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ABSTRACT: Background: Gait impairments are char-
acteristic motor manifestations and significant predictors
of poor quality of life in Parkinson’s disease (PD). Neuro-
imaging biomarkers for gait impairments in PD could
facilitate effective interventions to improve these symp-
toms and are highly warranted.
Objective: The aim of this study was to identify neural
networks of discrete gait impairments in PD.
Methods: Fifty-five participants with early-stage PD and
20 age-matched healthy volunteers underwent quantita-
tive gait assessment deriving 12 discrete spatiotemporal
gait characteristics and [18F]-2-fluoro-2-deoxyglucose-
positron emission tomography measuring resting cerebral
glucose metabolism. A multivariate spatial covariance
approach was used to identify metabolic brain
networks that were related to discrete gait characteris-
tics in PD.
Results: In PD, we identified two metabolic gait-related
covariance networks. The first correlated with mean step
velocity and mean step length (pace gait network), which
involved relatively increased and decreased metabolism
in frontal cortices, including the dorsolateral prefrontal

and orbital frontal, insula, supplementary motor area,
ventrolateral thalamus, cerebellum, and cuneus. The sec-
ond correlated with swing time variability and step time
variability (temporal variability gait network), which
included relatively increased and decreased metabolism
in sensorimotor, superior parietal cortex, basal ganglia,
insula, hippocampus, red nucleus, and mediodorsal thal-
amus. Expression of both networks was significantly ele-
vated in participants with PD relative to healthy
volunteers and were not related to levodopa dosage or
motor severity.
Conclusions: We have identified two novel gait-related
brain networks of altered glucose metabolism at rest.
These gait networks could serve as a potential neuroim-
aging biomarker of gait impairments in PD and facilitate
development of therapeutic strategies for these disabling
symptoms. © 2022 The Authors. Movement Disorders
published by Wiley Periodicals LLC on behalf of Interna-
tional Parkinson and Movement Disorder Society
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Introduction

Gait difficulties are common in Parkinson’s disease
(PD)1-3 and cause significant disability. They are associ-
ated with increased risk of falls4 and reduced quality of
life. No specific treatments are currently available for
these symptoms that become progressively worse with
disease severity despite optimal medication.1,3,5 Dopa-
mine replacement therapies (DART) form the mainstay
of treatment and provide transitory improvements to
selected gait characteristics, such as gait velocity,6 but
can worsen others, such as gait variability.7 Due to the
limited response to dopaminergic drugs, other systems
influencing the neural control of walking in PD have
been proposed.5,8-11 In addition, cognitive impairments
have been shown to be associated with early gait defi-
cits in patients.12

Recent studies have demonstrated that gait impair-
ment is also apparent in the prodromal stages of PD,13

leading to an interest in the potential of gait characteris-
tics as biomarkers for early disease identification and
monitoring.5,13 Despite this, neural mechanisms under-
lying different gait parameters remain elusive, and
dependable neuroimaging biomarkers for discrete gait
problems in this disorder are needed. Although gait
velocity can be used as a global measure of gait integ-
rity, conceptual gait models have been crafted,14,15 and
recent work has demonstrated that discrete gait charac-
teristics contained within different domains of gait (eg,
pace and variability) are related to selective brain
regions and networks in healthy older adults.16-18 In
PD, it is unclear, however, whether there are discrete
neural networks that map to specific gait characteristics
such as gait variability, asymmetry, or those related to
postural control, and how these are affected in people
with PD.
[18F]-2-fluoro-2-deoxyglucose-positron emission

tomography (FDG-PET) and a scaled subprofile model/
principal components analysis (SSM/PCA), a multivari-
ate spatial covariance pattern analysis, have been used
to successfully derive PD metabolic profiles associated
with motor impairment,19 tremor,20 and cognition21

that appear to be modulated by therapeutic interven-
tion. It has therefore been suggested that the quantifica-
tion of treatment-mediated changes in these metabolic
profiles could potentially provide an objective outcome
measure when testing the effects of novel antiparkinsonian
therapies.20

In this prospective study, we use FDG-PET and the
SSM/PCA approach to identify independent gait-related
brain networks that are altered in people with PD by
localizing metabolic changes across brain areas that
correlated with specific parameters of gait.22 We
hypothesized that: (1) gait control is subserved by dis-
crete metabolic gait networks that are independently
related to different gait outcomes, and (2) expression of

these metabolic gait networks is different in people with
PD with gait problems.

Materials and Methods
Participants

A total of 158 recently diagnosed idiopathic PD par-
ticipants and 99 healthy volunteers (HVs) were rec-
ruited onto the Incidence of Cognitive Impairment in
Cohorts with Longitudinal Evaluation (ICICLE)-PD
study. Participants were optionally invited to take part
in the collaborative ICICLE-GAIT study. The details of
these two studies have been presented extensively else-
where.1,23 In brief, patients were recruited from com-
munity and outpatient clinics in the Newcastle upon
Tyne and Gateshead areas of the United Kingdom. A
diagnosis of PD was made at baseline by a movement
disorder specialist using the Queen’s Square Brain Bank
Criteria24 and confirmed at follow-up visits every
18 months. For the ICICLE-GAIT study, participants
unable to walk unassisted for a minimum period of
2 minutes or who presented with cognitive impairment
(Mini-Mental State Examination [MMSE] score < 24 or a
diagnosis of dementia), mood, or unrelated movement
disorder were excluded. This study includes a subset
of participants with PD (n = 55/158) who completed
both FDG-PET and gait assessments at study intake. In
addition, gait data and FDG-PET were available from
a matched comparator group of 20 HVs. The clinical
characteristics of these participants have been previously
reported, where the relationship between regional meta-
bolic glucose uptake and cognition was investigated.25

The study was approved by the Newcastle and
North Tyneside Research Ethics Committee (REC
no. 09/H0906/82 and 08/H0906/147) and conducted
according to the Declaration of Helsinki. All participants
provided written informed consent.
All participants with PD were scanned while in an ON

motor state (�1 hour after DART). Global cognition
was assessed using the Montreal Cognitive Assessment26;
severity of locomotor deficits in participants with PD
was rated using the Hoehn and Yahr scale27 and the
Movement Disorder Society Unified Parkinson’s Disease
Rating Scale part III (MDS-UPDRS III). Levodopa equiv-
alent daily dose (LEDD) was calculated as previously
described.28 Motor phenotype status was based on
the definition by Stebbins et al29 and is summarized in
Table 1 for descriptive purposes. This shows that our
sample of participants with PD consists of mixed pheno-
types. Multimorbidity was defined using the age-adjusted
Charlson Comorbidity Index and the International
Classification of Primary Care-2 conditions as previously
reported.30 Finally, the anticholinergic burden was
computed using the Anticholinergic Drug Scale (ADS),31

as previously described.32
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Gait Assessment
All participants completed a comprehensive gait

assessment described extensively elsewhere.1,3 In brief,
participants walked at their preferred speed for
2 minutes around a 25-m oval circuit (Fig. 1A). Gait
was measured using an instrumented mat with embed-
ded pressure sensors (Platinum model GAITRite, dimen-
sions: 7.0 � 0.6 m, sampling frequency: 240 Hz). Based
on past findings showing gait impairments in PD (from
the same ICICLE-GAIT cohort),1 we derived 12 (of the
original 16) spatiotemporal gait characteristics, which
have shown to be significantly altered in PD, as compo-
nents of a validated model that is composed of five gait
domains (pace, rhythm, variability, asymmetry, and pos-
tural control)33 using bespoke algorithms (Fig. 1B).1,15

Imaging Acquisition
FDG-PET images were acquired using a Siemens Bio-

graph 40 Truepoint PET-CT 30 minutes after an intrave-
nous bolus administration of 250 MBq 18F-FDG. The
Siemens scanner software was used for iterative recon-
struction (OSEM2D, 6 iterations, 16 subsets) with a tissue
attenuation correction based on the CT scan obtained
immediately before the FDG-PET scan. All participants
were asked to arrive in a fasting state (at least 4 hours
before FDG administration). Blood glucose was measured
and was <180 mg/dL (10 mM/L) in all participants.

Processing of FDG-PET Images
Reconstructed static FDG-PET acquisitions were

preprocessed using SPM12 (7219; Wellcome Trust

TABLE 1 Demographic and clinical data

Variable (unit or maximum score) HVs (n = 20) Participants with PD (n = 55) t/X2 P

Age (y) 71.62 � 9.60 73.81 � 4.95 1.30 0.20

Sex (M/F) 60% male (12 M/8F) 71% male (39 M/16F) 0.80 0.37

Mass (kg) 77.22 � 11.43 78.20 � 13.69 0.28 0.78

Height (m) 1.69 � 0.10 1.69 � 0.06 0.24 0.81

BMI (kg/m2) 26.47 � 4.01 27.17 � 3 0.83 0.69 0.49

MoCA (30)a 27.4 � 2.62 24.17 � 3.73 3.56 <0.001

Age-adjusted CCI (24) 0.55 � 1.76 1.33 � 2.00 0.08 0.94

No. of comorbiditiesb 2 � 1.49 2.65 � 1.92 0.13 0.89

No. of medicationsc 2.3 � 2.64 5.47 � 2.85 2.51 0.01

Gait to PET scan (mo) 1.95 � 2.40 �0.77 � 2.27 – –

Disease durationd (mo) – 6.35 � 4.93 – –

LEDD (mg/d) – 170.38 � 131.93 – –

Anticholinergic burden (3) 0.15 � 0.37 0.56 � 1.01 1.99 0.08

MDS-UPDRS III score (132) – 23.87 � 8.57 - -

Hoehn & Yahr stage (V), n (%)

Stage I – 11 (20) – –

Stage II – 33 (60) – –

Stage III – 11 (20) – –

Motor phenotype (3), n (%)

Postural instability gait disorder 26 (47.3)

Tremor dominant 19 (34.5)

Indeterminate 10 (18.2)

Values are mean � 1 SD for continuous variables and frequency distribution for categorical variables. Numbers in parentheses next to variable names indicate maximum possible
score for that measure or the unit of measurement.
aMoCA scores were missing for one participant with PD.
bDisease count based on the International Classification of Primary Care-2 conditions.
cSum of total prescribed and non-PD medications.
dTime from diagnosis.
HV, healthy volunteer; PD, Parkinson’s disease; M, male; F, female; BMI, body mass index; MoCA, Montreal Cognitive Assessment; CCI, Charlson Comorbidity Index; PET,
positron emission tomography; LEDD, levodopa equivalent daily dose.
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Centre for Neuroimaging, http://www.fil.ion.ucl.ac.uk)
running on Matlab (r2018a; The MathWorks Inc.,
Natick, MA, USA). All FDG-PET images were spatially
normalized to an age-appropriate template in Mon-
treal Neurological Institute (MNI) space34 using the
‘Old Normalisation’ module in SPM12. The spa-
tially normalized FDG images were then smoothed
with an 8-mm full-width at half maximum Gaussian
kernel. Image quality was good for all participants,
resulting in no exclusions.

Network Analysis
To derive gait-specific spatial covariance networks

and characterize these network topographies in people
with PD (Fig. 1), we used the SSM/PCA approach by
using procedures from the gcva-pca toolbox (https://
www.nitrc.org/projects/gcva_pca).35 The spatial covari-
ance gait networks were constructed based on PD
FDG-PET images alone. Although entering images from
both groups simultaneously into the algorithm may be
advantageous for diagnostic discrimination purposes, it
would also lead to more complex and circular analyses.
In addition, because the underlying neural systems of

gait in PD and typical aging may be different, we
believed that the groups should be separated to deter-
mine these networks. First, the FDG-PET scans of par-
ticipants with PD were restricted to gray matter using
an age-appropriate binary mask (including brainstem,
excluding voxels in white matter and cerebrospinal
fluid) generated from thresholded and averaged group
images. Second, the variance of global mean was
removed from the images before being entered into a
principal components (PC) analysis generating N �
1 PC images (Fig. 1C). This ensured that the resulting
components of covarying metabolic glucose consump-
tion with gait parameters were not confounded by indi-
vidual differences in global FDG uptake.22 Third, a
one-dimensional subject-scaling factor (SSFFDG) for
expression of each PC was computed where a greater
participant-specific SSF indicates stronger expression of
that PC. Fourth, gait-specific profiles were determined
using a multiple linear regression where discrete gait
characteristics were entered consecutively as the depen-
dent variable and PC-specific SSFFDG scores as predic-
tors. The analysis was restricted to PC images 1–10,
which accounted for �75% of the total subject � voxel
variance. Model selection of the best fit for each gait

FIG. 1. Analysis workflow. Simplified schematic of the data analysis workflow to generate gait-related metabolic covariance networks in PD. DLPFC,
dorsolateral prefrontal cortex; FDG, [18F]-2-fluoro-2-deoxyglucose; HV, healthy volunteers; MCC, mid-cingulate cortex; OFC, orbital frontal cortex; PC,
principal component; PD, Parkinson’s disease; PET, positron emission tomography; SCP, spatial covariance pattern; SSF, subject scaling factor; SSM/
PCA, scaled subprofile model/principal components analysis; VL, ventrolateral. [Color figure can be viewed at wileyonlinelibrary.com]
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profile, which could include single, contiguous, or
noncontiguous components, representing a pattern for
that specific gait characteristic, was based on the rela-
tive goodness of fit as determined by the Akaike Infor-
mation Criterion (Fig. 1D).
Each PC generated is composed of voxels with either

positive or negative weightings, indicating the direction
and strength of covariance between voxels. Our data
were interpreted in accordance with recent work using
a similar approach.18,36 As such, positively (greater
FDG metabolism) and negatively (reduced FDG metab-
olism) weighted regions were interpreted as those that
have relatively raised and reduced FDG metabolism
associated with, for example, greater gait velocity (ie,
faster gait). Importantly, in terms of gait variability
where higher values indicate greater gait variability,
both positively and negatively weighted regions are
associated with worsening gait variability.
Finally, we used a bootstrap test (with 1000 repeti-

tions) to measure the reliability of voxel weights for
each gait parameter profile as the ratio of voxel weights
and bootstrap standard deviation. The outcome is a
z score voxel map of FDG hypometabolism and
hypermetabolism containing brain areas contributing to
the covariance pattern with high confidence. The z
voxel maps were thresholded at jzj ≥ 1.64 (Fig. 1E), to
exclude voxels with minimal contribution to the overall
network, equating to an approximate P < 0.05 (one-
tailed) and labeled using the AAL3.1 atlas.37 The
P value for the behavioral fit (R2) was obtained with
1000 permutations.

Covariance Pattern Validation
To validate the expression of the PD gait-related pro-

files (PDGP) as a marker of altered gait parameters in
PD, we quantified the degree of expression of PDGPs
(as an SSFFDG) in 20 HVs. The one-dimensional
SSFFDGs were computed for this group using a voxel-
based automated algorithm on a prospective single-case
basis (Fig. 1F)38 from the best fit of PCs for each gait
parameter network. SSFFDG scores from patients were
standardized to HVs SSFFDG.

Statistical Analysis
All statistical analyses were performed using Matlab

with a P < 0.05 threshold for statistical significance. A
correction for multiple comparisons was applied using
the false discovery rate. Raw P values are reported in
the text and tables with an indication if P values are
less than false discovery rate critical P. Differences in
gait characteristics were assessed using multiple linear
regression with a discrete gait characteristic as the
dependent variable and groups as a predictor of inter-
est. Differences in regional covariance network SSFFDG

expressions between the two groups were examined

using multiple linear regression with SSFFDG as the
dependent variable (outcome) and group as a predictor
of interest. Regression diagnostics were examined to
ensure that the assumptions of linear regression were
met, with particular attention to collinearity (variance
inflation factor) and influential cases using Cook’s dis-
tance (Cook’s d). To evaluate the relationship between
network expression scores and PD clinical data (disease
duration [time from diagnosis], LEDD, total MDS-
UPDRS III scores, and anticholinergic burden) in PD
participants, we used Pearson’s partial correlation. For
all analyses, age, sex, and Montreal Cognitive Assess-
ment were entered as covariates of no interest. Differ-
ences in demographic and anthropometric data were
assessed using independent sample t tests and chi-
squared (χ2) tests as appropriate. Gait variability and
asymmetry were nonnormally distributed and trans-
formed using logarithmic and square root transforma-
tions, respectively.

Results
Group Characteristics

Group characteristics are summarized in Table 1.
Five patients were not taking any DART medication.
Four other patients were taking anticholinergic medica-
tion (amitriptyline 10–20 mg every day [n = 3],
orphenadrine 50 mg three times per day [n = 1]) in
addition to receiving DART. The anticholinergic bur-
den, computed using the ADS, indicated that all partici-
pants receiving anticholinergic medication were
prescribed low doses.

Group Differences in Gait Characteristics
Relative to HVs, participants with PD demonstrated

slower gait speed, took shorter steps, and had increased
swing time variability, step time variability, and stance
time variability (Table 2). No other gait characteristic
was significantly different between the groups.

Quantifying Discrete Metabolic Gait Covariance
Networks

The five gait characteristics showing statistically signif-
icant differences in PD compared with HVs (mean step
velocity, mean step length, swing time variability, step
time variability, and stance time variability) were entered
into the SSM/PCA analysis to generate PDGPs.
Mean step velocity (R2 = 0.11, P = 0.044) and mean

step length (R2 = 0.17, P = 0.007) were predicted by a
brain network that we refer to as a pace gait network
(Fig. 2A, linear combination of PCs 2 and 3). The topog-
raphy of the pace gait network was characterized pri-
marily by relatively increased FDG metabolism in
covarying clusters encompassing bilateral superior, mid-
dle (including dorsolateral prefrontal cortex [DLPFC]),
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and inferior frontal gyri; supplementary motor area
(SMA); orbital frontal cortex (OFC, including gyrus rec-
tus); anterior, middle, and posterior cingulate cortices;
bilateral insula; postcentral gyrus that included the right
anterior-subcentral gyrus; and right ventrolateral thala-
mus. This relatively increased FDG metabolism was
associated with concurrent decreased FDG metabolism
in the bilateral lower limb region of the paracentral lob-
ule, left middle temporal gyrus, bilateral fusiform gyri,
left middle occipital cortex, and bilateral cerebellum.
Anatomical details of the pace gait network are summa-
rized in Supporting Information Table S1. The linear
combination of PCs 2 and 3 also predicted stance time
variability; however, the R2 value was poor (R2 = 0.09)
and statistically nonsignificant (P > 0.05) and was thus
not considered further.
Swing time variability (R2 = 0.21, P = 0.003) and

step time variability (R2 = 0.12, P = 0.041) were
predicted by a separate brain network that we refer to
as a temporal variability gait network (Fig. 3A, linear
combination of PCs 3 and 4). The topography of this
covariance network was characterized by increased FDG
metabolism in bilateral superior frontal and precentral
gyri, right postcentral gyrus, mid-cingulate, bilateral supe-
rior parietal lobules, precuneus, and superior occipital
cortex with concurrently decreased metabolism in bilat-
eral insula, hippocampus, calcarine gyrus, superior tempo-
ral gyri and mediodorsal thalamus, basal ganglia nuclei
putamen and caudate, right red nucleus (RN), left nucleus
accumbens (NAcc), and the right cerebellar Crus 1. Ana-
tomical details of the temporal variability gait network
are summarized in Supporting Information Table S2.
Combined illustration of the two PDGP subnetworks is
shown in Supporting Information Fig. S1.

Network expression was prospectively computed for
HVs on a single-case basis, to assess the ability of these
two gait-related metabolic networks to identify abnor-
mal metabolic glucose in PD related to discrete gait
impairments.39 Using multiple linear regression, results
showed that network expression for both pace gait
network (mean step velocity: BGROUP = 0.67,
t(69) = 2.29, P = 0.025, 95% confidence interval
[CI] = [0.09, 1.25]; mean step length: BGROUP = 0.63,
t(69) = 2.15, P = 0.035, 95% CI = [0.05, 1.22];
Fig. 2B) and temporal variability gait network (swing
time variability: BGROUP = 0.54, t(69) = 2.32,
P = 0.023, 95% CI = [0.07, 1.01]; step time variabil-
ity: BGROUP = 0.53, t(69) = 2.27, P = 0.027, 95%
CI = [0.06, 1.00]; Fig. 3B) were significantly greater in
participants with PD relative to HVs corrected for mul-
tiple comparisons. Regression diagnostics showed no
evidence of collinearity among predictors (variance
inflation factor ffi 1), and no single case was overly
influential on the models’ ability to predict all cases
(Cook’s d < 1).
Investigating the relationship between the prospec-

tively computed SSFFDG for HVs and discrete gait char-
acteristics showed nonsignificant associations for all
(maximum jrj = 0.18, P = 0.44).

Relation Between PD Resting Gait Network
Expression and Non–Gait-Related Clinical Data
The relationship between SSFFDG for discrete gait

characteristics contained within PDGPs and other,
non–gait-related clinical data, including disease dura-
tion (time from diagnosis), LEDD, total MDS-UPDRS
III motor severity scores, and anticholinergic burden, in

TABLE 2 Comparison of discrete gait characteristics between groups

Gait characteristics HVs (n = 20) Participants with PD (n = 55) t Pa

Mean step velocity (m/s) 1.33 � 0.260 1.11 � 0.221 �3.11 0.003

Mean step length (m) 0.71 � 0.103 0.61 � 0.092 �3.21 0.002

Swing time variability (ms) 2.54 � 0.290 2.84 � 0.347 2.51 0.014

Mean step time (ms) 538 � 46 560 � 50 1.60 0.113

Mean stance time (ms) 685 � 77 731 � 81 1.85 0.068

Step length variability (m) 0.02 � 0.005 0.02 � 0.008 0.94 0.348

Step time variability (ms) 2.59 � 0.306 2.87 � 0.349 2.53 0.014

Stance time variability (ms) 2.77 � 0.354 3.05 � 0.418 2.44 0.017

Step time asymmetry (ms) 3.16 � 1.404 3.56 � 2.000 0.66 0.509

Swing time asymmetry (ms) 2.89 � 1.348 3.08 � 1.600 0.52 0.607

Stance time asymmetry (ms) 2.78 � 1.540 3.05 � 1.494 0.83 0.411

Step width variability (m) 0.02 � 0.006 0.02 � 0.007 �1.21 0.232

Values are means � 1 SD.
aStatistically significant differences between groups after false discovery rate (FDR) correction are shown in boldface (P value less than FDR critical P).
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FIG. 2. The pace gait network. (A) The thresholded z voxel map is projected onto the ICBM152 template. Increased and decreased FDG metabolism is
shown in hot and cold colors, respectively. (B) Distribution of z scored SSFFDG for each group and discrete gait characteristics contained within this gait
network. Greater zSSFFDG (x-axis) refers to greater network expression. *P < 0.05 corrected for multiple comparisons. Box and whiskers represent the
interquartile range. Solid line represents the median, while the broken line is the mean. ACC, anterior cingulate cortex; DLPFC, dorsolateral prefrontal
cortex; FDG, [18F]-2-fluoro-2-deoxyglucose; HV, healthy volunteers; MCC, mid-cingulate cortex; OFC, orbital frontal cortex; PD, Parkinson’s disease;
SSM/PCA, scaled subprofile model/principal components analysis; VL, ventrolateral; zSSFFDG, standardized subject scaling factor.
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FIG. 3. The temporal variability gait network. (A) The thresholded z voxel map is projected onto the ICBM152 template. Increased and decreased FDG
metabolism is shown in hot and cold colors, respectively. (B) Distribution of z scored SSFFDG for each group and discrete gait characteristics contained
within this gait network. Greater zSSFFDG (x-axis) refers to greater network expression. *P < 0.05 corrected for multiple comparisons. Box and whiskers
represent the interquartile range; solid line represents the median, while the broken line is the mean. CN, caudate nucleus; HV, healthy volunteers; MD,
mediodorsal; NAcc, nucleus accumbens; PD, Parkinson’s disease. zSSFFDG, standardized subject scaling factor.
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participants with PD indicated no statistically signifi-
cant associations (maximum jrj = 0.20, P = 0.16; see
Supporting Information Fig. S2).

Discussion

In this study, we used a comprehensive set of gait
data and computed 12 discrete gait characteristics from
a large group of participants with early-stage PD and
age-matched HVs. This was combined with measures
of metabolic glucose utilization acquired using resting
FDG-PET images that were interrogated with a multi-
variate spatial covariance approach. Our primary aim
was to quantify novel discrete gait-related metabolic
covariance networks, characterize their topology, and
explore if people with early-stage PD express these net-
works differently than HVs.
Our results show that discrete gait characteristics,

which are altered in PD, form two primary metabolic
gait-related brain networks (PDGPs) associated with
numerous widespread brain regions, including those
subserving motor and multisensory functions. Our find-
ings additionally showed that expression of these
PDGPs was abnormal in participants with PD, but that
expression was not related to PD motor severity,
LEDD, disease duration, or anticholinergic burden.

A Resting Pace Gait Network
Both mean gait velocity and mean step length formed

a unique covariant metabolic network composed of
regional covariance patterns from PCs 2 and 3. We ter-
med this the pace gait network where a pattern of rela-
tively increased and decreased FDG metabolism is
associated with faster gait velocity and longer steps.
The topography of this network was predominantly
characterized by covariant increased metabolism in the
DLPFC and SMA, both of which are part of the indi-
rect locomotor pathway.40 Clusters including the SMA,
which is consistently activated across studies of gait
anatomy in PD,41 were also noted in the temporal vari-
ability network, indicating that the SMA may play a
role in determining both gait velocity and variability in
PD. To that end, increased metabolism in the SMA
may lead to increased gait speed but at the cost of
greater gait variability.
Relatively increased metabolism in the DLPFC and

SMA covaried with the bilateral insula. The insula
(which featured in both gait networks) is a highly versa-
tile brain region, but its function in gait is unclear, and
previous investigations on the role it plays in gait in PD
are narrowly focused on patients with freezing of gait.
Thus, we can only speculate on its precise role in our
gait networks. The insula and the anterior subcentral
sulcus in the right hemisphere are part of the vestibular
system, which interprets information about spatial

orientation and posture.42 Perturbations to this system
may result in spatial disorientation and falls.43,44 Fur-
thermore, the insula may play a role in multimodal
processing, such as mediating cognitive flexibility.45

Insula involvement may therefore suggest that increased
gait velocity in PD is mediated by increased metabolism
in both cognitive and motor regions. This notion is fur-
ther strengthened by the increased FDG metabolism
noted in a cluster encompassing the OFC and gyrus rec-
tus, which are part of the frontoparietal network.
Increased dopamine concentration in the OFC can both
enhance and worsen different executive functions in
PD,46 while reduced dopamine levels in the OFC
increase cadence.47 One study showed that after with-
holding dopamine medication, participants with PD
recruited nonmotor regions implicated in cognitive con-
trol during gait, whereas those on dopamine medication
recruited regions implicated in motor control.48 In addi-
tion, the covariant negative-weighted metabolism con-
verged on temporal regions, including the fusiform
gyrus. Its involvement in this gait network is corrobo-
rated by previous studies showing increased activity in
this region in healthy adults during both real49 and
imagined50 locomotion.
Subsequent analyses showed that people with PD

express this network more strongly after controlling for
confounding factors. Recent studies show that people
with PD walk more slowly and with shorter steps than
healthy older adults.1,2 Inspection of Fig. 2B shows that
some HVs express this particular PDGP more than
patients with PD. This is in line with the work of others
who suggest that a decline in these particular gait
parameters is related to a combination of aging and
PD-related pathology.3 This may also explain why we
did not observe a statistical relationship between
expression of this network and disease duration in PD.

A Resting Temporal Variability Gait Network
Both swing time variability and step time variability

formed another unique covariant metabolic network com-
posed of regional covariance patterns from PCs 3 and
4. We termed this the temporal variability gait network
where a pattern of relatively increased and decreased
FDG metabolism is associated with greater (worse) gait
variability. The topography of this network was charac-
terized principally by reduced metabolism in the basal
ganglia (right caudate and putamen and left NAcc) and
temporal lobe, insula, and hippocampus in addition to
the mediodorsal thalamus and cerebellum. The cerebel-
lum, which was associated with both gait networks, has
widespread connections with these cortical and basal
ganglia nuclei forming the brain motor system.51 This rel-
atively reduced FDG metabolism in the cerebellum and
motor regions is consistent with findings in PD during free
and repetitive motor execution,52 treadmill walking,53
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and gait imagery.54 By contrast, cerebellar hyperactivity is
observed during automatic motor control tasks in con-
junction with hyperactive (pre)motor cortices, which is
postulated to be a neural adaption in response to defective
basal ganglia function.55,56 Our findings are not inconsis-
tent with this view.
We furthermore noted decreased metabolism in the

hippocampus and the superior temporal gyri. The struc-
tural integrity of the hippocampus has been associated
with altered gait velocity and step variability in healthy
older adults, as well as in neurodegenerative disor-
ders.16,17 Also, reduced metabolism in the caudate,
putamen, and NAcc as a function of increased gait vari-
ability resonates with recent findings.48 When partici-
pants with PD perform a virtual reality gait task and
depress foot pedals in an alternating fashion, increased
functional connectivity between both the caudate and
the putamen with the NAcc correlated with increasing
step time variability.48

We observed increased FDG metabolism in the ven-
trolateral thalamus in the pace gait network (Fig. 2)
and decreased metabolism in the RN in the temporal
variability gait network (Fig. 3). Both regions are cru-
cial relay stations in the dentato-rubro-thalamic-cortical
pathway, which supplies afferent projections to the
motor cortex.57 The ventrolateral thalamus is particu-
larly active during locomotion,58 but the role of the RN
in the neuropathology of PD is unclear. Evidence from
PD animal models suggests that RN lesions result in
rhythmic locomotor abnormalities, but gait velocity is
unaffected.59 It must, however, be noted that these find-
ings are interpreted with caution because of the low
spatial specificity of PET images.

Comparison with Other Reported PD Profiles
We used the same SSM/PCA approach used to gener-

ate both PD motor (PDRP) and cognitive profiles
(PDCP).19,21 Comparison of the PDRP19 and PDCP21

with our gait profiles demonstrates overlap of regions
demonstrating covarying glucose consumption, includ-
ing the motor cortex, posterior parietal areas, cerebel-
lum, prefrontal cortex, and putamen.
The PDRP is formed by the first PC,19 and this PC

does not feature in our PDGPs. For completeness, we
assessed the correlation between SSFFDG expression
scores for PC1 and PD clinical data. These analyses
showed nonstatistically significant relationships for all
comparisons (results not shown). By contrast, Huang
and colleagues’21 network underpinning cognitive dys-
function in PD (PDCP) was PC2. Given that gait and
cognition are intricately linked in both aging and
neurodegeneration,60,61 it does not come as a surprise
that gait speed and step length forming the pace gait
network were related to the combination of PCs 2 and
3. It is noteworthy that Huang and colleagues’21 PDCP

was identified first in patients with PD with reference
values for the expression of the PDCP computed pro-
spectively in HVs; in this study, we have taken a similar
approach. There are, however, important methodologi-
cal differences between those studies and this study.
Disease duration was substantially greater in the previ-
ous studies (this study: 6 months; others: 8–12 years).
Also, in the other two studies, patients with PD were
scanned OFF DART, whereas in this study, patients
were scanned �1 hour after DART.
Unlike the PDRP, which correlates with PD motor

severity,19,62,63 our exploratory correlation analysis
showed that motor severity, LEDD, disease duration,
and anticholinergic burden were not related to the
expression of the PDGPs. This conforms with recent
findings3,5 and suggests that pathology-related impair-
ment in gait and postural control may be caused by
nondopaminergic brain biochemistry.40 Indeed, our
findings lend some credence to the notion that selective
gait variability characteristics are susceptible to altered
cholinergic function,5,9 because the temporal variability
gait network was associated with FDG
hypermetabolism and hypometabolism in sensorimotor
regions, caudate, RN (containing choline
acetyltransferase), and hippocampus. These regions
receive dense cholinergic innervation from the nucleus
basalis of Meynert and brainstem pedunculopontine
nucleus.64,65 Alterations in these regions are likely con-
tributors to functional decline in cognition and
increased falls risk.61 In support of this, a recent struc-
tural imaging study from our group showed that atro-
phy of the nucleus basalis of Meynert in PD is a strong
predictor of a progressive decline in gait variability.9

Expression of the PDRP increases in the advancing
stages of the disease but can be readily reversed by both
levodopa infusion and subthalamic nucleus deep brain
stimulation.66,67 Novel noninvasive electrical stimula-
tion of the cholinergic vagus nerve is being assessed to
mitigate gait impairments in PD,68-70 showing promis-
ing success in improving step time variability.69 To that
end, we speculate whether our PDGPs may be consid-
ered as a conceptual framework for future studies
targeting dopaminergic treatment–resistant gait charac-
teristics. Future studies could assess, similar to Huang
and colleagues,21 whether the expression of PDGPs can
be readily reversed by interventions and whether
reduced expression of these networks coincides with
improvement in gait characteristics contained
within them.

Study Strengths and Limitations
The main strength of our study is the exploration of

a comprehensive set of gait characteristics interrogating
a relatively large group of both participants with
PD and HVs to quantify discrete neural networks of
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gait mapping to distinct outcomes. This dataset pro-
vided a unique opportunity to correlate resting glucose
metabolic changes in brain networks with discrete gait
impairments because of pathology allowing specific dif-
ferences to be explored. Understanding the pathophysi-
ological signatures of gait problems in PD is of the
highest priority because DART to mitigate these are
limited. The main limitations of this study are that FDG-
PET scans were acquired at rest, and this might not give
the most accurate representation of brain metabolism
during locomotion. Imaging the patient cohort with
FDG-PET after taking their regular PD medication is in
contrast with current practice71 and a possible limitation
of our methodology. This approach will have suppressed
the PDRP, although it did not prevent extraction of
PDGPs for the PD cases. These PDGPs will have reflected
a contribution of nondopaminergic rather than dopami-
nergic components, although this requires further valida-
tion in a larger cohort of treated and nontreated patients.
The inclusion of patients on anticholinergic medication
may seem counterproductive to our speculation that parts
of the PDGPs may be cholinergically mediated. However,
we note that all patients were on low doses and their indi-
vidual network expression scores do not indicate that
they were influential. A nonstatistical relationship between
ADS and SSFFDG is evidence for this assertion. Finally,
the absence of anatomical images precludes controlling
for interindividual variability in gray matter atrophy.

Conclusions and Future Work

We have characterized altered networks of FDG
metabolism across voxels in higher-order cognitive,
frontoparietal network, multisensory, motor control,
and cerebellar brain regions, which are related to dis-
crete gait difficulties in early-stage PD forming distinct
PDGPs. Our results suggest that unique pathophysiologi-
cal signatures of gait impairments and postural instabil-
ity exist in PD. These gait networks may potentially
function as compensatory mechanisms to improve gait
control to counteract striatal dopamine denervation and
aberrant cholinergic function in PD. These networks
may hold potential as neuroimaging biomarkers for
early disease identification, facilitating effective interven-
tions to mitigate mobility decline and risk of falls. Future
studies should assess the stability and reliability of these
gait networks with a longitudinal design and multimodal
imaging battery. In addition, future studies with a larger
sample size could consider a comparison between PD
motor phenotypes to assess whether these types of net-
work are specific to clinically defined gait-related motor
impairment while keeping in mind that phenotype status
is variable in the early stages of the disease.72 This may
lead to further understanding of the mechanisms under-
pinning PD gait-related changes.
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