated drug-drug interactions and restrict the variability
of efficacy of therapeutics, many PXR antagonists have been identified or been devel-
oped. In 2001 the first PXR antagonist was reported, ET-743, followed by numerous other
compounds like ketoconazole, fluconazole, enilconazole, camptothecin, metformin, sul-
foraphane, sesamin, coumestrol, allyl isothiocyanate, algal carotenoid fucoxanthin, silybin
and isosilybin [42–44]. Environmental toxins, such as polychlorinated biphenyls (PCBs)
exhibit antagonistic activity, while highly chlorinated PCBs selectively antagonizing mPXR
but not human PXR [45]. However, many of these compounds bind other targets at
concentrations below the range that affects PXR, resulting in incapability to inhibit PXR
in vivo [43]. Some of these antagonists, ketoconazole, coumestrol and metformin, are
reported to inhibit PXR’s transactivation either via interfering with PXR’s coactivators or
via binding in the AF-2 domain independently of PXR LBD, while ketoconazole is reported
to be able to bind to two distinct PXR binding pockets either causing allosteric or direct
inhibition of coactivator binding [42,43]. Ochatoxin A, a mycotoxin, has also been shown
to significantly downregulate PXR activity in human primary hepatocytes [46,47]. Other
antagonists are clotrimazole, dabrafenib, SR12813, Nelfinavir and SPA70 [48,49]. SPA70
interacts with hPXR LBD, is highly specific for hPXR and has selective downregulating
effects [47,50–52]. Although several analogs of PXR antagonists have been synthesized
many function as agonists due to the flexible and large cavity of PXR, which adapts to the
shape of the ligands [43].

6. PXR and Cancer

As stated, PXR regulates the expression of a variety of target genes and can participate
in many physiological and pathological conditions through complex cellular circuits as
PXR manipulates the expression of target genes participating in biotransformation, inflam-
mation, cell-cycle regulation, apoptosis, tissue growth and oxidative stress [47,53]. These
biological functions of PXR have an impact on cancer initiation, promotion and progression,
and on the outcome of chemotherapeutic agents, as PXR and its target genes are linked
with multidrug resistance, poor chemotherapy outcome as well as detoxification, defense
and homeostasis maintenance, which inhibit cancer development, highlighting PXR as
a central target of cancer regulation [47]. PXR is described to be associated with various
cancers, including breast, esophageal, prostate, ovaries, cervix, endometrial tissues, colon,
pancreas, liver, lung and hematological malignancies [18,53–55]. Also PXR overexpression
and altered subcellular location, due to mutation, is linked with endometrial, breast and
colorectal cancer [16]. Esophageal adenocarcinoma and Barrett’s epithelium were associ-
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ated with increased PXR mRNA levels, while the PXR protein was not detected in normal
esophageal epithelium and was detected in the nuclei of cancer cells [54].

Due to the involvement of PXR in drug transporters’ and the gene expression and reg-
ulation of drug metabolizing enzymes, such as CYP3A4, which is responsible for metaboliz-
ing more than 50% of drugs that include chemotherapeutics, PXR significantly contributes
to chemotherapy resistance and variations in the chemotherapeutic outcome [16,56]. PXR
contributes to the chemotherapy outcome by interfering with the metabolism, drug resis-
tance, tumor sensitivity, apoptosis and pharmacokinetics parameters of many chemothera-
peutic agents, such as tamoxifen, irinotecan, vinblastine, doxorubicin, paclitaxel, cisplatin
and ixabepilone in cancer cell lines and patients [11,14]. Several studies have indicated
PXR involvement in tumor sensitivity to anticancer agents. Enhanced PXR activation via
miRNA-30c repression by factor that binds to the inducer of short transcripts-1 (FBI-1)
was linked with chemotherapeutic resistance in triple-negative breast cancer cell lines [57].
Dabrafenib-induced hPXR activation in colon cancer cell lines was associated with en-
hanced expression of PXR target genes, including CYP3A4 and CYP2D6. This study
indicates the potential impact of dabrafenib on its own metabolism or the metabolism of
other therapeutic agents combined with dabrafenib via PXR regulation [58].

Considering that cancer patients are treated with multidrug regimens, PXR-mediated
drug-drug interactions and drug toxicity are very important, as is PXR-mediated chemore-
sistance, which affects clinical outcome. So far, the exact molecular mechanisms are unclear,
but SNPs within the NR1I2 gene could be a possible mechanism involved in MDR and
altered clinical outcome of antineoplastic agents [56]. Up to now numerous SNPs have
been reported in the NR1I2 gene, some of which may have an impact on the course of
cancer treatment. In view of the above considerations, the aim of this review is to highlight
the significance of researched SNPs in efficacy and toxicity of antineoplastic agents.

7. PXR Polymorphisms and Cancer Pharmacogenetics
7.1. Gastrointestinal Cancer

Pharmacogenomics have recently widely entered the personalization of CRC treat-
ment, specifically centering on the genetic variability in metabolism-related genes, such as
NR1I2. In Caucasian patients with metastatic colorectal cancer (CRC) treated with FOLFIRI
(irinotecan, bolus and continuous-infusion fluorouracil, leucovorin), the T allele at NR1I2
rs1054190 (C > T) was associated with worse overall survival (OS) and progression-free sur-
vival (PFS), identifying NR1I2-rs1054190 polymorphism as a potential prognostic marker of
OS [59]. The aforementioned SNP, located in 3′UTR, has been linked with downregulation
of PXR and regulation of the expression of PXR via miRNA mechanisms [16,56,58]. Patients
with metastatic CRC treated with FOLFIRI or FOLFIRINOX carrying the A allele of NR1I2
rs10934498 (G > A, G > C, G > T) were associated with a decreased area under the curve
(AUC) of SN-38, the active metabolite of irinotecan, decreased biliary index and a decreased
risk of grade 3–4 hematotoxicity. This study also highlighted the association between pa-
tients carrying the T allele at NR1I2 rs3814055 (C > T) as well as patients carrying the C
allele at NR1I2 rs1523127 (C > A) and increased risk of grade 3–4 hematotoxicity, while
patients with the G allele at NR1I2 rs2472677 (C > G, C > T) exhibited higher risk for all
types of grade 3–4 toxicity [60]. Asian patients with gastrointestinal stromal tumors (GISTs)
carrying the T allele at NR1L2 rs3814055 (C > T) exhibited lower steady-state imatinib
dose-adjusted plasma concentrations than patients with the wild type (CC), while in the
same study patients carrying the mutant T allele at NR1L2 rs3814055 (C > T) showed
significantly lower incidence rate of continuous edema, an adverse effect of imatinib [61].
These results are in agreement with the results from Yi Qian et al. where patients with the
TT genotype of NR1I2 rs3814055 (C > T) were described to have lower unbound imatinib
dose-adjusted concentration [62].
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7.2. Breast Cancer

Drug resistance to chemotherapeutic agents and toxicity are often noticed in breast can-
cer patients during treatment and worsen the chemotherapy outcome [16,63]. In Caucasian
women with breast cancer treated with FAC (doxorubicin, 5′-fluorouracil and cyclophos-
phamide) the presence of NR1L2 rs3732359 (G > A) was an independent predictor of OS as
patients carrying the AA genotype were described to have a 2 times higher risk of death
compared to homozygous for the wild type allele (GG) and heterozygous (AG) [63]. Regard-
ing the clearance of doxorubicin in Asian women with invasive breast cancer treated with
adjuvant chemotherapy with doxorubicin/cyclophosphamide, patients carrying the haplo-
type cluster tagged by IVS6-17C > T (NR1I2 rs2276707) and 2654T > C (NR1I2 rs3814058)
were characterized by reduced doxorubicin clearance [7]. SNPs NR1I2 rs3732360 (C > T,
C > G), rs1054190 (C > T) and rs1054191 (G > A) are described to be linked with change
in doxorubicin pharmacokinetics via altering the miRNA mediated post-transcriptional
regulation of PXR in Asian (Indian) breast cancer patients [16]. Haplotype PXR*1B, which
consists of NR1I2 rs2276707 (C > G, C > T) and NR1I2 rs3814058 (T > C), has been linked
with decreased plasma expression of PXR in hepatic tissue, while NR1I2 rs3732359 and
NR1I2 rs3732360, located in the 3′UTR, affect the effectiveness of miRNA and PXR mRNA
resulting in modifications of PXR’s expression [7,16].

7.3. Renal Cell Carcinoma

Sunitinib is currently registered as first-line and second-line therapy for metastatic
renal cell carcinoma (mRCC) and its efficacy may be dependent on its exposure, regulated
by efflux pumps and metabolizing enzymes. Clear-cell RCC patients, treated with sunitinib,
with the T allele at NR1I2 rs2276707 (C > T, C > G) and patients carrying the T allele at
NR1I2 rs3814055 (C > T) were described to have a shorter PFS and a shorter OS for the T
allele at rs3814055 (C > T), results confirmed by Beuselinck, B. et al. [64,65]. Another study
described the link between the response rate (RR) for pazopanib in RCC patients carrying
the NR1I2 rs3814055 (C > T). Patients carrying the T allele showed significantly reduced RR
with a potential consequence for drug exposure and a trend to have reduced PFS compared
with carriers of the wild type genotype (CC) [66,67].

7.4. Others

The presence of NR1I2 rs6785049 (G > A, G > T) or rs3814055 (C > T) was linked with
inter-patient variability of temsirolimus pharmacokinetics and toxicity in patients with
metastatic bladder cancer. Patients with the T allele of NR1L2 rs3814055 or the G allele of
NR1L2 rs6785049 showed significantly lower frequency of adverse events, while patients
homozygous for the NR1L2 rs3814055 wild type C allele (CC) and patients homozygous
for the NR1L2 rs6785049 mutant A allele (AA) exhibited higher frequencies of severe
temsirolimus toxicity. This study also indicated that NR1L2 rs6785049 GG genotype was
correlated with increased exposure to active entities (AUCsum) and that NR1L2 rs3814055
TT genotype was linked with extended tesmirolimus T1/2 although the effect was not
additive [68].

Patients with nasopharyngeal cancer treated with docetaxel, carrying the mutant
allele of SNPs NR1L2 rs3732359 (G > A), rs3732360 (C > T, C > G) or rs3814058 (T > C),
exhibited a decrease in nadir hemoglobin from baseline in cycle 1 but did not show any
correlation with the pharmacokinetics of docetaxel [69]. Also, homozygous for the mutant
allele and heterozygous (CC + TC) Asian non-small cell lung cancer (NSCLC) patients
treated with platinum-based chemotherapy with NR1I2 rs3814058 (T > C) exhibited higher
risk of hematological toxicity than patients homozygous for the wild type allele (TT) [70].
Asian patients with chronic myeloid leukemia (CML) treated with bosutinib, who also
carried the genotypes (GG) or (TT) of NR1L2 rs6785049 (G > A, G > T) or NR1L2 rs2276707
(C > T), respectively, exhibited lower bosutinib through plasma concentration (C0) than
patients carrying alleles A of rs6785049 or allele C of rs2276707, while patients carrying
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both (GG) and (TT) genotypes showed lower bosutinib C0 than other genotypes, indicating
increased clearance of the anticancer agent [71].

In docetaxel-based treatment for patients with solid tumors the SNP NR1I2 rs3732359
(G > A) was significantly associated with docetaxel-induced myelosuppression grade≥3, as
carriers of the wild type G allele were of higher myelosuppression risk [72]. Another study
indicated that, in cancer patients who received carboplatin plus paclitaxel as chemotherapy,
the NR1I2 rs1523130 (T > A, T > C, T > G) and rs1523127 (T > G) were related, with altered
sensitivity to thrombocytopenia; as the A allele of rs1523130 and the G allele of rs1523127
exhibited a recessive and genotypic effect, the AA genotype of rs15233130 and the GG
genotype of rs1523127 were correlated with a decreased sensitivity to thrombocytope-
nia. This study also showed that carriers of two copies of the ATG haplotypes of NR1I2
rs1523130 (T > A, T > C, T > G), NR1I2 rs1523127 (T > G) and NR1I2 rs3814055 (C > T) were
less sensitive to thrombocytopenia [73]. Osteosarcoma patients treated with methotrexate
(MTX) presented differences in MTX pharmacokinetics and toxicities depending on their
genotype. Patients carrying the SNPs NR1I2 rs3814055 (C > T) and rs7643038 (A > G)
exhibited longer first half-life of MTX, while SNPs NR1I2 rs6785049 (G > A, G > T) and
rs3732361 (G > A) were linked with higher 48 h MTX concentration. The same study
indicates correlation between SNPs NR1I2 rs3732361, rs3814058 and rs6785049 and lower
risk of hepatic and bone marrow toxicity [74]. All of the above are summarized in Figure 4
and Table 1.
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Table 1. PXR polymorphisms and their associations with efficacy, toxicity and pharmacokinetics of chemotherapeutic agents.

SNP (rs) Localization Pathology Therapy Patients Association Ref.

rs1054190 (C > T) 3′-UTR
mCRC FOLFIRI 247 Italian (discovery cohort)

90 Canadian (Replication cohort) Worse OS and PFS (T allele) [59]

Breast Cancer Doxorubicin 96 South Indian Change in doxorubicin pharmacokinetics
via miRNA altering [16]

rs10934498 (G > A, G > C,
G > T) Intron 1 mCRC FOLFIRI/

FOLFIRINOX 109 French

Decreased AUC of SN-38
Decreased biliary index

Decreased risk of grade 3–4 hematotoxicity
(A allele)

[60]

rs3814055 (C > T) 5′-UTR

mCRC FOLFIRI/
FOLFIRINOX 109 French Increased risk of grade 3–4 hematotoxicity

(T allele) [60]

GISTs Imatinib 68 Asian
62 patients

Decreased imatinib plasma concentrations
and lower edema incidence

(T allele)
[61,62]

RCC Sunitinib 136 patients Shorter PFS, OS
(T allele) [64,65]

RCC Pazopanib 397 patients Reduced RR, PFS, OS
(T allele) [66,67]

Bladder cancer Temsirolimus 54 patients

Decreased frequency of adverse events
(T allele)

High frequency of severe toxicity
(CC genotype)

Extended temsirolimus T1/2
(TT genotype)

[68]

Osteosarcoma MTX 59 patients Increased first T1/2 of MTX
(T allele) [74]

rs1523127
(C > A) 5′-UTR mCRC FOLFIRI/

FOLFIRINOX 109 French Increased risk of grade 3–4 hematotoxicity
(C allele) [60]

rs2472677
(C > G, C > T) Intron 2 mCRC FOLFIRI/

FOLFIRINOX 109 French
Increased risk of all type of grade

3–4 toxicity
(G allele)

[60]
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Table 1. Cont.

SNP (rs) Localization Pathology Therapy Patients Association Ref.

rs3732359
(G > A) 3′-UTR

Breast cancer FAC 305 Caucasian Increased OS
(G allele) [63]

Nasopharyngeal cancer Docetaxel 50 Asian
Decrease in nadir hemoglobin from

baseline
(G allele)

[69]

Solid tumors Docetaxel 110 Asian
Docetaxel-induced myelosuppresion

grade ≥3
(G allele)

[72]

rs2276707
(C > T, C > G) Intron 7

Breast cancer Doxorubicin/
Cyclophosphamide 62 Asian

Haplotype cluster (rs2276707 and
rs3814058) associated with reduced

doxorubicin clearance
[7]

RCC Sunitinib 136 patients Shorter PFS, OS
(T allele) [64,65]

CML Bosutinib 30 Asian Increased bosutinib clearance
(TT genotype) [71]

rs3814058
(T > C) 3′-UTR

Breast cancer Doxorubicin/
Cyclophosphamide 62 Asian

Haplotype cluster (rs2276707 and
rs3814058) associated with reduced

doxorubicin clearance
[7]

Nasopharyngeal cancer Docetaxel 50 Asian
Decrease in nadir hemoglobin from

baseline
(C allele)

[69]

NSCLC Platinum-based 262 Asian High risk of hematological toxicity
(C allele) [70]

Osteosarcoma MTX 59 patients
Reduced risk of hepatotoxicity/bone

marrow toxicity
(C allele)

[74]

rs3732360
(C > T, C > G) 3′-UTR Breast cancer Doxorubicin 96 South Indian Change in doxorubicin pharmacokinetics

via miRNA altering [16]

Nasopharyngeal cancer Docetaxel 50 Asian
Decrease in nadir hemoglobin from

baseline
(T allele)

[69]

rs1054191
(G > A) 3′-UTR Breast cancer Doxorubicin 96 South Indian Change in doxorubicin pharmacokinetics

via miRNA altering [16]
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Table 1. Cont.

SNP (rs) Localization Pathology Therapy Patients Association Ref.

rs6785049
(G > A, G > T) Intron 6

Bladder cancer Temsirolimus 54 patients

Decreased frequency of adverse events
(G allele)

Increased exposure to active entities
(GG genotype)

High frequency of severe toxicity
(AA genotype)

[68]

CML Bosutinib 30 Asian Increased bosutinib clearance
(GG genotype) [71]

Osteosarcoma MTX 59 patients

Increased 48-h MTX concentration
(G allele)

Reduced risk of hepatotoxicity/bone
marrow toxicity

(G allele)

[74]

rs7643038
(A > G) 5′-UTR Osteosarcoma MTX 59 patients Increased first T1/2 of MTX

(G allele) [74]

rs3732361
(A > G, A > C) 3′-UTR Osteosarcoma MTX 59 patients

Increased 48-h MTX concentration
(G allele)

Reduced risk of hepatotoxicity/bone
marrow toxicity

(G allele)

[74]

rs1523130 (T > A, T > C,
T > G) 5′-UTR

mCRC Irinotecan 109 Caucasian Reduced APC and NPC metabolism
(T allele) [60]

Solid tumors Carboplatin/Paclitaxel 201 patients

Reduced sensitivity to thrombocytopenia
(AA genotype)

ATG haplotype (rs1523130, rs3814055,
rs1523127) linked to reduced sensitivity to

thrombocytopenia

[73]

rs152312
(C > T) 5′-UTR mCRC Irinotecan 109 Caucasian Reduced NPC metabolism

(C allele) [60]
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8. Discussion

Numerous NR1I2 SNPs have been researched regarding their association with phar-
macotherapy outcome and severe toxicities. In Chinese Han tuberculosis patients who
received anti-tuberculosis treatment, with NR1I2 rs7643645 (A > G) were associated with
increased risk of anti-tuberculosis drug-induced hepatotoxicity (ATDH) (GG genotype),
while carriers of the NR1I2 rs2276707 (C > T) were linked with reduced risk of ATDH [75].
These results were at conflict with the results from Yu Wang et al., where the G allele of
NR1I2 rs7643645 was associated with reduced risk of ATDH [76]. NR1I2 polymorphisms
detected in patients who received cyclosporin (CsA) after their first renal transplantation
were correlated with altered CsA C0/D and C2/D after the first month of transplantation,
as the haplotype cluster PXR*1B tagged by NR1I2 rs2276707 and rs3814058 was correlated
with increased CsA C2/D [77]. A study also indicated the importance of NR1I2 rs13059232
(T > C) as a biomarker for clopidogrel therapy in acute ischemic stroke (IS) patients, since
patients carrying the CC genotype exhibited poorer clinical outcome than patients carrying
the T allele, while comparable results were not observed in the aspirin cohort [78]. HIV-
positive patients treated with atazanavir and ritonavir and carrying the G allele of NR1I2
rs1523130 (T > G) exhibited higher ritonavir intracellular concentrations [79]. Furthermore,
HIV-positive patients, homozygous for the mutant allele of NR1I2 rs2472677 (C > T) and
treated with atazanavir, were associated with a 17.0% higher clearance of atazanavir [80].
Alzheimer’s patients treated with memantine and carrying the T allele of NR1I2 rs1523130
(T > C) were reported to exhibit slower memantine clearance [81]. It has also been reported
that the Cssmin of voriconazole, given to patients with hematological malignancies, is
affected significantly by SNPs NR1I2 rs2461817 (A > C), rs7643645 (A > G), rs3732359
(G > A), rs3814057 (A > C) and rs6785049 (G > A) [82]. The studies above highlight the
possible significant involvement of PXR in the pharmacokinetics of therapeutic agents, the
therapeutic outcome along with adverse effects and severe toxicity. Especially in neoplastic
diseases, where patients exhibit important intra-individual variations of the therapeutic
outcome and severe toxicities, identification and characterization of PXR polymorphisms
are deemed necessary.

Although chemotherapy is still the main strategy followed for the treatment of many
solid tumors and systematic malignancies, it is characterized by significant inter-individual
heterogeneity of chemotherapeutic response, toxicity and drug resistance, which alter the
clinical outcome of the chemotherapeutic treatment. Evidently, better understanding of
factors that determine the chemotherapeutic response will help to detect patients who
are at risk of displaying severe toxicities or benefit the most from a specific therapeutic
combination, providing personalized treatment [14,83]. To achieve this goal extended
research which incorporate modern techniques like next generation sequencing (NGS) is
required as well as conducting more clinical studies with a larger cohort of patients.

9. Conclusions

PXR is characterized as a master regulator of xenobiotic and endobiotic metabolism,
since it modulates the expression of significant enzymes involved in drug distribution,
metabolism and clearance, and has been linked with various functions, such as inflamma-
tion, drug-drug interactions, detoxification, and vitamin and bile acid metabolism. PXR
polymorphisms in the NR1I2 gene are considered to have noteworthy consequences on the
protein’s function, such as abnormal DNA binding and changes in target genes transactiva-
tion and expression; thus detection and identification of functional PXR SNPs, and their
distribution in the different populations and ethnicities, are crucial for understanding and
explaining the mechanisms behind the variations in drug pharmacokinetics and clinical
outcome. Cancer patients receiving chemotherapeutic agents are often characterized by
variability in chemotherapeutic outcome, severe adverse events, resistance to therapy and
drug-drug interactions due to polypharmacy. Since PXR regulates the metabolism and phar-
macokinetics of the majority of the antineoplastic agents, it is important to study the effects
PXR polymorphisms have on them so we can enhance the personalized therapy of cancer
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therapy. The current review highlights the importance of PXR polymorphisms in cancer
precision medicine. Current literature data report that gene PXR polymorphisms appear to
interfere with pharmacokinetics, metabolism and toxicity of antineoplastic factors. Some of
these seem to affect the response and toxicity of more than one antineoplastic therapy, for
instance NR1I2 rs3814055 has been linked with variability in pharmacokinetics parameters
and toxicity of FOLFIRINOX/FOLFIRI, imatinib, sunitinib, pazopanib, methotrexate and
temsirolimus. The study of PXR SNPs in combination with the development of PXR an-
tagonists with antineoplastic therapies that activate PXR receptors have the potential to
decrease or eradicate adverse events, toxicity and chemoresistance, enhancing precision
medicine in cancer. In summary, 15 polymorphisms were found to be associated with
variations in chemotherapy clinical outcome or toxicity in cancers such as breast, gastroin-
testinal and renal, all of them located in non-translated regions of the NR1I2 gene. Further
information is required to fully understand the role of PXR SNPs in response to treatment
and clinical outcome of cancer patients, although the currently available data indicate the
significance of PXR polymorphisms for the pharmacotherapy of cancer patients.
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