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ABSTRACT This study investigated the bactericidal
effects of plasma-activated acetic acid (PAAA) on Sal-
monella Typhimurium and its impact on the physico-
chemical traits of chicken meat. Twenty milliliters of
0.8% (v/v) acetic acid (AA) was treated with plasma
(2.2 kHz and 8.4 kVpp) for 30 min. The chicken skins,
breasts, and drumsticks, inoculated with S. Typhimu-
rium, were immersed in AA or PAAA and incubated for
10 min. The S. Typhimurium on the breasts and drum-
sticks were significantly susceptible to treatment with
AA and PAAA, compared to the control group (deion-
ized water treatment), and the population of bacterial
cells in PAAA-treated chicken breasts and drumsticks
decreased by 0.98 and 1.19 log CFU/g, respectively,
compared with AA. The values for pH and 2-
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thiobarbituric acid reactive substances (TBARS) of
PAAA-treated samples decreased significantly com-
pared to the control group. The lightness (L*) values of
the chicken breasts after AA and PAAA treatments
increased compared to the control group, whereas the
value for yellowness (b*) decreased. The scanning elec-
tron microscopic (SEM) images and the results for vola-
tile compounds in chicken meat revealed similar
patterns, with no significant differences between AA
and PAAA treatments. In conclusion, we found that
PAAA was more effective than AA and synergistic
PAAA treatment of chicken caused to the reduction of
S. Typhimurium and improve the meat quality. There-
fore, PAAA could be utilized as a promising decontami-
nant for the chicken meat industry.
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INTRODUCTION

With the increasing consumption of meat and meat
products, the number of foodborne pathogen outbreaks
related to meat has significantly increased (Zhao et al.,
2001). Meat and meat products are highly susceptible to
contamination by foodborne pathogens such as Salmo-
nella spp., Campylobacter spp., Shiga toxin-producing
strains of Escherichia coli, and Listeria monocytogenes,
during their production, processing, and transportation
(Nerin et al., 2016; Omer et al., 2018; Lee et al., 2021b).
Particularly, chicken meat is a highly perishable product
because of its characteristics that can cause rapid and
intensive spoilage (Noriega et al., 2011). Most of the path-
ogen contamination in chicken meat can occur in
slaughterhouses through spread of microorganisms
between carcasses (Kim et al., 2019). A previous study
reported that Salmonella spp. account for majority of the
foodborne pathogens identified in poultry and poultry
products (Dominguez et al., 2002). Therefore, many
chickenmeat industries face problems in the effective inac-
tivation of Salmonella spp. as well as in ensuring that the
quality of chicken meat is maintained. However, the inac-
tivation of pathogens and deterioration of the quality of
chicken meat remains a significant challenge (Dirks et al.,
2012). Numerous efforts have been made to inactivate
microbial contaminants in chicken meat using thermal
treatments, use of bacteriocins or lactic acid bacteria, and
washing with agents such as chlorine and trisodium phos-
phate (Mani-L�opez et al., 2012). However, these tradi-
tional methods have some limitations in inactivating
pathogens and adversely affect the nutritional value or
sensory quality of chicken meat (Whyte et al., 2001;
Kim et al., 2002; Berrang et al., 2007).
In many countries, organic acids such as acetic, citric,

and lactic acid, which are designated by the European
committee, FAO/WHO, and FDA as generally
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Figure 1. Schematic diagram of the experimental setup for the
preparation of dielectric barrier discharge plasma.
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recognized as safe substances (GRAS) for meats
(Surekha and Reddy, 2000), are commonly used for the
decontamination of chicken meat industries due to their
antimicrobial potency, cost-effectiveness, and applica-
tion simplicity (Cosansu and Ayhan, 2010). The antimi-
crobial traits of organic acids are based on their ability
to lower the pH, thereby causing instability in the bacte-
rial cell membranes (Reis et al., 2012). With the increas-
ing consumer demand that industries reduce their use of
chemical additives, many meat industries want to con-
trol the amount of organic acids used and simulta-
neously increase their antimicrobial effect in meat
products (Sagong et al., 2011).

Recently, nonthermal technologies such as ultra-
sound, irradiation, ultra-high pressure, and pulsed light
have been developed as alternatives to traditional meth-
ods (Heo et al., 2021). Cold plasma has a minimal
impact on the quality of meat and meat products, is rela-
tively inexpensive, and easy to install compared to other
nonthermal technologies (Lee et al., 2016). In the pres-
ent study, we prepared plasma-activated acetic acid
(PAAA) by treating acetic acid with plasma (AA) to
improve the bactericidal efficiency of AA. Some studies
on LA treated with plasma have studied the synergisti-
cally bactericidal effects of meat (Qian et al., 2019,
2020). However, no study has been reported on the syn-
ergistically antibacterial effects of PAAA and the
impact on the physicochemical traits of chicken meat.

The antibacterial effect and mechanism of acidic solu-
tion, such as acetic acid, obtained by treating plasma has
also not been studied yet. Generally, reactive oxygen and
nitrogen species (RONS) with a long half-life, such as
H2O2, NO2

� and NO3
� may be the major antimicrobial

agents and mediate a series of complex chemical reactions
in plasma-activated water (PAW; Samukawa et al.,
2012). However, Oehmigen et al. (2010) suggested that
the synergistic action of RONS is potentiated under acidic
conditions, which leads to enhanced antibacterial activity.
Thus, the pH value affects the activity of reactive species
in plasma-activated liquid. Additionally, NO2

� and H2O2

contribute to the formation of peroxynitrous acid
(ONOOH), which is highly cytotoxic under acidic condi-
tions (Lukes et al., 2014). During plasma discharge, H2O2
is utilized for the NO2

�dependent generation of ONOOH
under acidic conditions (Lukes et al., 2014; Laurita et al.,
2015; An et al., 2019). ONOOH is a powerful oxidant that
can diffuse through cell membranes, damage cells, and
promote cell death through apoptosis can necrosis
(Huie and Padmaja, 1993; Denicola et al., 1998). Consid-
ering the result that AA among organic acids has the high-
est sterilization efficiency against Salmonella
Typhimurium (Mani-L�opez et al., 2012), it is important
to investigate the combined impacts on PAAA as a poten-
tial means for improving the efficiency of antibacterial
activity. Our study could help to provide an understand-
ing of the quality changes of chicken in the process of
PAAA as a novel approach. Therefore, the objective of
this study was to investigate the antibacterial effects of
PAAA against S. Typhimurium and its impact on the
quality characteristics of chickenmeat.
MATERIALS AND METHODS

Bacterial Strains and Culture Preparation

S. Typhimurium (ATCC 13311) was obtained from
the Korean Culture Center of Microorganisms (Seoul,
Korea). S. Typhimurium was cultivated at 37°C in
nutrient broth (Difco, Becton Dickinson Co., Sparks,
MD) for 48 h to obtain mid-log phase cells. The strain
was then washed twice with 0.85% NaCl solution
(saline), followed by centrifugation at 2,266 £ g for
14 min at 2°C (UNION 32R, Hanil Science Industrial,
Co. Ltd, Gimpo, Korea). Finally, the viable cell density
of the re-suspended culture was adjusted to approxi-
mately 108 to 109 CFU/mL using the optical density at
a wavelength of 600 nm.
Sample Preparation, Sterilization, and
Inoculation

Raw chicken skin, breasts, and drumsticks were pur-
chased in advance from a local market in Seoul (Non-
ghyup Co., Seoul, Korea) and frozen at �20°C. Before
the experiment, the samples were thawed overnight (24
h) at 4°C. The skin was punched into 2 cm2 round pieces,
and the breasts and drumsticks were cut into equal-sized
pieces (3.00 § 0.05 g) using a sterile knife. To study the
antibacterial effect, the surface of each sample was
exposed to ultraviolet light for 30 min to eliminate back-
ground microflora. Hundred microliters of the cell sus-
pension were spot inoculated at nine different points on
the surface of the samples and spread with a sterile
spreader for even distribution and attachment. The sam-
ples were then placed for 1 h on a clean bench at room
temperature (25°C) to allow bacterial adsorption to the
surface of the samples.
Preparation of PAAA

As presented in Figure 1, an encapsulated atmo-
spheric dielectric barrier discharge plasma, using a rect-
angular plastic container (137 £ 104 £ 53 mm)
containing copper electrodes and a polytetrafluoroethy-
lene sheet, was prepared for the generation of PAAA.
Atmospheric air was used as the operating gas and
plasma was generated at 2.2 kHz and 8.4 kVpp following
the modified conditions from a previous study
(Yoo et al., 2021). The AA immersed in a glass dish was
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placed in the center of the container, and then exposed
to plasma generated inside the container. PAAA was
obtained by exposing the plasma discharge to 20 mL of
AA (v/v) for 30 min. The concentrations of AA used in
this study were 0.2, 0.6, and 0.8% (v/v), representing
the corresponding AA concentrations in PAAA, respec-
tively. The selected concentrations were based on pre-
liminary studies. The bacterial cells in the samples
treated with deionized water were used as a control
(Royintarat et al., 2020). Additionally, based on our pre-
liminary study, there was no significant effect on the
detachment of bacterial cells of being washed away by
immersing method.
Microbial Analysis

To investigate the bactericidal effect of bacteria, inoc-
ulated samples were immersed in 50 mL conical tubes
containing AA and PAAA for each treatment and incu-
bated at 25°C for 10 min (Royintarat et al., 2020).
Immediately after plasma treatment, each sample was
placed in a new tube containing 27 mL of saline solution.
Each sample in tube was vigorously vortexed at high
speed for 2 min for the detachment of bacteria on the
surface of chicken meats. After the detachment of bacte-
ria, the supernatants from each tube were serially
diluted (1:10) in saline. Each diluted sample (0.1 mL)
was spread on Xylose Lysine Deoxycholate agar (Difco)
and agar plates were incubated at 37°C for 48 h for the
determination of S. Typhimurium counts. The results of
the skin were expressed as log CFU/cm2, and the breasts
and drumsticks were expressed as log CFU/g. The num-
ber of colony forming units per round pieces cm of the
chicken skin, called the density, is found by Equation (1)
(Hamilton et al., 2003).

Density ¼ Avg count

Drop volume
Dilution

¢Volume scraped into
1

Surface area

ð1Þ

Where Avg count is the average of the raw data counts
[CFU], Drop volume is the volume of the drop plated
[mL], Dilution is the 1/10�k where k is an integer for 10-
fold dilutions, Volume scraped into is the volume of the
liquid the chicken skin was scraped into [mL], Surface
area is the scraped surface area of the chicken skin [cm2].
pH Measurement

The pH values of the breasts and drumsticks were
measured according to a previously described method
(Heo et al., 2021). After each treatment, 1 g of the
homogenized sample was added to each tube containing
9 mL distilled water and mixed thoroughly for 30 s using
a homogenizer (T25 Basic, Ika Co., Staufen, Germany).
After homogenization, the solution was centrifuged
(Hanil Science Industrial Co., Ltd.) at 2,265 £ g for
10 min at 4°C and the pH value of the resulting superna-
tant was measured using a pH meter (Seven 2Go,
Mettler-Toledo International Inc., Schwerzenbach,
Switzerland).
Lipid Oxidation Measurement

The lipid oxidation of the breasts and drumsticks was
analyzed according to a previously reported method,
which calculates the level of 2-thiobarbituric acid reac-
tive substances (TBARS) (Lee et al., 2016). Three
grams of each sample and 9 mL of distilled water were
mixed and homogenized with 50 mL of butylated
hydroxytoluene (7.2% in ethanol) using a homogenizer
at 9,600 rpm for 30 s. The homogenate (1 mL) was then
added to a 15 mL centrifuge tube containing 2 mL of
TBA (20 mmol/L)/trichloroacetic acid (15%) solution,
and the tubes were heated in a water bath at 90°C for
30 min, followed by cooling in water. The test tubes
were centrifuged at 2,265 £ g for 10 min, and the absor-
bance of the supernatant was measured at 532 nm using
a spectrophotometer (DU 530; Beckman Instruments
Inc., Brea, CA). The TBARS value was presented as mg
of malondialdehyde per kg sample, using a standard
curve (Yim et al., 2020).
Color Measurement

The color of the breasts and drumsticks was measured
using a colorimeter (CM-5, Konica Minolta Co., Ltd.,
Osaka, Japan) to obtain the CIE lightness (L*), redness
(a*), yellowness (b*), hue angle (tan�1(b*/a*)), and
chroma ((a*2 + b*2)1/2). The instrument was cali-
brated with a white and black standard tile before the
analysis (Yoo et al, 2020). Measurements were taken
randomly on the surface of the breasts and drumsticks
at 6 different locations per sample with an 8 mm diame-
ter measurement area. The color values were monitored
by a computerized system using spectra Magic software
(Konica Minolta Sensing, Inc.).
EM Analysis

The scanning electron microscopic (SEM) images of
the breasts and drumsticks were obtained following the
method reported in our previous study (Shin et al.,
2020). After each treatment, the samples were cut into
0.5 cm diameter and 0.2 to 0.3 cm thick pieces and were
fixed with Carnoy fluid (60% ethyl alcohol, 30% chloro-
form, 10% glacial acetic acid; v/v) at 4°C for 24 h. The
samples were dehydrated using an increasing concentra-
tion of ethyl alcohol (70% for 12 h, 95% for 2 h, and
100% for 2 h). Each dehydrated sample was immersed in
hexamethyldisilazane twice for 10 min and dried over-
night (24 h) in a fume hood at 25°C. The dried samples
were mounted on aluminum stubs using double-sided
carbon tape and coated with a layer of platinum in a
vacuum evaporator (EM AC E600, Leica Microsystem,
North Ryde, NSW, Australia). Micrographs of the sam-
ples were visualized using a Zeiss Sigma field emission
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scanning electron microscope (AURIGA, Carl Zeiss
Microscopy, Thornwood, NY).
Electronic Nose Analysis

The electronic nose (Heracles II, Alpha MOS, Tou-
louse, France) in each treatment was analyzed to deter-
mine the effect of PAAA on the odor of the treated
chicken meat. The samples were ground using a meat
grinder (MG510, Kenwood, Hampshire, UK), and each
sample (5.00 § 0.05 g) was taken in a 20-mL vial and
cooked for 30 min at 80°C to obtain the volatile com-
pounds (Li et al., 2020). The volatiles were then injected
into an electronic nose equipped with dual columns of
MXT-5 and MXT-1701 (10 m £ 180 m £ 0.4 m;
length £ diameter £ thickness) (Restek, Bellefonte,
PA). Each peak was integrated and identified using the
retention time and relevance index, indicating the per-
centage of matching probability, based on the compari-
son of Kovats retention index of the detected compound
and the Kovats retention indices of known compounds
from the AroChemBase library (Lee et al., 2019).
Statistical Analysis

All experimental procedures were conducted indepen-
dently in triplicates. The data were assessed by Tukey’s
multiple-range test using the SAS program (version 9.4,
SAS Institute Inc., Cary, NC) at a significance level of
P < 0.05. Statistical analysis was performed using the
Student’s t test and one-way analysis of variance. The
standard deviation of the mean values is reported in the
figures and tables. Scores plot based on principal compo-
nent analysis (PCA) was generated using MetaboAna-
lyst 4.0, in accordance with the method mentioned by
Kim et al. (2020).
RESULTS AND DISCUSSION

Antibacterial Effect of PAAA on Chicken
Meats

The population of bacterial cells in both AA and
PAAA treatments significantly decreased with increas-
ing concentrations of AA (P < 0.05, Figure 2A). The ini-
tial population of S. Typhimurium on the skin was 6.91
log CFU/cm2. The population of S. Typhimurium
decreased by 0.17, 1.05, and 2.33 log CFU/cm2 after
incubation for 10 min with 0.2, 0.6, and 0.8% PAAA,
respectively. However, after treatment with AA, the
population of S. Typhimurium decreased by 0.07, 0.93,
and 1.23 log CFU/cm2 under the same concentrations of
AA (0.2, 0.6, and 0.8%), respectively.

The bactericidal efficiency of 0.6% PAAA (P < 0.05)
and 0.8% PAAA (P < 0.01) were significantly higher
than those of the control and 0.2% PAAA treatment
groups. These data suggest that S. Typhimurium on
chicken skin has a more significant susceptibility to
PAAA treatment compared with that of AA, and it is
significantly affected by the increasing concentration of
AA. This provides a potential application in the slaugh-
tering process. The reactive species in chemical reactions
generated by plasma discharge induce lethal effects on
bacteria due to the role of these short-lived species
(Zhou et al., 2015). For solutions that were treated with
plasma, the antibacterial effect of PAW is attributed to
the acidic pH and ONOOH generated by H2O2 and
NO2

� (Naïtali et al., 2010; Oehmigen et al., 2011).
Qian et al. (2019) also found that the number of S.
Enteritidis inoculated on beef significantly decreased
with increasing concentration of lactic acid in plasma-
activated lactic acid (PALA), which can accelerate the
generation of NO2

�. Further, NO2
� induces the genera-

tion of ONOOH with H2O2. Similarly, it showed the
same trend in our study that the low pH values of 0.8%
PAAA and the concentrations of H2O2 and NO3

�

increased significantly in 0.8% PAAA with the increase
in plasma discharge time (P < 0.05) (data not shown).
These findings may indicate that the formation of
increased ONOOH, especially in liquids with pH lower
than 4. In addition, because of the low pH of PAAA,
there are more potential possibility to form acidified
nitrites, possess strong cell toxic properties
(Babaeva et al., 2012). Thus, the antibacterial activity
of PAAA is also more potent with increasing concentra-
tions of AA. As shown in Figure 2A, when the concen-
tration of AA was 0.8%, the bactericidal efficiency and
the level of significance for differences between PAAA
and AA treatment were the highest (P < 0.01). There-
fore, 0.8% AA concentration was regarded as the opti-
mal treatment condition and was used to investigate the
antibacterial activity of the chicken breasts and drum-
sticks.
Figure 2B shows the antibacterial effect of 0.8% AA

and PAAA on the breasts and drumsticks. Each sample
was incubated for 10 min with 0.8% AA and PAAA
obtained by plasma exposure for 30 min. After treat-
ment with AA, the population of S. Typhimurium on
the breasts and drumsticks significantly reduced by 1.35
and 1.56 log CFU/g, respectively, compared with the
control group (P < 0.05). whereas, after treatment with
0.8% PAAA, the population of S. Typhimurium on the
breasts and drumsticks significantly reduced by 2.33
and 2.75 log CFU/g, respectively (P < 0.05). These find-
ings indicate that the susceptibility of the bacteria in
chicken meat treated with PAAA was significantly
higher than that treated with AA, which is consistent
with the results of chicken skin presented in Figure 2A.
According to a previous study, the efficacy of plasma
was greatly reduced due to the surface topography on
chicken skins, which may act as a physical barrier,
resulting in the bacteria being protected from the reac-
tive species generated by plasma, as compared to
chicken muscle (Noriega et al., 2011). However,
Rossow et al. (2018) identified that there were no signifi-
cant differences in the bactericidal effects between the
skin and breast samples by investigating the efficacy of
parameters in plasma treatment. Consistent with this
study, no significant differences in bactericidal effects



Figure 2. Effect of acetic acid (AA) and plasma-activated acetic acid (PAAA) on population of Salmonella Typhimurium according to (A) the
concentration of AA on chicken skins and (B) the antibacterial effects of 0.8% AA and PAAA on chicken breasts and drumsticks. Control group,
deionized water treatment; AA, AA treatment; PAAA, PAAA treatment. Error bars represent standard deviation. a-cDifferent letters indicate a sig-
nificant difference (P < 0.05) among the treatments. x-zDifferent letters indicate a significant difference (P < 0.05) among the treatments. Student's t
test; *, P < 0.05 and * * , P < 0.01 with respect to the untreated control.
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were observed between the skin and breast samples in
our study. Therefore, these results suggest that S.
Typhimurium can be effectively inactivated in chicken
meat by treatment with PAAA.
Table 1. pH and lipid oxidation of breasts and drumsticks
treated with acetic acid (AA) and plasma-activated acetic acid
(PAAA).

Treatments pH
TBARS value

(mg malondialdehyde /kg)

Breast
Control 5.88 § 0.01a 0.27 § 0.02a

0.8% AA 5.28 § 0.07b 0.10 § 0.01b

0.8% PAAA 5.36 § 0.18b 0.10 § 0.01b

Drumstick
Control 6.77 § 0.03a 0.31 § 0.03a

0.8% AA 5.90 § 0.02b 0.17 § 0.02b

0.8% PAAA 5.95 § 0.08b 0.19 § 0.04b

Control, deionized water treatment; 0.8% AA, acetic acid (0.80%, v/v)
treatment; 0.8% PAAA, plasma-activated acetic acid (0.8%, v/v)
treatment.

All values represent the Mean § Standard Deviation.
a,bDifferent letters within column differ significantly (P < 0.05).
pH

Table 1 presents the pH values of the breasts and
drumsticks treated with AA or PAAA. The breasts and
drumsticks showed significant differences between the
control and treatment groups (0.8% AA and PAAA);
the treatment group showed a decrease in pH values as
compared to the control group. However, no significant
differences were identified between the 0.8% AA and
PAAA groups (P > 0.05). The decrease in the pH of
chicken meat was related to the combined action of AA
and PAAA. Aktaş et al. (2003) identified that the type
and concentration of acids used significantly affected the
pH values of marinated meat due to the dissociation of
hydrogen ions (H+). The plasma-induced decrease in pH
values in the samples was caused by the generation of
acidogenic molecules from the plasma, resulting in their
accumulation on the surface of the samples
Fr€ohling et al., 2012). In addition, the interaction of the
reactive species generated by plasma, including O, O3,
and NOX, with the moisture content of the samples
caused a decrease in the pH values in the samples after
plasma treatment via Equations (2) to ((4) (Liu et al.,
2010). However, it was found that there was no differ-
ence between AA and PAAA treatment groups in the
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pH in the present study.

N2 þO2 ! 2NO ð2Þ

2NOþO2 ! 2NO ð3Þ

2NO2 þ H2O!HNO2 þHNO3 ð4Þ

TBARS

The TBARS values of the treatments (0.8% AA and
PAAA) in breasts and drumsticks were lower than those
of the control group (Table 1). Significant differences in
TBARS values of the breasts and drumsticks were
observed between the control and treatment groups. Sev-
eral studies have shown a decrease in the TBARS value
of meat treated with organic acids, such as acetic, lactic,
and citric acid, compared with the control group.
Kang et al. (2002) reported that TBARS values of pork
treated with acetic acid were lower than those of the con-
trol group during storage, and this finding was supported
by the inhibition of the generation of malondialdehyde,
which is induced by products such as carbonyl complexes,
alcohols, ketones, and aldehydes. According to previous
research, the TBARS values of jerky treated with dielec-
tric barrier discharge plasma decreased as the plasma
treatment time increased, which was caused by the anti-
oxidant effect of nitrite (Yong et al., 2019). On the other
hand, the TBARS values of pork treated with plasma
were slightly higher than those of untreated pork sample,
indicating the result might be different due to the varia-
tions in fat content and fatty-acid composition of sample
(Jayasena et al., 2015). In the present study, there were
no significant differences in TBARS values observed
between the 0.8% AA and PAAA treatments (P > 0.05),
suggesting that the action of plasma has little effect on
0.8% PAAA treatment. Similarly, the differences of
TBARS values between lactic acid and PALA were insig-
nificant, demonstrating that plasma-activated liquids
didn’t cause more severe lipid oxidation in beef samples
(Qian et al., 2019).
Color

The color of meat is the most common indicator of
quality, which has an important influence on consumer
preferences (Wadhwani and Mcmahon, 2012; Kang et al.,
2019). The L* values of the breasts and drumsticks
treated with 0.8% AA and PAAA increased, whereas the
a* and b* values decreased compared to those of the con-
trol group (Table 2). However, there were no significant
differences in color values (L*, a*, and b*) between the
control group and the treatments (0.8% AA and PAAA)
in drumsticks. These results indicate that both samples
had similar patterns in L*, a*, and b* values, except for
the significant differences. The color difference in meat is
attributed to the amount of heme pigments and fibers
type of predominant muscle (Berri et al., 2001).
Lengerken et al. (2002) reported that breast meat
contains more than 90% white fibers, whereas the propor-
tion of red fibers and irregular surface color in leg meat is
higher than in other meat types. This could be the reason
why there were no significant differences among the treat-
ments in drumsticks compared to the breasts.
Stivarius et al. (2002) identified that ground beef treated
with AA was lighter (P < 0.05; L*) and less red (a*) and
yellow (b*) (P < 0.05) in color compared to the control
group. In addition, the ground beef from the treatment
with AA showed higher hue angle values than the control
group. Similarly, in the present study, the hue angles in
the breasts and drumsticks were higher than those of the
control group. These results were related to the concen-
tration of oxymyoglobin in meat, and could be attributed
to the discolored meat, which caused lower redness values
and oxymyoglobin content after treatment with AA
(Bell et al., 1986; Stivarius et al., 2002).
According to a previous study, the L* and b* values of

chicken breasts treated with dielectric barrier discharge
plasma also increased as the treatment time increased,
whereas the a* value decreased significantly (Lee et al.,
2016). Another study also identified significant increases
in the L* values and significant decreases in the a* and b*
values were observed in breasts treated with PAW (Kang
et al., 2019). Fr€ohling et al. (2012) demonstrated that the
hydrogen peroxide generated in plasma induced a green
color in plasma-treated meats via reaction with myoglo-
bin. Consistent with the previous discussion, the color of
breasts and drumsticks treated with 0.8% PAAA was
additionally affected by the action of plasma, although
there were no significant differences between the 0.8%
AA and PAAA treatments (P > 0.05).
SEM

The skin was removed from the surfaces of breasts and
drumsticks for each sample; these showed a smooth and
regular shape on the SEM images (Figure 3). As shown
in Figure 3, there were no remarkable morphological
alterations observed after treatment with AA or PAAA.
However, compared to the control group in each sample,
the images of AA or PAAA treatment clearly revealed
the presence of pores. These could be correlated to the
porous structure of chicken meat, which is caused by the
weakening of structures under acidic conditions
(Alag€oz et al., 2020). Royintarat et al. (2020) identified
that the combined treatment of PAW and ultrasound
was more porous with the surface of chicken meat com-
pared with individual treatment, resulting in bacteria
being susceptible to PAW treatment. However,
Lin et al. (2019) reported that the SEM images of eggs
revealed less damage to the cuticles on eggs treated with
PAW than on the commercially washed eggs. In the
present study, no additional morphological changes
were observed on the surface of PAAA-treated chicken
breasts and drumsticks compared with the AA treat-
ment. Thus, the morphological changes on the surface of
chicken meat may not be attributed to the action of
plasma in the present study.



Table 2. Surface color values of breasts and drumsticks treated with acetic acid (AA) and plasma-activated acetic acid (PAAA).

Treatments L* a* b* Chroma Hue angle

Breast
Control 51.33 § 2.00b 3.15 § 0.14a 13.65 § 0.20a 14.01 § 0.22a 77.09 § 0.46
0.8% AA 55.93 § 1.43a 2.08 § 0.43ab 10.40§ 0.20b 10.65 § 0.27b 78.65 § 2.17
0.8% PAAA 58.56 § 0.32a 1.50 § 0.80b 9.90 § 0.06b 10.04 § 0.10b 82.55 § 5.77
Drumstick
Control 52.02 § 1.60 8.97 § 1.53 15.05 § 0.76 15.99 § 0.84 61.17 § 5.35
0.8% AA 51.65 § 6.04 7.88 § 0.37 14.68 § 2.63 16.71 § 2.13 61.33 § 5.56
0.8% PAAA 53.13 § 2.90 7.45 § 2.38 13.82 § 0.72 15.75 § 2.03 63.16 § 6.38

Control, deionized water treatment; 0.8% AA, acetic acid (0.80%, v/v) treatment; 0.8% PAAA, plasma-activated acetic acid (0.8%, v/v) treatment.
All values represent the Mean § Standard Deviation.
L*: Lightness; a*: redness; b*: yellowness.
a,bDifferent letters within column differ significantly (P < 0.05).

Figure 3. Evaluation of morphological images of chicken meats using scanning electron microscope (SEM). (A) Control group (breasts) (£
2,000 magnification); (B) 0.8% acetic acid (AA) treatment (breasts) (£ 2,000 magnification); (C) 0.8% plasma-activated acetic acid (PAAA) treat-
ment (breasts) (£ 2,000 magnification); (D) Control group (drumsticks) (£ 2,000 magnification); (E) 0.8% AA treatment (drumsticks) (£ 2,000
magnification); (F) 0.8% PAAA treatment (drumsticks) (£ 2,000 magnification). Control, deionized water treatment; 0.8% AA, 0.8% AA treat-
ment; 0.8% PAAA, 0.8% PAAA treatment. Bar, 10 mm.

PLASMA ON CHICKEN MEAT SAFETY AND QUALITY 7
Electronic Nose

Electronic nose is a rapid analysis tool to detect and
distinguish between various types of gaseous samples
(Chen et al., 2021). It is possible to obtain comprehen-
sive information on volatile compounds in samples
(Lee et al., 2021a). The PCA results obtained for the
volatile compounds of chicken meat and are presented



Figure 4. Principal component analysis (PCA) score plots for all samples in different type of treatments. (A) Chicken breasts; (B) drumsticks.
Control, deionized water treatment; 0.8% acetic acid (AA), 0.8% AA treatment; 0.8% plasma-activated acetic acid (PAAA), 0.8% PAAA treat-
ment.
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in Figure 4. The two principal components (PC), PC1
and PC2, of chicken breasts and drumsticks well
explained 81 and 79.2% of the overall variance, respec-
tively. PCA is a simple method used for modeling and
visualization of multidimensional data
(Wi�sniewska et al., 2016). PC1 was the most important
variable for the different treatments (control, 0.8% AA,
and 0.8% PAAA). As for chicken breasts presented in
Figure 4A, PC1 separated control from 0.8% AA and
0.8% PAAA and accounted for 65.1% of the total varia-
tion, which indicated that there was a significant differ-
ence in odors between the control and the treatment
groups. However, the difference between 0.8% AA and
PAAA was not identified in the PC1 data area, indicat-
ing that they were not significantly different in odors.
These results were equal to those of the drumsticks pre-
sented in Figure 4B. The overlapping area between
0.8% AA and PAAA in the results of drumsticks indi-
cates that there were similarities of odor between 0.8%
AA and PAAA treatments. Thus, the significant differ-
ences in odors between the control and treatment
groups were mainly related to the action of AA, indi-
cating that the changes in odor caused by the plasma
treatment were negligible. Previous study found that
2.0% lactic acid treatment changed the odors of beef
compared with 0.05 to 0.20% plasma activated lactic
acid treatments (Qian et al., 2019).

In the present study, we identified the synergistic anti-
bacterial activity of PAAA and its quality traits in
chicken meat. PAAA showed a higher bactericidal effi-
ciency than AA in breasts, drumsticks, and skin, and the
bactericidal activity was proportional to the concentra-
tion of AA. Based on the 0.8% concentration of AA,
which had a high bactericidal activity, there were no sig-
nificant differences in the quality traits of chicken,
including pH, surface color, and TBARS values between
AA and PAAA treatments. Similar results were
obtained for the morphological images and volatile
compound areas analyzed by SEM and electronic nose
analysis, respectively.
In conclusion, PAAA may be a potential decontami-

nating agent that can reduce foodborne pathogens such
as S. Typhimurium on chicken meats. Considering the
results of this study, PAAA can be a potentially useful
agent in the industry to produce safer chicken meat
products from the beginning. However, further studies
are needed to evaluate the physicochemical, microbio-
logical, and sensory properties of chicken meat after
treatment with PAAA during storage and to assess
mechanism of antibacterial effect against pathogenic
bacteria including S. Typhimurium. In addition, the
maximum volume of PAAA is limited in the present
study, it is valuable to develop different treatment meth-
ods of PAAA other than immersion could be useful for
industrial application.
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