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1  |  INTRODUC TION

The food we eat consists of three macronutrients: protein, fat, and 
carbohydrates. Understanding the different impacts of these macro-
nutrients on health, metabolism, and aging are key goals. Absorbed 

food is first processed by the liver, which is accordingly an important 
regulator of several metabolic processes including lipid, glucose, and 
amino acid metabolism. Liver lipid content can be affected by dietary 
macronutrient composition via effects on hepatic lipogenesis, fatty 
acid oxidation, and triglyceride synthesis (Postic & Girard, 2008; de 
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Abstract
Dietary macronutrient composition influences both hepatic function and aging. 
Previous work suggested that longevity and hepatic gene expression levels were 
highly responsive to dietary protein, but almost unaffected by other macronutrients. 
In contrast, we found expression of 4005, 4232, and 4292 genes in the livers of mice 
were significantly associated with changes in dietary protein (5%– 30%), fat (20%– 
60%), and carbohydrate (10%– 75%), respectively. More genes in aging- related path-
ways	(notably	mTOR,	IGF-	1,	and	NF-	kappaB)	had	significant	correlations	with	dietary	
fat intake than protein and carbohydrate intake, and the pattern of gene expression 
changes in relation to dietary fat intake was in the opposite direction to the effect 
of graded levels of caloric restriction consistent with dietary fat having a negative 
impact on aging. We found 732, 808, and 995 serum metabolites were significantly 
correlated with dietary protein (5%– 30%), fat (8.3%– 80%), and carbohydrate (10%– 
80%) contents, respectively. Metabolomics pathway analysis revealed sphingosine- 
1- phosphate signaling was the significantly affected pathway by dietary fat content 
which has also been identified as significant changed metabolic pathway in the pre-
vious caloric restriction study. Our results suggest dietary fat has major impact on 
aging- related gene and metabolic pathways compared with other macronutrients.
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Wit et al., 2012). Diets high in fat result in increased hepatic lipids 
and may result in fatty liver disease in both rodents and humans 
(Patsouris et al., 2006; Westerbacka et al., 2005). In contrast, high 
protein diets have been suggested to prevent hepatic lipid accumu-
lation (Lacroix et al., 2004; Shertzer et al., 2011). Despite these po-
tentially protective effects against hepatic steatosis, several studies 
have suggested that high protein diets are linked to increases in all 
caused mortality (Díaz- Rúa et al., 2017). The negative effects of high 
protein diets have been indicated to be potentially associated with 
metabolites produced in different stages of amino acid metabolism 
(Díaz- Rúa et al., 2017). Moreover, increased dietary protein to car-
bohydrate ratios lead to upregulation of genes involved in amino acid 
uptake and fatty acid synthesis, reflecting increased triacylglycerol 
content and increased health risk (Díaz- Rúa et al., 2017). In contrast, 
several studies which explored amino acid restriction or protein 
restriction effects on metabolism of mice, including, for example, 
leucine deprivation and methionine restriction, showed downregu-
lation of liver lipogenic genes (Anthony et al., 2013; Guo & Cavener, 
2007; Laeger et al., 2014).

Several recent studies indicated that fibroblast growth factor 
21	 (FGF21)	was	 upregulated	when	 feeding	 on	 a	 low	 protein	 diet.	
This	led	to	speculation	that	FGF21	is	an	endocrine	signal	of	protein	
restriction and the beneficial effects of protein restriction on met-
abolic	 health	might	 be	 dependent	 on	 FGF21	 (Laeger	 et	 al.,	 2014,	
2016). Apart from comparisons of high versus low protein diets, 
recent work has investigated gene expression levels in mice fed a 
matrix of diets varying in their protein, carbohydrate, and fat content 
(Gokarn et al., 2018). This revealed that dietary protein intake had a 
powerful effect on hepatic gene expression compared with dietary 
carbohydrate and fat content, and also showed that dietary protein 
mostly affected mitochondrial function and amino acid metabolism 
pathways, simultaneous to upregulation of Fgf21 at lower protein in-
takes (Gokarn et al., 2018). In contrast, the impacts of dietary fat and 
carbohydrate on hepatic gene expression were negligible (Gokarn 
et al., 2018).

Dietary macronutrient composition also has profound effects 
on aging (Gokarn et al., 2018). Several studies indicated that low 
protein high carbohydrate diets increase rodent lifespan (Lee et al., 
2008). Consistent with these lifespan impacts of lowered protein, 
in the most comprehensive long- term study of different dietary 
macronutrient composition effects on liver gene expression pat-
terns, it was found that dietary protein intake affected several major 
nutrient sensing pathways linked to aging, including adenosine- 
5- monophosphate- activated protein kinase (AMPK), mammalian 
target	of	 rapamycin	 (mTOR),	 insulin-	like	growth	factor	 (IGF-	1),	and	
FGF21	 signaling	 (Gokarn	 et	 al.,	 2018).	 The	 liver	 shows	 relatively	
fewer significant changes with age compared to other organs 
(Schmucker & Sanchez, 2011); however, the number of mitochon-
dria per hepatocyte decreases with age in both rodents and humans 
(de la Cruz et al., 1990; Herbener, 1976). A study of mitochondrial 
dysfunction in the obese rat suggested that mitochondrial changes 
consequent of fat intake may be the cause of aging and age- related 
disorders in obesity (Rector et al., 2010).

Apart from protein restriction, the most frequently studied nu-
tritional impact on aging is caloric restriction. It has been shown that 
caloric restriction increases lifespan and decreases age- related dis-
eases in many species (Ingram & de Cabo, 2017; Mercken et al., 2012). 
In mice and other organisms, several nutrient sensing pathways 
have been implicated to mediate the beneficial caloric restriction 
effect	on	aging.	These	pathways	include	decreased	IGF-	1	signaling	
(Argentino et al., 2005; Breese et al., 1991), reduced mTOR signaling 
(Johnson	et	al.,	2013),	and	reduced	nuclear	factor-	kappa	beta	(NF-	
kB) signaling (Tilstra et al., 2011). All three pathways were modified 
in relation to the level of restriction in a way that indicated improved 
aging in the livers of mice (Derous et al., 2017). Caloric restriction 
protocols however often reduce all the macronutrients at the same 
time. Hence the contribution of specific macronutrient reductions 
to these changes is not clear. It has been suggested that much of the 
effect of CR might be mediated not by lowered calorie intake but by 
lowered protein intake (Solon- Biet et al., 2014, 2019), but this claim 
is disputed (Speakman et al., 2016).

In the present study, we investigated the effects on mouse he-
patic	gene	expression	(by	RNA-	seq)	of	ad	libitum	intake	of	six	differ-
ent levels of dietary protein (5%– 30%) combined with both high- fat 
(60%) and low- fat (20%) conditions, leading to 12 different levels of 
dietary carbohydrate (10%– 75%). In addition, we explored the im-
pacts of 24 different diets (varying from 5% to 30% protein, 8.3% to 
80% fat, and 10% to 80% carbohydrate) on serum metabolite levels 
by untargeted metabolomics.

2  |  RESULTS

2.1  |  Impact of dietary macronutrient composition 
on hepatic gene expression

Pearson correlation analysis indicated that expression of 4005 genes 
was significantly correlated with dietary protein content (2748 
negative correlation and 1257 positive correlation) and 4232 genes 
(1142 negative correlation and 3090 positive correlation) were sig-
nificantly associated with dietary fat content, whereas expression 
of 4292 genes (2759 negative correlation 1533 positive correlation) 
was	 associated	 with	 dietary	 carbohydrate	 levels	 (Figure	 1a).	 We	
analyzed data on hepatic gene expression using generalized linear 
modeling (GLM) with gene expression of each gene as the depend-
ent variable and dietary levels of fat, protein, and carbohydrate con-
tent, and the interactions of the macronutrients as the independent 
predictors. We found five key genes involved in fatty acid synthesis 
pyruvate dehydrogenase kinase 1 (Pdk1), stearoyl- CoA desaturase 1 
(Scd1), acetyl- CoA carboxylase beta (Acacb), ELOVL family member 
6 (Elovl6), and Sterol regulatory element- binding transcription fac-
tor 1 (Srebf1) were all significantly upregulated in relation to the in-
crease of dietary protein (p = 0.005, p = 2.4 × 10−5, p = 2.3 × 10−5, 
p = 0.006, p = 0.002, respectively), but for other genes involved in 
fatty acid synthesis pyruvate dehydrogenase kinase 4 (Pdk4), ATP 
citrate lyase (Acly), acetyl- CoA carboxylase alpha (Acaca), fatty 
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acid synthase (Fasn), there were no significant associations with di-
etary protein contents (p >	 0.05)	 (Figure	1c,	 d	 and	Figure	S1a,	 b).	
The triglyceride synthesis- related gene 1- acylglycerol- 3- phosphate 
O- acyltransferase 1 (Agpat1) was also significantly positively 

associated with the dietary protein (p = 0.002), but glycerol- 3- 
phosphate dehydrogenase 2 (Gpd2) and 1- acylglycerol- 3- phosphate 
O- acyltransferase 9 (Agpat9) were not significantly associated 
(Figure	1e	and	Figure	S1c).

F I G U R E  1 Diagram	showing	genes	correlated	with	dietary	protein,	fat,	and	carbohydrate	contents	and	gene	expression	patterns	in	
several metabolic pathways. (a) The total number of genes significantly correlated, respectively, with dietary protein, fat, and carbohydrate 
contents.	(b)	Overlapped	and	independent	correlated	genes	with	dietary	protein,	fat,	and	carbohydrate	contents.	(c	and	d)	Fatty	acid	
synthesis metabolism, (e) triglyceride synthesis metabolism, (f, g) amino acid metabolism, (h) amino acid transport metabolism, (i) TCA cycle, 
(j) gluconeogenesis metabolism, and (k) regulation of protein intake- related genes (n = 5– 6). Generalized linear modeling was performed to 
analyze the dietary protein effect on specific gene expression. * p < 0.05, ** p < 0.01, *** p < 0.001, ns p > 0.05. Values are represented as 
mean ±SD
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Expression of many genes related to amino acid metabolism 
was also strongly altered in relation to dietary protein levels, for 
example, adenosylhomocysteinase (Ahcy), glutaminase 2 (Gls2), 
glutamic- oxaloacetic transaminase (Got1), glutamic- pyruvic trans-
aminase (Gpt), glutamic- pyruvic transaminase 2 (GPt2), proline 
dehydrogenase (Prodh), serine dehydratase (Sds), and tyrosine 
aminotransferase (Tat), was all significantly upregulated with in-
creases	 in	 dietary	 protein	 content	 (Figure	1f,g	 and	Figure	 S1d,e,	
p	values	in	Table	S10).	Further	amino	acid	transport	genes	solute	
carrier family (Slc) 38 member 3 (Slc38a3), Slc43a1 and Slc7a2 
were also strongly positively related to the dietary protein con-
tents, but not Slc38a2	(Figure	1h	and	Figure	S1f,	p values in Table 
S10). Gene expression levels in TCA cycle genes aconitase 2 (Aco2) 
(p = 1.82 × 10−8) and isocitrate dehydrogenase 3 alpha (Idh3a) 
(p = 0.001) were both positively associated with the dietary pro-
tein	content	(Figure	1i	and	Figure	S1g).	Moreover,	genes	involved	in	
gluconeogenesis such as glucose- 6- phosphatase (G6pc) (p = 0.04), 
phosphoenolpyruvate carboxykinase 1 (Pck1) (p = 0.005), and 
fructose- bisphosphatase 1 (Fbp1) (p = 0.007) were all significantly 
increased	as	dietary	protein	increased	(Figure	1j	and	Figure	S1h).	
Apart from these changes in the fatty acid and amino acid metab-
olism pathways, Fgf21 was significantly decreased with increased 
dietary protein (p =	0.001)	(Figure	1k	and	Figure	S1i).	Surprisingly,	
no significant correlations were observed between dietary pro-
tein content and other protein “sensing” genes such as Mtor and 
activating transcription factor 4 (Atf4) (p >	 0.05)	 (Figure	1k	 and	
Figure	S1i).

We explored the relationships between gene expression at 
different protein levels and body fat content and serum hormone 
levels. The fatty acid metabolism genes Scd1 and Elovl6 were signifi-
cantly positively correlated with the total body fat, and with serum 
leptin	and	insulin	levels	(Figure	S2a–	S2f).	The	amino	acid	metabolism	
gene Gpt was also significantly positively related to the body fat con-
tent,	serum	leptin,	and	insulin	concentration	(Figure	S2g–	S2i).	Fgf21 
in contrast was not correlated with body fat or serum hormone con-
centrations	(Figure	S2j–	S2l).

GLM analysis of liver gene expression changes indicated eukary-
otic	translation	initiation	factor	2	(EIF2)	signaling	(p = 8.11 × 10−22), 
the unfolded protein response (p = 8.47 × 10−8),	regulation	of	eIF4	
and ribosomal protein S6 kinase (p70S6K) signaling (p = 1.91 × 10−7), 
transfer	RNA	(tRNA)	charging	(p = 1.64 × 10−8), amino acid metabo-
lism (p = 8.99 × 10−6), protein synthesis (p = 5.58 × 10−5), and nucleic 
acid metabolism pathways (p = 9.4 × 10−5) were the most signifi-
cantly affected pathways with the increasing of dietary protein con-
tents	under	both	60%	fat	and	20%	fat	conditions	(Figure	2a,c,d,e,f)	
(Table S1).

There were 99/205 significant changes in gene expression in the 
EIF2	 signaling	 pathway	 (Figure	 S4a),	 most	 of	 these	 genes	 (94/99)	
were negatively correlated with the dietary protein content. In the 
regulation	 of	 eIF4	 and	 p70S6K	 signaling	 pathway,	 57/157	 genes	
showed significant expression changes with the elevation of dietary 
protein contents and also most of the altered genes (50/57 genes) 
were	downregulated	(Figure	S3a).	The	tRNA	charging	pathway	in	the	

liver was also significantly affected by dietary protein content, in-
cluding 23/38 genes that were significantly changed in this pathway, 
and all of which (23/23) were negatively correlated with the protein 
content in the diet. Changes of unfolded protein response pathway 
also reflect the end of the protein translation process, and there 
were 28/55 genes significantly changed in this pathway, of which 
26/28 genes had negative correlations with dietary protein contents 
(Figure	 S3b).	 Pearson	 correlation	 results	 showed	 that	 4005	genes	
were significantly correlated with protein level in the diet, and the 
following	 pathway	 analysis	 results	 revealed	 that	 EIF2a	 signaling	
(p = 5.09 × 10−17), TCA cycle (p = 1.48 × 10−7), the unfolded protein 
response (p = 2.13 × 10−7),	regulation	of	eIF4	and	p70S6K	signaling	
(p = 6.82 × 10−8), protein ubiquitination pathway (p = 3.29 × 10−10), 
tRNA	charging	 (p = 3.33 × 10−8), colonic acid building blocks bio-
synthesis pathway (p = 1.68 × 10−7), and the mTOR signaling path-
way (p = 3.53 × 10−6) were the most significantly changed pathways 
(Figure	2a)	(Table	S1).	Of	the	4005	genes,	only	1886	genes	were	in-
dependently correlated with protein content in the diet (1614 genes 
were correlated both with protein and carbohydrate levels and 
1280 genes were associated with protein and fat content in the diet) 
(Figure	1b).	IPA	pathway	analysis	of	these	1886	genes	showed	that	
sirtuin signaling (p =	0.001),	tRNA	charging	(p =	0.002),	DNA	meth-
ylation and transcriptional repression signaling (p = 0.002), and the 
super- pathway of serine and glycine biosynthesis (p = 0.003) were 
the most significantly affected pathways independently related to 
dietary	protein	content	(Figure	2b)	(Table	S1).

There were 4232 genes significantly correlated with the increas-
ing dietary fat level (3309 genes were correlated both with fat and 
carbohydrate levels and 1280 genes were associated with protein 
and fat content in the diet, 546 genes were independently related to 
the	dietary	fat	content)	(Figure	1a,	b).	Liver	gene	expression	changes	
with different fat content diets (using all 4232 genes correlated with 
dietary fat) indicated the lipid metabolism (p = 6.32 × 10−22), nuclear 
factor,	erythroid	2	like	2	(Nrf2)-	mediated	oxidative	stress	response	
pathway (p = 2.83 × 10−15),	 EIF2a	 signaling	 (p = 3.24 × 10−14), li-
popolysaccharide/interleukin- 1 (LPS/IL- 1)- mediated inhibition of 
retinoid X receptors (RXR) function (p = 7.5 × 10−12), xenobiotic 
metabolism (p = 7.59 × 10−13), cell morphology (p = 1.74 × 10−12), 
and the mTOR signaling pathway (p = 5.62 × 10−11) were the most 
significantly	changed	pathways	(Figure	3a).	There	were	82/179	sig-
nificant	changes	in	gene	expression	in	the	Nrf2-	mediated	oxidative	
stress	 response	 pathway	 (Figure	 3),	 most	 of	 these	 genes	 (74/82)	
were	positively	correlated	with	the	dietary	fat	contents	(Figure	3c)	
(Table S2). In the LPS/IL- 1 mediated inhibition of RXR function and 
mTOR signaling pathway, 83/205 and 79/198 genes showed signif-
icant expression changes with the elevation of dietary fat contents, 
respectively	 (Figure	 S4b).	 Furthermore,	 the	 pathway	 analysis	 of	
the independent significantly changed genes (546 genes) with the 
increasing of dietary fat content indicated that IL- 15 signaling (p = 
0.01), communication between innate and adaptive immune cells (p 
= 0.02), ERK/MAPK signaling pathway (p = 0.03) were the signifi-
cantly affected pathways separately correlated with the fat content 
in	the	diet	(Figure	3b)	(Table	S2).
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F I G U R E  2 Significantly	changed	gene	pathways	with	the	increase	of	dietary	protein	content.	(a)	Significantly	changed	pathways	related	
to the increasing dietary protein content. (b) Significantly changed pathways correlated independently with the increasing protein level. 
Gene	expression	patterns	in	different	protein	content	groups	in	(c)	EIF2a	signaling	pathway,	(d)	unfolded	protein	response,	(e)	regulation	of	
eIF4	and	p70S6K	signaling,	(f)	tRNA	charging	pathway,	blue	indicates	lower	and	red	indicates	higher	expression.	Generalized	linear	modeling	
and Pearson correlation analysis were performed to analyze the dietary protein effect on gene expression patterns
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F I G U R E  3 Significantly	changed	gene	pathways	with	the	increase	of	dietary	fat	content.	(a)	Significantly	changed	gene	pathways	related	
to	the	increasing	dietary	fat	content.	(b)	Significantly	changed	gene	pathways	correlated	independently	with	the	increasing	fat	level.	(c)	Nrf2-	
mediated oxidative stress response, red indicates positive and blue indicates the negative regression with the fat content in the diet, gray 
indicates no significance. Pearson correlation was performed to analyze the dietary fat effect on gene expression patterns
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There were 4292 genes significantly correlated with increasing 
dietary carbohydrate content, and following pathway analysis re-
sults	showed	that	EIF2	signaling	(p = 4.14 × 10−23), xenobiotic me-
tabolism signaling (p = 3.52 × 10−13), LPS/IL- 1 mediated inhibition of 
RXR function (p = 1.08 × 10−12),	NRF-	2-	mediated	oxidative	 stress	
response (p = 2.97 × 10−10), and mTOR signaling pathway (p = 3.18 
× 10−9)	were	the	most	significantly	changed	pathways	(Figure	S5a,c	
and Table S3). These pathways overlapped with pathways affected 
by dietary protein and fat content because most of these 4292 genes 
were also correlated both with dietary protein (1614 genes) and fat 
(3309	genes)	contents	(Figure	1a,	b).	Therefore,	we	selected	genes	
separately correlated with carbohydrate content (272 genes) and 
performed pathway analysis on these genes. We found methionine 
degradation (p = 0.001), cysteine biosynthesis (p = 0.002), BEX2 sig-
naling (p = 0.003), and Wnt/- catenin signaling (p = 0.005) were the 
most significantly changed pathways with increasing carbohydrate 
content	(Figure	S5b	and	Table	S3).

Insulin/IGF-	1,	mTOR,	 and	NF-	kB	 signaling	 are	 three	 important	
pathways involved in aging (Derous et al., 2017). In the insulin/
IGF-	1	signaling	pathway,	 there	were	4/46	genes	significantly	posi-
tively and also 4/46 genes negatively correlated with protein intake, 
2/46 genes were significantly negatively and 13/46 genes were pos-
itively associated with the fat intake, whereas 8/46 genes were neg-
atively and 3/46 genes positively correlated with the carbohydrate 
intake	 (Figure	 4a)	 (Table	 S4).	 Igf1 was only significantly positively 
correlated with protein intake (p = 0.0003, r = 0.427) with no sig-
nificant correlations with carbohydrate and fat intakes (Table S4). 
In the mTOR signaling pathway, there were more genes correlated 
negatively with protein intake (4/24 negative associated genes and 
1/24 positive associated gene), whereas 2/24 genes had significant 
negative and 8/24 genes had positive correlation with fat intake 
(Figure	4b).	Also	 relatively	 few	genes	 in	 this	pathway	had	a	nega-
tive correlation with the carbohydrate intake (1/24 negative associ-
ated	genes	and	3/24	positive	associated	gene)	(Figure	4b)	(Table	S5).	
Expression of Mtor itself was only significantly positively associated 
with the dietary fat intake (p = 0.003, r = 0.357) (Table S5). In the 
NF-	kB	signaling	pathway,	almost	half	of	the	genes	that	changed	had	
positive and another half had negative relationships with dietary 
protein intake (3/43 negative correlated genes and 5/43 positive 
correlated genes), whereas slightly more genes correlated with fat 
intake (0/43 negative correlated genes and 10/43 positive correlated 
genes) and carbohydrate intake (9/43 negative correlated genes and 
1/43	positive	correlated	genes)	(Figure	4c)	(Table	S6).	Overall,	there	
were almost the same number of genes had both positive and neg-
ative	correlations	with	dietary	protein	 intakes	 in	 IGF-	1	and	NF-	kB	
pathway. Expression of more genes was negatively correlated in the 
mTOR pathway with dietary protein intakes. In contrast, more genes 
had	negative	 relationships	with	carbohydrate	 intake	 in	both	 IGF-	1	
and	NF-	kB	signaling	pathway,	whereas	in	all	three	aging	pathways,	
there were many more genes that had positive associations with di-
etary fat intake. These latter changes were in the opposite direc-
tion to the previously established effect of graded levels of caloric 
restriction on the same pathways (Derous et al., 2017). Apart from 

these aging gene expression patterns, in five nutrient sensing genes 
Mtor, Fgf21, Igf1, sirtuin 1 (Sitr1), protein kinase AMP- activated non- 
catalytic subunit beta 2 (Prkab2) that were indicated to link nutri-
ent intake with aging in previous studies, only Igf1 (p = 0.0003, r = 
0.427) and Prkab2 (p = 0.036, r =	−0.254)	were	significantly	asso-
ciated with dietary protein intake and no genes were significantly 
associated with carbohydrate intake, whereas Mtor (p = 0.003, r = 
0.357) and Prkab2 (p = 0.003, r = 0.358) had significant positive cor-
relations	with	fat	intake	(Figure	4d).

We also performed Pearson correlation analysis between liver 
weight, hormone levels, and dietary macronutrient composition. 
There was no significant correlation between liver weight (both 
wet and dry weight) and dietary protein content, whereas dry liver 
weight had significant negative correlation with dietary fat content 
(p = 1 × 10−4, r =	−0.44)	(Figures	S6a-	c).	The	liver	triglyceride	con-
centration had significant positive correlation with dietary fat level 
(p = 0.03, r = 0.47), but had no significant relationship with dietary 
protein	 content	 (Figures	 S6d-	f).	 In	 contrast,	 the	 glycogen	 concen-
tration was significantly correlated with dietary protein content in 
the lowfat group (p = 0.003, r =	−0.62).	Dietary	fat	content	had	no	
significant	impact	on	glycogen	concentration	(Figures	S6g-	i).	Among	
genes (Scd1, Srebf1, Mttp, Ppara, Eif4ebp1, Acsl1, Gck, Tat, Pck1, 
Angptl4) have been indicated to be involved in the regulation of tri-
glyceride	 (Li	 et	 al.,	2020;	Nishikawa	et	 al.,	2012;	Toyoshima	et	 al.,	
2020) and glycogen concentration (Præstholm et al., 2021; Ruiz 
et al., 2014), Acsl1 and Gck (p = 0.038, r = 0.32 and p = 0.001, r 
=	−0.48)	had	significant	correlations	with	triglyceride	and	glycogen	
concentrations respectively.

2.2  |  Impact of dietary macronutrient composition 
on transcription factors

To identify the key transcription factors that were over or under-
represented in terms of their binding sites in regulatory regions of 
significantly correlated genes with dietary protein, fat, or carbohy-
drate when compared to background genes (had no significant cor-
relations), we performed enrichment analysis by using the CiiiDER 
software.	The	analysis	 revealed	 that	nuclear	 factor	 I	X	 (NFIX)	and	
distal- less homeobox 2 (Dlx2) were mostly enriched in the promot-
ers of genes significantly correlated both with dietary protein and 
carbohydrate (p = 5.51 × 10−12, p = 6.25 × 10−11 for protein and p 
= 5.34 × 10−14, p = 4.56 × 10−7 for carbohydrate), whereas E74 like 
ETS	transcription	factor	4	(ELF4)	and	Dlx2	were	recognized	as	most	
enriched transcription factors of genes that had significant associa-
tions with dietary fat content (p = 1.19 × 10−11, p = 6.78 × 10−11) 
(Figure	 S6j.	 k).	 We	 also	 performed	 Pearson	 correlation	 analysis	
between significantly enriched transcription factors and gene ex-
pression levels in significantly affected gene pathways by different 
dietary macronutrients. There were 17/99 genes significantly corre-
lated	with	NFIX	in	the	EIF2a	signaling	pathway	(significantly	affected	
pathway by dietary protein content). 14/82 genes had significant 
correlations	 with	 ELF4	 transcription	 factor	 in	 the	 Nfr2	 signaling	



8 of 18  |     WU et al.

F I G U R E  4 Relationship	between	aging-	related	genes	and	macronutrient	intakes.	(a-	c)	The	relationship	between	gene	expression	levels	
in	aging	pathways	(a)	insulin/IGF-	1	pathway,	(b)	mTOR	pathway,	(c)	NF-	kB	pathway	and	protein	intake	(PI),	fat	intake	(FI),	and	carbohydrate	
intake	(CHI).	(d)	The	correlations	between	macronutrient	intakes	(PI,	FI,	CHI)	and	nutrient	sensing	genes.	Pearson	correlation	method	was	
used for statistical analysis, the color key is the correlation coefficients of Pearson correlation analysis between gene expression levels and 
macronutrient intakes
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pathway (significantly affected pathway by dietary fat content). The 
key transcription factors peroxisome proliferator- activated recep-
tors (PPARs) (PPARα, PPARγ, PPARδ in this study) that have been 
shown to respond to dietary macronutrients (Kersten et al., 1999) 
were only significantly enriched in the promoter regions of genes 
correlated with dietary fat content but not with dietary protein or 
carbohydrate content.

2.3  |  Impact of dietary macronutrient composition 
on circulating metabolites

Circulating levels of 732 metabolites were significantly correlated 
with dietary protein content (399 negative and 333 positive correla-
tions), 808 metabolites (437 negative and 371 positive correlations) 
were significantly correlated with dietary fat content, and 995 me-
tabolites (477 negative and 518 positive correlations) were corre-
lated	with	dietary	carbohydrate	levels	(Figure	5a).

We performed GLM analysis for amino acids with dietary protein 
content as a covariate and fat content of the diet (2 levels) as a factor. 
Serum alanine (p = 0.003), methionine (p = 0.013), valine (p = 0.019), 
serine (p = 0.023), arginine (p < 0.001), lysine (p = 1.95 × 10−5), 
leucine (p < 0.001), and histidine (p = 7.68 × 10−5) amino acid lev-
els were all significantly negatively correlated with dietary protein 
content	(Figure	5e-	5l).	However,	the	concentrations	of	other	amino	
acids (phenylalanine, proline, aspartic acid, cysteine, glycine, tyro-
sine, tryptophan, glutamate, and threonine) were not significantly 
associated	with	the	dietary	protein	levels	(Figure	S7b,	c).	To	further	
explore correlations between significantly changed metabolites and 
some important physiological traits, we also correlated the metab-
olites (Pearson's correlation) with body fat, serum hormones, and 
macronutrient intakes. We found all the amino acids that decreased 
significantly with protein content were significantly negatively cor-
related with the body fat levels and serum leptin concentrations 
(Figure	S7a)	(p	and	r	values	in	Table	S10).	Several	of	them	(lysine,	ar-
ginine, histidine, and leucine) had strong associations with the serum 
insulin	concentration	(Figure	S7a)	(p	and	r	values	in	Table	S10).

In addition to looking at the relationships between metabolites 
and the dietary macronutrient contents (above), we also sought re-
lationships between them and actual intakes. Alanine, methionine, 
valine, serine, arginine, lysine, leucine, and histidine were all signifi-
cantly decreased with increasing dietary protein intake, whereas 
they increased with the elevation of dietary carbohydrate intakes 
(Figure	S7a)	(p	and	r	values	in	Table	S10).	As	for	the	correlation	with	
fat intake, only arginine concentration was significantly related to 
the dietary fat intake (p =	0.02)	(Figure	S7a).

To explore the significantly affected metabolite pathways we 
also performed the GLM analysis for all metabolites and then se-
lected metabolites significantly correlated with dietary protein con-
tent (p < 0.05) for upload into the Ingenuity pathway analysis (IPA) 
software.	The	most	affected	pathways	included	tRNA	charging	(p = 
1.7 × 10−5), arginine degradation (p = 1.1 × 10−4), alanine degradation 
(p = 8.05 × 10−4), and citrulline biosynthesis (p =	0.001)	(Figure	5c)	

(Table S7). Pearson correlation analysis with dietary protein levels 
across all metabolites (732 metabolites), respectively, in the 60% fat 
group and 20% fat group also indicated the most affected pathways 
were	tRNA	charging	(p = 0.001 for high- fat group, p = 1.71 × 10−6 for 
low- fat group), arginine degradation (p = 3.45 × 10−5), alanine degra-
dation (p = 4.49 × 10−4), and citrulline biosynthesis (p = 4.44 × 10−4) 
(Figure	5c).	Additionally,	 lysine	degradation	(p = 0.006), methylgly-
oxal degradation (p = 0.007), acetone degradation (p = 0.007), and 
histidine degradation (p = 0.02) pathways were also recognized as 
significantly	changed	pathways	(Figure	5c)	(Table	S7).	Furthermore,	
in 732 metabolites, 305 metabolites were correlated both with di-
etary protein and carbohydrate content and 226 metabolites were 
associated	both	with	protein	and	fat	content	in	the	diet	(Figure	5b).	
There were 362 metabolites related only with the dietary protein 
content, and the following pathway analysis of these 362 metabo-
lites indicated that glycine degradation (p = 0.005), catecholamine 
biosynthesis (p = 0.009), histamine degradation (p = 0.01), and dopa-
chrome biosynthesis (p = 0.04) were significantly changed path-
ways	with	increasing	dietary	protein	content	(Figure	5d)	(Table	S7).	
Overall, the most significantly changed metabolites and metabolic 
pathways related to increasing dietary protein levels were mainly re-
lated to the amino acid metabolism.

To further explore the significantly affected metabolite pathways 
under different fat content diets, we also performed the GLM anal-
ysis for all metabolites and then selected metabolites significantly 
correlated with dietary fat levels (p < 0.05) for analysis using the IPA 
software. Lysine degradation (p = 0.009), alanine biosynthesis (p = 
0.02), tryptophan degradation (p = 0.03), and the IL- 10 signaling path-
way (p = 0.04) were the pathways most affected by the dietary fat 
(Figure	6a)	(Table	S8).	There	were	2/14	and	2/25	metabolites	signifi-
cantly changed in lysine degradation pathway and tryptophan deg-
radation pathway, respectively. Whereas only 1 metabolite showed 
significant differential expression in alanine biosynthesis (1/2) and 
IL- 10 signaling (1/4) pathway, respectively. Apart from these signifi-
cantly changed metabolic pathways, Pearson correlation with dietary 
fat content respectively under 10% protein and 25% protein condi-
tions (808 metabolites) also showed ceramide signaling (p = 0.036), 
sphingosine- 1- phosphate signaling (S1P) (p =	0.036),	PDGF	signaling	
(p = 0.042) in 25% protein group and linolenate biosynthesis (p = 
0.04), phenylalanine degradation (p = 0.043) pathway under 10% 
protein condition were all significantly affected pathways with the 
elevation	of	dietary	fat	level	(Figure	6a)	(Table	S8).	Of	808	metabo-
lites, 613 metabolites were correlated both with dietary fat and car-
bohydrate content and 226 metabolites were associated both with 
protein	and	fat	content	in	the	diet	(Figure	5a,	b).	There	were	130	me-
tabolites had independent significant correlations with dietary fat 
content, and the following pathway analysis of these 130 metabo-
lites indicated that 4- hydroxyphenylpyruvate biosynthesis (p = 0.02), 
tyrosine degradation (p = 0.03), and 4- hydroxybenzoate biosynthe-
sis pathway (p = 0.04) were significantly changed pathways with in-
creasing	dietary	fat	content	(Figure	6b).	We	also	performed	Pearson	
correlation between metabolites in significantly affected pathways 
by dietary fat and physiological traits. We found lysine, bilirubin, 
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sphingosine- 1- phosphate, linoleic acid all had significant negative 
correlations	with	body	fat	mass	(Figure	6c-	6f),	whereas	only	lysine,	
sphingosine- 1- phosphate, and bilirubin were significantly related to 
the	serum	leptin	concentration	(Figure	6g-	6i)	(p	and	r	values	in	Table	
S10). There were no metabolites in significantly altered metabolic 
pathways that had significant correlation with serum insulin level.

There were 995 metabolites significantly correlated with dietary 
carbohydrate	 content	 under	 Pearson	 correlation	 (Figure	 5a).	 The	
most affected pathways by carbohydrate level included lysine deg-
radation (p =	0.02),	tRNA	charging	(p = 0.03), alanine biosynthesis (p 
=	0.03),	and	iNOS	signaling	pathway	(p = 0.04) (Table S9).

2.4  |  Relationships between circulating 
metabolites and hepatic gene expression

We performed correlations between metabolites in significantly 
changed metabolic pathways with the increase of dietary protein 
content and genes involved in amino acid, fatty acid metabolism, and 
gluconeogenesis. The amino acid metabolism gene Got1 and amino 
acid transport gene Slc43a1 were significantly negatively related to 
circulating	levels	of	several	amino	acids	(Figure	S7d,	S7e)	(p	and	r	val-
ues in Table S11). Genes involved in gluconeogenesis G6pc and Pck1 
were negatively associated with alanine, arginine, histidine, leucine, 
lysine,	and	serine	(Figure	S7f)	(p	and	r	values	in	Table	S11).	Ornithine,	
involved in the citrulline biosynthesis pathway, had significant posi-
tive associations with amino acid metabolism and transport genes 
Gpt (p = 0.024), Prodh (p = 0.006), Slc43a1 (p = 0.02), Slc7a2 (p = 
0.036) and gluconeogenesis gene Pck1 (p =	0.02)	(Figure	S7d-	f).

2.5  |  Discussion

The current data on changes in hepatic gene expression in response to 
changes in dietary composition, where we detected changes in more 
than 4000 genes in response to each dietary component, contrasts 
enormously with a previous study which involved C57BL/6 mice 
exposed to 25 different diets and which indicated dietary protein 
intake was most powerful driver of hepatic gene expression (leading 
to correlated changes in 1279 genes), and that there were only 8 
and 3 genes significantly correlated with changes in dietary carbo-
hydrate and fat intake, respectively (Gokarn et al., 2018). There are 
several potential reasons for the differences between our work and 
this	previous	study.	We	used	the	Illumina	NextSeq	500	sequencer	

for	RNA-	sequencing	whereas	the	previous	study	measured	the	gene	
expression	 by	 using	 less	 sensitive	 Affymetrix	 arrays.	 Further,	 the	
previous study analyzed livers of 46 mice fed one of 25 diets which 
means some diets were represented by a sample of just one mouse. 
In contrast with 68 samples across 12 diets, most of the diets in our 
study were represented by 4 independent replicates. This differ-
ence leads us to have greater power to detect differences in gene 
expression. That power could translate to an increase in the number 
of genes detected as significant for fat and carbohydrate, but not 
protein, if the effect sizes of such genes were greater, or if there was 
greater individual variability in response to fat and carbohydrates 
in the diet than there is to dietary protein. In addition, the age of 
onset and makeup of the other dietary components were also differ-
ent. Perhaps most importantly the mice in the previous study were 
still growing which may have placed a premium on changes related 
to protein intake, while in the present study the mice were already 
mature at the onset of dietary manipulation and 8 months old when 
measured (Gokarn et al., 2018).

We detected specific gene expression patterns in key metabolic 
pathways. Several fatty acid synthesis genes were upregulated in the 
liver with the increase of dietary protein content both in high- fat and 
low- fat groups. In addition, most of the amino acid metabolism and 
transport genes also had higher expressions in the higher dietary 
protein intake group, but very few of these genes were correlated 
with serum insulin, leptin concentration, and dietary fat intake. A 
previous study also indicated that a high protein diet (45% of energy) 
induced higher expression of several amino acid metabolism and up-
take genes, of which Got1, Gpt, and Slc43a1 were also indicated in 
our study. They also found fatty acid synthesis gene Gnpat was up-
regulated in the high protein group although there was no body fat 
gain (Díaz- Rúa et al., 2017). In another study, the liver glutaminase 
gene Gls2 was one of the most affected gene by the dietary protein 
intake, but was unaffected by dietary carbohydrate and fat intake 
(Gokarn et al., 2018; Miller et al., 2018; Okun et al., 2021). In con-
trast in our study, Gls2 expression was significantly changed both by 
dietary protein and carbohydrate intakes.

Several recent studies showed Fgf21 was upregulated by a low 
protein diet (Laeger et al., 2014, 2016). It has been indicated that 
Fgf21 had highest expression under combination of low protein 
and high carbohydrate intakes (Solon- Biet et al., 2016). However, 
in our study, there was no significant correlation between Fgf21 
expression and dietary carbohydrate intake. Though the Fgf21 
expression was differentially expressed between different pro-
tein content groups (5% protein had significant higher expression 

F I G U R E  5 Diagram	showing	metabolites	correlated	with	dietary	protein,	fat,	and	carbohydrate	contents	and	significantly	changed	
metabolic pathways and metabolites in the serum of mice fed different protein content diets. (a) The total number of metabolites 
significantly correlated, respectively, with dietary protein, fat, and carbohydrate contents. (b) Overlapped and independent correlated 
metabolites with dietary protein, fat, and carbohydrate contents. (c) Significantly changed metabolic pathways related to the increasing 
dietary protein content. (d) Significantly changed metabolic pathways correlated independently with the increasing protein level. (e- l) Log- 
transformed concentration of alanine, methionine, valine, serine, arginine, lysine, leucine, and histidine in different protein content diet 
treatment groups, respectively. Generalized linear modeling and Pearson correlation were performed to analyze the dietary protein effect 
on gene expression patterns
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compared to the 25% protein group both 60% fat and 20% fat con-
ditions), there was no significant differential expression between 
35% carbohydrate (60% fat) and 75% carbohydrate (20% fat) group 
under 5% protein. That is, Fgf21 expression was not dependent on 
the dietary carbohydrate level or intake. The difference between 
these two studies may related to the dietary component, we fixed 
fat levels when we investigated the carbohydrate impact on gene 

expression, whereas in the previous study they did not fix any of 
the macronutrients.

Circulating levels of several amino acids were decreased as 
the dietary protein content increased. We also found that several 
amino	acid-	tRNA	ligase	gene	expressions	were	also	decreased	in	the	
higher dietary protein groups. This suggests amino acids were po-
tentially being utilized in lipid synthesis and glucose synthesis, and 

F I G U R E  6 Significantly	changed	metabolic	pathways	and	metabolites	in	the	serum	of	mice	fed	different	fat	content	diets.	(a)	Significantly	
changed metabolic pathways related to the increasing dietary fat content. (b) Significantly changed metabolic pathways correlated 
independently with the increasing fat level. (c- i) The relationship between body fat, serum leptin concentration and S1P, linoleic acid, lysine, 
bilirubin, concentrations, respectively. Pearson correlation analysis was performed to analyze the correlation between serum metabolite 
expression levels and body fat, serum hormone concentrations



    |  13 of 18WU et al.

as expected from this hypothesis, genes for the gluconeogenesis 
enzymes G6pc and Pck1 were both upregulated with the increase of 
dietary protein levels. This is consistent with a previous study which 
indicated that during short- term fasting female mice used amino 
acids to synthesize glucose and lipids (Della Torre et al., 2018).

Apart	 from	 the	 tRNA	 charging	 pathway,	 the	 EIF2	 signaling	
pathway, p70S6K signaling pathway, and mTOR signaling pathways 
were significantly altered with the increase of dietary protein level. 
It has been previously suggested that the expression level of Mtor 
was increased in lower protein intake, whereas in our study Mtor 
itself (as opposed to the whole pathway) had no significant correla-
tion with both protein and carbohydrate intake, this may linked to 
the differences between two studies mentioned in the first para-
graph.	 EIF2	 is	 a	 highly	 conserved	 signal	 regulating	 cell	 responses	
to a variety of stresses, so the dysregulation of this pathway has 
been	 linked	to	many	human	diseases.	EIF2	signaling	has	also	been	
identified as a low protein or low amino acid sensing pathway, and 
previous studies have shown it was activated by low dietary pro-
tein (Guo & Cavener, 2007; Laeger et al., 2016; Maida et al., 2016; 
Wu et al., 2021). This effect was consistent with our data. The im-
portant downstream molecule Atf4 had higher expression in 5% low 
protein group through Atf4 was not significantly correlated with the 
dietary protein level and protein intake if plotted with the 6 different 
levels	of	protein.	Nevertheless,	most	of	the	genes	(84/95)	in	EIF2a	
pathway were negatively correlated with the dietary protein intake. 
The unfolded protein response (UPR) is a cellular stress response 
related to the endoplasmic reticulum, dysregulation of this process 
has been implicated in many diseases such as type II diabetes and 
cancer (Jovaisaite et al., 2014; Walter & Ron, 2011), and this pathway 
was also one of the most significantly affected pathways with the in-
creasing	of	dietary	protein	contents.	The	transcription	factors	NFIX	
and Sox13 that were mostly enriched in the promoters of genes sig-
nificantly correlated with dietary macronutrient have been indicated 
to be involved in the regulation of oxidative stress and glycolysis, 
respectively (Cui et al., 2020; Liu et al., 2020; Saleem et al., 2020).

In	most	 affected	 serum	metabolic	 pathways,	 apart	 from	 tRNA	
charging and amino acid degradation pathways, citrulline biosynthe-
sis, methylglyoxal degradation, and acetone degradation pathway 
were also significantly changed. Arginase metabolizes the hydrolysis 
of	arginine	into	ornithine	and	urea,	whereas	NOS	can	degrade	argi-
nine into citrulline (Husson et al., 2003; Jobgen et al., 2006; Luiking 
et al., 2010; Sailer et al., 2013). This process might lead to vascular 
endothelial dysfunction in the early stage of obesity (Ito et al., 2018), 
so arginine degradation with the increase of dietary protein content 
in our study may be one of the mechanisms of slight increase in body 
fat, but this mechanism needs further investigation. Methylglyoxal 
degradation and acetone degradation pathways were likely the re-
sult of methylglyoxal degraded into acetone. Early studies showed 
that methylglyoxal caused type II diabetes and oxidative stress, and 
so methylglyoxal was identified as a major therapeutic target for 
type	II	diabetes	(Dornadula	et	al.,	2015;	Hanssen	et	al.,	2019;	Yılmaz	
et al., 2017), whereas in our results methylglyoxal was negatively 
related to the body fat gain.

Several metabolic pathways were significantly changed in re-
sponse to varying contents of fat. A previous study indicated that 
oral alanine administration improved glucose tolerance in both chow 
diet and high- fat diet- treated mice (Adachi et al., 2018). In our study, 
alanine was also significantly decreased as dietary fat content in-
creased. It will be interesting to investigate alanine effects on other 
metabolic parameters under different nutritional environments. IL- 
10 signaling and linoleic acid signaling were also identified as the 
significantly changed pathways in response to dietary fat. In a recent 
study, it has been showed that ablation of IL- 10 improved insulin sen-
sitivity and inhibited diet- induced obesity (Rajbhandari et al., 2018), 
also in another study, IL- 10 was indicated to be decreased in child-
hood obesity (Liu et al., 2018). Consistent with many previous stud-
ies, activity of the linoleic acid pathway was decreased as dietary fat 
content increased (Caligiuri et al., 2013; Cedernaes et al., 2013). It 
has been indicated in another study that linoleic acid regulation of 
glucose homeostasis in obesity was dependent on the sex difference 
(Kowalski et al., 2013; Zhuang et al., 2018).

As for the S1P metabolic pathway, there has been controversy 
about how S1P signaling was changed under different nutritional 
states. It was indicated in one study that plasma S1P is elevated 
in obesity (Kowalski et al., 2013), and sphingosine kinase 2 knock-
out mice were protected from obesity and insulin resistance 
(Ravichandran et al., 2019). However, there were several studies in-
dicating that S1P was associated with beneficial effects of caloric 
restriction in male Wistar rats and C57BL/6 mice and lifespan regu-
lation in mammals (Babenko & Shakhova, 2014; Collino et al., 2013; 
Lightle et al., 2000). In the present study, we found that S1P signaling 
was decreased with the elevation of fat content, which is opposite 
the effect of graded levels of caloric restriction which showed S1P 
was upregulated as the caloric restriction level increased (Green 
et al., 2017). As S1P was identified as significantly changed metabo-
lite in both graded levels of caloric restriction and different fat con-
tent diet treatment studies, it seems to be a strong potential target 
linking nutrition and aging. The significantly changed gene pathway 
in	response	to	varying	contents	of	fat,	Nrf2	signaling	pathway	was	
indicated in several studies that related to the oxidative stress and 
aging (Tyshkovskiy et al., 2019; Zhang et al., 2015).

Dietary restriction extends lifespan across multiple species 
(Ingram & de Cabo, 2017; Mercken et al., 2012). Previous work 
showed that hepatic gene expression levels in major aging- related 
pathways	 (IGF-	1,	 NF-	kB,	 and	mTOR)	were	 altered	 under	 restric-
tion in a manner consistent with increased lifespan (Derous et al., 
2017).	 In	 the	 insulin/IGF-	1	 signaling	 pathway,	 Igf1 and Insr were 
negatively correlated with the caloric restriction level, and also in-
creased with the increase of protein intake in the present study, but 
acly that had strong negative correlation with the level of caloric 
restriction had almost no correlation with protein intake. In the 
NF-	KB	signaling	pathway,	NF-	kB/ReIB	complex	also	had	almost	no	
correlation with protein intake but its expression was increased 
with the increase of caloric restriction level. In the mTOR signaling 
pathway, the number of genes that significantly correlated with 
dietary protein, fat, and carbohydrate intake were 5, 10, and 4, 
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respectively. Overall, many more aging- related genes had signifi-
cant correlations with dietary fat intake than protein and carbo-
hydrate intake. Moreover, the pattern of gene expression changes 
in relation to dietary fat intake was in the opposite direction to 
the effect of graded levels of caloric restriction. Compared to a 
recent study that indicated five key nutrient sensing genes linked 
nutrient with aging (Mtor, Fgf21, Igf1, Sitr1, Prkab2), only one of 
these genes (Prkab2) was significantly correlated both with chang-
ing levels of dietary protein and fat content. In conclusion, intake 
of fat appeared to have more significant effect on aging- related 
gene expression as more genes in aging- related pathways (notably 
mTOR,	IGF-	1,	and	NF-	KB)	had	significant	correlations	with	dietary	
fat intake than protein and carbohydrate intake.

2.6  |  Limitations of the study

One strength of this work is that the mice were exposed to the dif-
ferent diets for a protracted period, meaning they had a long time 
to respond to the intervention. However, in a sense that strength 
can also be a weakness because the impacts may not only be direct 
effects of the diets but downstream impacts of the diets on other 
features such as adiposity. At the moment, we cannot separate these 
possibilities.

3  |  E XPERIMENTAL PROCEDURES

3.1  |  Ethical statement

All animal procedures were reviewed and approved by the Institute 
of Genetics and Developmental Biology Chinese Academy of 
Sciences.

3.2  |  Mice and experimental diet

Data in the current paper pertain to mice involved in a large dietary 
manipulation experiment, some aspects of which have already been 
published. These previous publications have included patterns of body 
weight, adiposity, and hypothalamic gene expression (Hu et al., 2018, 
2020b) and glucose homeostasis (Hu et al., 2020a). All procedures in 
this study were reviewed and approved by the Institutional Review 
Board, Institute of Genetics and Developmental Biology, Chinese 
Academy of Sciences. We previously exposed C57BL/6 mice to a total 
of 29 different diets varying from 8.3 to 80% fat, 10 to 80% carbo-
hydrate, 5 to 30% protein, 5 to 30% sucrose content and found only 
increased dietary fat content was associated with elevated energy 
intake and adiposity but not the protein or carbohydrate content. 
Whereas in the current study, we investigated the effects on mouse 
hepatic	gene	expression	(by	RNA-	seq)	of	ad libitum intake of six differ-
ent levels of dietary protein (5 to 30%) combined with both high- fat 

(60%) and low- fat (20%) conditions, leading to 12 different levels of 
dietary carbohydrate (10% to75%). In addition, we explored the im-
pacts of 24 different diets (varying from 5% to 30% protein, 8.3% to 
80% fat, and 10% to 80% carbohydrate) on serum metabolite levels 
by	untargeted	metabolomics.	Full	details	of	diets	are	 in	supplemen-
tary Table S12– 15). During the whole experimental period, mice were 
singly housed under controlled 22– 24 ℃ temperature and 12:12 light 
dark cycle conditions. Mice were killed by rising concentrations of CO2 
for the collection of tissues and serum, which were quickly snap fro-
zen	in	liquid	nitrogen	and	then	stored	in	a	−80℃ freezer until analysis. 
More information about procedures and experimental designs can be 
found in our previous papers (Hu et al., 2018, 2020b).

3.3  |  Liver RNA extraction and 
transcriptome analysis

The	RNA	of	 68	 individual	mice	 (n	= 5– 6 mice per group) was ex-
tracted from liver tissues and sent to Beijing Genomic Institute (BGI) 
for	 RNA-	sequencing.	 Liver	 tissues	 were	 put	 in	 Trizol	 (Invitrogen)	
reagent	and	homogenized	by	Bead	Ruptor	(OMNI),	then	total	RNA	
were	 extracted	 by	 chloroform/isoamyl	 alcohol/RNA	 precipitation	
solution	(1.2	M	NaCl	&	0.8	M	disodium	hydrogen	citrate	sesquihy-
drate) step by step and purified by 75% ethanol. Each sample was 
sequenced by 75 bp long reads from paired ends. The raw data of 
RNA-	seq	were	analyzed	using	the	method	described	in	the	previous	
study	 (Wu	 et	 al.,	 2021).	Normalized	 counts	were	 used	 to	 express	
the specific gene expression level, to explore significantly corre-
lated pathways, respectively, under 60% fat and 20% fat conditions, 
Pearson correlation analysis was used for normalized counts of all 
genes by using correlation method in R- 3.5.3, and then significantly 
correlated genes (p < 0.05), respectively, under 60% fat and 20% 
fat condition were analyzed by IPA (www.ingen uity.com) software to 
obtain significantly affected pathways (p < 0.05), p- values for each 
correlation were adjusted using the Benjamini– Hochberg procedure 
using a false discovery rate of 5%.

3.4  |  Serum metabolite measurement and analysis

From	 each	 diet	 group,	 12	 serum	 samples	 from	12	 individual	mice	
were collected. Six samples were pooled together as one sam-
ple, resulting in 2 pooled samples in each diet group (n = 48 sam-
ples across 24 diets). Serum metabolites were extracted by mixing 
Chloroform: Methanol: Serum in 1:3:1 ratio and following centri-
fuged at 1,3000 rpm for 3 minutes, supernatant was collected and 
did LC- MS using an OrbitrapTM ExactiveTM mass spectrometer at 
the Glasgow Polyomics facility. Each metabolite was expressed by 
raw peak intensities at last, and then, these peaks were analyzed 
step by step using R packages according to the method described 
in the previous study (Wu et al., 2021). Generalized linear modeling 
and Pearson correlation were performed for normalized intensities 

http://www.ingenuity.com
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of each metabolite across the different protein level and selected 
the significantly correlated metabolites (p < 0.05) into the IPA soft-
ware to get the most affected pathways.

3.5  |  Hormone measurements

Liver triglyceride and glycogen concentrations were measured by 
using glycogen assay kit (#KA0861, Abnova) and general triglycer-
ide ELISA Kit (EK3875, SAB), respectively. All procedures were per-
formed according to the manufacturers’ instruction.

3.6  |  CiiiDER analysis

CiiiDER software was downloaded from CiiiDEr.org with the M. 
musculus GRCm38.94 genome files. Transcription factor analysis 
was performed on promoter regions spanning +1500	 to	 −500	 bp	
from the predicted transcription start site (Gearing et al., 2019). The 
background gene lists were the genes had no significant correlations 
with dietary macronutrient composition.

3.7  |  Correlation analysis with physiological traits

Mean body fat, macronutrient intakes, and serum hormones meas-
ured in the last week of dietary manipulation were correlated 
(Pearson's correlation) with gene normalized counts and normalized 
metabolite intensities for each sample. All Pearson correlations (P- 
values) in this study were adjusted using the Benjamini– Hochberg 
procedure using a false discovery rate of 5%.

3.8  |  Generalized linear model

We analyzed data on specific hepatic gene expression and serum me-
tabolite using generalized linear modeling (GLM) with gene expres-
sion as the dependent variables and dietary levels of fat and protein, 
and the interactions of the two macronutrients as the independent 
predictors. To explore the significantly affected gene and metabo-
lite pathways, we also performed the GLM analysis for all genes and 
metabolites then selected genes and metabolites significantly corre-
lated with dietary protein or fat content (p < 0.05) into the Ingenuity 
pathway analysis (IPA) software.
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