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Abstract

Spruce beetle-induced (Dendroctonus rufipennis (Kirby)) mortality on the Kenai Peninsula has 

heightened local wildfire risk as canopy loss facilitates the conversion from bare to fire-prone 

grassland. We collected images from NASA satellite-based Earth observations to visualize land 

cover succession at roughly five-year intervals following a severe, mid-1990’s beetle infestation to 

the present. We classified these data by vegetation cover type to quantify grassland encroachment 

patterns over time. Raster band math provided a change detection analysis on the land cover 

classifications. Results indicate the highest wildfire risk is linked to herbaceous and black spruce 
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land cover types, The resulting land cover change image will give the Kenai National Wildlife 

Refuge (KENWR) ecologists a better understanding of where forests have converted to grassland 

since the 1990s. These classifications provided a foundation for us to integrate digital elevation 

models (DEMs), temperature, and historical fire data into a model using Python for assessing and 

mapping changes in wildfire risk. Spatial representations of this risk will contribute to a better 

understanding of ecological trajectories of beetle-affected landscapes, thereby informing 

management decisions at KENWR.
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1. Introduction

In the mid-1990’s, North America’s largest recorded outbreak of spruce beetles 

(Dendroctonus rufipennis Kirby) killed nearly 5 million acres of forest on and around south-

central Alaska’s Kenai Peninsula [1]. Stands of White and Lutz spruce (Picea glauca; Picea 
x lutzii) were particularly vulnerable, with the boreal forest ecosystem on the peninsula’s 

western lowlands suffering mature tree mortalities as high as 87% in some areas [2]. Kenai’s 

boreal spruce stands typically exhibit high tree densities constituted by specimens between 

15-30 m in height and up to 60-90 cm diameter at breast height (DBH) [3], making these 

forests both attractive and particularly susceptible to the rapid contagion of parasitoid 

species. Spruce beetle-induced mortality results in foliar desiccation (“red phase”) before an 

eventual needledrop (“gray phase”), thus opening the canopy and often permitting ecological 

succession towards more grass-dominant ecotones [4]. Such infestations, in addition to 

causing habitat loss, also harm the timber economy, detract from regional tourism, increase 

risk of property damage due to treefall, and cause potential shifts in the fire regime [5] (pp. 

195-197). Beetle-specific mortality has been observed to desiccate and weaken trees, leading 

to greater heat output and likelihood of collapse that puts firefighters at greater risk of injury 

[4]. Both beetle outbreaks and fires are of serious concern to wildlife managers in the region. 

Because the Kenai Peninsula is one of Alaska’s most densely populated boroughs and is a 

cornerstone of the state’s tourism economy, the ability to forecast and mitigate these 

disturbances is of high value to a variety of local stakeholders.

Southern Alaska has been witnessing another rapid surge in spruce beetle populations since 

2014 [1], and local climatic conditions are becoming increasingly favorable for both spruce 

beetles and wildfire. The peninsula’s vegetation cover has transitioned to dry biome as the 

region has experienced a 1-2 °C temperature increase over the last half-century [6]. Previous 

studies have not only suggested that increasing temperatures correlate with fire risk, but also 

that multi-year spans of above-average summer temperatures may positively correlate with 

risk of beetle infestation [2,7]. Warmer, drier conditions increase the rate at which spruce 

beetles reach maturity, remove climatic barriers to the spread of infestations, and weaken 

spruce trees’ natural defenses against parasitoid beetles, such as the production of resin [8] 

(pp. 604-606). The beetle outbreak of the mid-1990’s notably differed from previous 

infestations in the region. Specifically, it was not preceded by a clearly identifiable and 
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succinct disturbance, such as a fire or windfall, which would have jeopardized the defense 

mechanisms of spruce populations [7] (p. 220). Previous studies in both Alaska and the 

continental United States have suggested that droughts or consecutive years of above-

average temperatures may be enough to make spruce forests vulnerable to regional beetle 

outbreaks [7,9]. However, these studies were based on a relatively small sample of recorded 

outbreaks.

Although studies of the continental United States [10,11] have concluded that wildfire 

frequency and size are not significantly increased by beetle-induced damages, others suggest 

that the opposite may be true in Alaskan boreal forests where canopy loss often lends itself 

to grassland conversion [12,13]. Increased grass cover, paired with the accumulation of dried 

foliage after beetle outbreaks, creates conditions conducive to the surface fuel ignition 

typical of boreal forests [13]. A shifting fire regime is of particular concern in Kenai, as the 

peninsula’s biome is characterized by fire return intervals (FRIs) of approximately 400-600 

years [12]. Even where grass encroachment is high, Kenai’s spruce forests have historically 

exhibited sufficient density to quickly restock saplings after beetle outbreaks [14]. In recent 

years, Kenai National Wildlife Refuge (KENWR) ecologists have observed this rate to have 

sharply decreased. It is unclear how the compounding threats of rising temperatures, 

increased wildfire frequency, and beetle outbreaks will shape long-term ecological 

succession on the Kenai Peninsula. However, we hypothesize that areas that have converted 

to grassland subsequent to spruce beetle-induced forest mortality, as well as forest adjacent 

to grassland ecotones, will exhibit greater risk of wildfire, unlike patterns observed in studies 

of the continental United States.

1.2 Study Area

The Kenai Peninsula covers an area of roughly 26,700 km2 and is located between 59° 8′ 
and 61° 4′ N latitudes and 152° 2′ and 147° 55′ W longitudes in south-central Alaska 

(Figure 1a). Containing the Kenai Mountains along its eastern half, the peninsula ranges in 

elevation from sea level to around 2,100 m. Our study area (Figure 1b) was situated on the 

flatter interior coast along the Cook Inlet (59° 35′ to 61° 3′ N latitude, 149° 58′ to 151° 

53′ W longitude). These spruce forest lowlands contain most of the peninsula’s urban areas 

and have witnessed most of the peninsula’s recorded fires. The decision to exclude the Kenai 

Mountains was intended to streamline our classification process by minimizing non-

vegetated land cover. The study area is divided roughly in half by Tustumena Lake. The 

northern half contains most of the KENWR and consists largely of terrain that is low-lying, 

marshy, and characterized by the dominance of the more beetle-resistant black spruce (Picea 
mariana). The southern half, including the Caribou Hills region, is more topographically 

varied and dominated by white and Lutz spruces (Picea glauca; Picea x lutzii) which are 

particularly vulnerable to beetle damage [3].

1.3 Objectives

The aim of our research was to explore the potential utility of satellite imagery in 

characterizing the relationship, if one exists, between grassland conversion and emergent 

wildfire risk in Alaskan boreal forests. The objectives comprising this process were to 1) 

build an optimized land cover classification system tailored to detecting grassland 
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conversion in this particular biome, 2. use this system to map grassland conversion and 

detect land cover changes from 1995 (at the apex of the 1990’s beetle outbreak) to the 

present, and 3) develop a model for quantifying and mapping emergent wildfire risk 

resulting from this conversion. The KENWR, administered by the U.S. Fish and Wildlife 

Service (USFWS), provided in situ data and consultation for this research with the intent of 

better understanding ecological trajectories in a shifting disturbance regime. Our research 

will support the KENWR’s decision-making process to improve planning for fire control 

and ecosystem restoration efforts. This research will help land managers better predict 

changes in forest structure and fire regime, not only protecting adjacent stakeholders in 

Kenai from the socioeconomic damages of forest loss, but also yielding lessons that can be 

transferable to both Interior Alaska and Canada’s Yukon Territory where large expanses of 

similar spruce-dominated boreal forest are present.

2. Materials and Methods

2.1.1 Data Acquisition - Classification & Vegetation Transition

We used the United States Geological Survey’s EarthExplorer data portal (https://

earthexplorer.usgs.gov/) to access NASA’s Landsat Collection 1 Level-2 (on demand) 

atmospherically corrected surface reflectance imagery (Path 069, Rows 017-019). A 

threshold of 20% for land cloud cover was used to define significant cloud interference. 

Scenes surpassing this value were queried out to minimize the amount of data lost due to 

eventual pixel masking. The included imagery dates were selected to constitute a complete, 

yet concise, timeline of Kenai’s ecological succession in the wake of the 1990s spruce beetle 

infestation. Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus 

(ETM+), and Landsat 8 Operational Land Imager (OLI) scenes captured grassland 

conversion from the apex of the 1990’s infestation to the present. As a means of eventual 

validation for our land cover classification process, we accessed supplemental high-

resolution (30 cm) imagery from DigitalGlobe’s WorldView-3 (WV-3) satellite sensor, via 

the NextView Licensing agreement with the National Geospatial-Intelligence Agency.

Partners at the KENWR provided ancillary vector data that include fire history data from 

1989 to the present and a series of points delineating 2015 land cover ground-truthed from 

sample plots. KENWR ecologists also provided a draft of a 2017 vegetation type 

classification of the peninsula that is currently being validated on the ground. In addition to 

the WV-3 imagery, these layers informed the development and validation of our land cover 

classification system and served as a reference for our wildfire risk model.

2.1.2 Data Acquisition - Fire Risk Analysis

Our fire behavior analysis scheme may be considered to fall under the categories of fire risk 

modeling and GIS-derived data driven modeling. Generally, fire behavior is modeled across 

a wide array of temporal and spatial scales. At the temporal scale, short term modeling 

encompasses real-time and daily predictions required for activities such as fire suppression, 

while long term modeling involves assessment of static fire risk factors and is thus it is 

applicable for seasonal or longer term activities such as fire planning [15]. At the spatial 

scale, fire behavior can be examined from the micro scale assessing kinematic fire behavior 
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to the very large scale encompassing global fire trends. In this work, we assessed the impact 

of decade-long vegetation change on fire risk. Therefore, we capture the changing fire 

ecology at this time scale through a long term modeling approach. Thus, under these 

considerations, our modeling approach can be classified as long-term regional modeling of 

fire behavior.

In deriving our fire risk model, we followed existing methodologies to generate a model that 

integrates parameters within the weather, topography, and fuel categories of fire drivers [16–

20]. Historical fires obtained from the Alaska FIREHouse database prepared by the Alaska 

Fire Service for 2001, 2008, 2010, 2012 and 2014 were selected as representative fire-events 

for algorithm training. A 10m resolution Digital Elevation Model (DEM) from the United 

States Geological Survey’s (USGS) 3D Elevation Program (3DEP) was used to produce 

elevation, slope, and aspect information. Classifications of land cover type derived from 

Landsat imagery, as explained in section 2.2.1, were used as the vegetation component, and 

monthly average temperature data was acquired from the National Scenarios Network for 

Alaska and Arctic Planning (SNAP). As a comparison for both our classification and fire 

risk systems, we incorporated data from the USGS LANDFIRE Reference Database 

(LFRDB), containing classifications of vegetation type, structure, disturbance patterns, and 

fire regime.

2.2.1 Data Processing - Classification

Landsat spectral bands for three adjacent scenes were merged into a composite mosaic 

before being clipped down to remove the peninsula’s Eastern mountains. To expedite the 

process of land cover classification, we created a mask from the pixel Quality Assessment 

(‘pixel_QA’) bands in the Landsat download package to exclude cloud cover, cloud 

shadows, snow/ice, and significant water bodies. The removal of these pixels reduced raster 

processing times and streamlined classification by minimizing the interference of unwanted 

spectral signatures. In addition to the original Landsat bands, we also calculated the 

normalized difference vegetation index (NDVI) to better differentiate between grassland and 

forest cover. This additional layer, derived from the original bands, supplemented the 

distinction of different vegetation types by reflecting foliar productivity.

We stacked the original surface reflectance bands (Figure 2a) with the NDVI band, and then 

used unsupervised segmentation to group neighboring pixels with similar spectral signatures 

into objects for easier classification (Figure 2b). Utilizing the high resolution WV-3 imagery, 

2015 ground-truthed land cover points and the draft vegetation type map from ecologists at 

the KENWR, we then created a set of training samples for the 2014 image. The training 

samples, along with the segmentation image and the stacked 2014 surface reflectance and 

NDVI bands, were put through a vector-supervised machine classification. The resulting 

image (Figure 2c) shows the locations of developed, barren, black spruce forest, mixed 

forest, shrubland, herbaceous, and wetland land cover.

2.2.2 Data Processing - Vegetation Transition

The vegetation transition between 1995 and 2014 was computed using two measurements: 

land cover classification and NDVI. For the classification transition detection, we used 
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classified images from 1995 and 2014 that we created using the methodology in section 

2.2.1. Each pixel in these images has a value between 0-6 based on their classified land 

cover type (0- Developed, 1- Barren, 2- Black Spruce, 3- Mixed Forest, 4- Shrubland, 5- 

Herbaceous, 6- Wetland). The 2014 values were multiplied by 100 and the 1995 values were 

subsequently subtracted. We took the resulting image and symbolized it with unique values, 

then kept only the values 397 (which indicates a pixel that has transitioned from mixed 

forest to shrubland), 398 (black spruce forest to shrubland), 497 (mixed forest to 

herbaceous), and 498 (black spruce forest to herbaceous). The resulting map shows pixels 

that have transitioned from forest to grassland (Figure 3).

NDVI change with respect to time was calculated using the following equation (1). The 

resulting map (Figure 4) showed the percent change in NDVI from 1995 to 2014.

NDVIChange =
NDVICurrent − NDVIHistoric

NDVIHistoric
(1)

2.2.3 Data Processing - Fire Risk Model

A logistic regression was applied to calculate the probability of the analysis outcome being a 

fire-event or a non-fire-event. An algorithm of this kind requires sample data from actual 

fire-event and non-fire-event conditions so it can learn to distinguish between the two. 

Hence, random non-fire points were generated for each corresponding fire season. To 

overcome spatial heterogeneity and correlation associated with a large study area, random 

points creation is limited to each vegetation class. For a given number of actual fire-events in 

one vegetation class, matching numbers of random points are created within the extent of 

that class. This approach reduces the area to that of the class extent, and also assures that 

random points are created with at least 10 meters of distance from the actual event and from 

each other. Table 1 shows the fire and non-fire events used to train the algorithm.

The final input dataset was divided using the Hold-Out method, in which data is divided into 

a “training” and a “validation” set. In this work, fire-events and non fire-events were divided 

into approximately 70% training and 30% validation data. Once all data is defined, a Python 

subroutine is used to calculate the Z factor coefficients for the logistic equation. The 

algorithm is then translated into a band math equation where the final risk map for the area 

is configured.

3. Results

3.1. Vegetation Transition

The classification transition assessment focused on pixels that were classified as mixed or 

black spruce forest in 1995, and were then classified as shrubland or herbaceous in 2014. 

The resulting map (Figure 3) shows the change is clustered in the Southern area of the 

peninsula where the worst of the spruce beetle damage occurred around 1995-96.
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Furthermore, it was found that NDVI change between 1995 and 2016 aligned with the 

results from the classification change detection, showing a high percentage of change south 

of Tustumena Lake (Figure 4).

3.2. Fire Risk Model

The logistic equation, indicated in equation (1), estimates the coefficients related to each 

factor representing the change in “log-odds” with a binary variable.

Probability(Fire = 1) = 1
1 + e−Z (2)

The coefficients are estimated via the Maximum Likelihood Estimate (MLE) method, which 

identifies the coefficients that make the log of likelihood as large as possible or as small as 

possible. Therefore the Z factor for the logistic regression of the fire risk model becomes:

Z = − ((Aspect x − 0.0117) + (Slope x 0.6532) + (Elevation x 0.0011) +
(Temperature x − 0.1626) + (Vegetation x 0.2177) + 3.7711) (3)

In equation (2), P tends to 1, as Z in equation (3) increases. Mathematically, the probability 

of a fire-event tends towards 1 (fire), as Z increases, and towards 0 (no-fire) as Z decreases. 

Hence any variable directly proportional to a fire-event has a positive coefficient in equation 

(2) and vice versa.

Vegetation in this case is a categorical variable; this means that numerical values are 

assigned to represent each class. Increasing values are assigned based on the number of 

actual historical fires in each category. For example, in a dummy scale ranging from 1-7, 

Barren class is assigned a 1 and mixed forest is assigned a 7. Table 2 shows each variable 

corresponding coefficient and its corresponding significance.

Using the ArcGIS Pro raster calculator, all raster variables were multiplied by their 

appropriate weight and plugged into the logistic regression equation, resulting in the fire risk 

probability map shown in Figure 5.

As described above, the Hold-Out method was used for validation. The data was divided 

randomly into a 70% - 30% ratio for subsets as “model training” and “model validation” 

respectively. Validation results show that the model predicts cases correctly at a 90% 

accuracy.

The AUC (area under the curve) is a measure of how the model performs by presenting the 

trade-off between true and false positive proportions measuring the accuracy of the analysis. 

An area of 1 represents a perfect test, while an area of 0.5 is considered a failed model. The 

resulting value for the AUC at a 0.5 cut-off value of the training set is 0.944 and 0.928 for 

the validation set, hence, the 0.5 cut-off value is the selected threshold for the fire and non-

fire decision. Figure 6 below shows the AUC curve for the datasets.
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4. Discussion

4.1 Spruce Beetle Impact

Our change detection analyses of NDVI composites and land cover classifications 

corroborate KENWR landscape ecologists’ observations that spruce beetle-induced 

mortality of forest is conducive to the establishment of grassland. Areas that were severely 

impacted by the spruce beetle infestation of the 1990s, such as the Caribou Hills region 

south of Tustumena Lake, exhibited widespread conversion of forest cover to either 

herbaceous or shrubland land cover types between images classified in 1995 and 2014. 

These areas generally exhibited greater wildfire risk in our model.

4.2 Fire Risk Model

The model resulted in a negative coefficient for our temperature variable. In a logistic 

regression setting, a negative coefficient represents that the factor in question is directly 

inversely proportional to the likelihood of fire. This may be due to a couple of reasons. First, 

as stated by other authors [21–23] some variables can be proxies of each other. Slope for 

example, is a proxy measure of altitude, which at the same time, regulates temperature and 

hence vegetation. Second, the temporal resolution of surface temperature used to build this 

model was based on monthly averages due to its availability. This average temperature may 

not be the adequate value as the monthly average temperature may smooth the real 

temperature value on the day of the fire. Hence, it is recommended that for future analysis, 

temperature be considered on a daily basis or be excluded from the model.

4.2 Limitations

The size of our study area and limited access to ground-truthed sample data necessitated a 

dependence on existing literature to justify the inclusion and weighting of individual input 

variables for our algorithm. Under ideal circumstances, in situ validations of the data would 

be used maximize our confidence levels in the relationships between each respective input 

variable and the resulting risk of wildfire. Varying availability of certain climatic data 

inhibited our capacity to address dynamic parameters. Acknowledging the likely benefit that 

soil moisture data would contribute to the algorithm, it was not factored into our research 

due to the lack of a single continuous data source across the span of our study period. A 

relative dearth of consistent, ground-based measurements precluded our inclusion of certain 

weather parameters, such as local precipitation.

Lastly, given the wet maritime climate of the Kenai Peninsula, our selection of Landsat 

imagery was particularly limited by frequent, dense cloud cover. Even though the typical fire 

season extends from May to August, the abundance of cloud cover often precluded entire 

fire seasons and necessitated an analysis at multi-year intervals. This multi-year approach 

limited our overall number of data points and our capacity to assess environmental 

conditions immediately prior to certain wildfire events. Interannual phase shifts in grassland 

phenology were mitigated through normalization of our change detection rasters by 

historical values.
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4.3 Future Directions

While our research adopts a proof-of-concept approach to modeling fire risk on the Kenai 

Peninsula, more advanced and comprehensive approaches for operational use would benefit 

from incorporating an expanded parameter set into the methodology. One such potential 

variable is soil moisture, which was identified by the KENWR as an important driver of fire 

behavior but was excluded, as stated in Section 4.2.. Incorporating soil moisture would 

require an assessment of the comparability of measurements between the Soil Moisture 

Active Passive (SMAP) satellite (launched in 2015) and its precursor satellites. Another 

consideration that would improve the accuracy of the fire risk model would be to account for 

the impact that urban environments have on the risk of ignition. Because our research was 

conducted in partnership with the KENWR, our area of analysis prioritized broader scopes 

and large tracts of wilderness, rather than the interface of wilderness and urban land cover. 

Including the factors of soil moisture and urban adjacency, as well as any number of 

additional weather variables, would greatly enhance future iterations of the model. The 

structure of our fire risk model is conducive to the eventual inclusion of additional, dynamic 

variables.

Factors that would benefit from refinement in continued research include temperature and 

land cover type. First, when aggregated as the monthly mean, surface temperature did not 

exhibit a positive correlation with the occurrence of wildfire in our study area. This is likely 

explained by high intra-month variability and would likely be remedied by the substitution 

of daily mean temperatures. Second, forest structure and vegetation type were not addressed 

in detail in our method of land cover classification. Given the spatial resolution of our 

satellite imagery and the limitations of our ground-truthed data, our classification relied 

heavily on generalization of vegetation types. For example, we classified the highly 

flammable black spruce forest as a unique land cover type, but all other tree species were 

combined in the mixed forest class. With additional time and resources, a greater level of 

detail as to the density, homogeneity, and constituent fuel species would yield valuable 

information about wildfire behavior and susceptibility for the region.

5. Conclusions

Our change detections of Landsat imagery, using NDVI and images classified by land cover 

type, corroborate in situ observations made by landscape ecologists at the Kenai National 

Wildlife Refuge. These findings indicate that, for the conditions considered here, spruce 

beetle-induced disturbance in the Kenai Peninsula’s boreal forests often results in a 

transition to herbaceous or shrubland ecosystems. In addressing how the change in 

vegetation may lead to increased fire activity, we derived a fire risk model by using a logistic 

regression algorithm. The algorithm was trained with historical fire data and variables 

representing land cover classifications, topographical parameters and temperature. This 

model found the highest wildfire risk to be connected to herbaceous and black spruce land 

cover types, aligning with the observations of the KENWR’s ecologists and existing 

literature.

Although previous research conducted in the contiguous United States (specifically in the 

Rocky Mountains) has suggested that parasitoid-induced tree mortality has only a negligible 
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impact on emergent wildfire risk, our study has reinforced hypotheses that such patterns may 

not be apparent in the fire ecology of Alaska. Effects of parasitoid infestations in the 

Rockies were outweighed by weather variables during the burn season. Under hot, windy, 

and/or dry enough conditions, even healthy stands previously unscathed by beetles could 

burn easily. Thus, red or gray phases of parasitoid damage would have little to no difference 

with regards to risk. The Kenai Peninsula, however, is both a coastal environment and is 

situated at a much higher latitude. This results in a comparatively shorter fire season with 

greater precipitation and cooler mean temperatures than those found in continental case 

studies. As such, the disturbance regime in coastal Alaskan forests is generally typified by 

fires that are both less frequent (usually only occurring every few centuries) and 

predominantly limited to underburning (as opposed to igniting the canopy). It is plausible 

that beetle-induced tree mortality and emergent wildfire risk may correlate more strongly as 

FRIs increase. Fire ecology as a discipline would benefit greatly from further investigation 

into any relationship that may exist between parasitoid disturbances and fire disturbances, 

specifically within the context of rising temperatures and decreasing FRIs. Our study 

demonstrates the need for these advancements to be driven by localized case studies that 

take geographic and ecological nuances into account.

A better understanding of both ecological trajectories and disturbance regimes on the Kenai 

Peninsula carries with it great potential benefit to surrounding communities, especially in 

consideration of the sharp increase in local spruce beetle populations since 2014. In addition 

to concerns of biodiversity and habitat loss, the region is of high concern due to a relatively 

dense population and centrality to Alaska’s tourism industry and cultural identity. These 

factors, coupled with the mounting likelihood of another severe beetle infestation, create the 

potential for severe social and economic damages. The capacity to more accurately map 

ignition risk is thus widely valuable, not only contributing to a streamlined decision-making 

on the part of wildlife management bodies, but also potentially providing key knowledge to 

state and municipal governments, regional planners, the logging industry, real estate 

developers, and other local actors.
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Appendix A - Glossary

DBH Diameter at breast height; a metric describing the 

dimensions of a tree
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Earth observations Satellites and sensors that collect information about the 

Earth’s physical, chemical, and biological systems over 

space and time

Ecotone A transitional or “buffer” area between two ecosystems, 

such as those existing at the boundaries of forests and 

grasslands

ETM+ Landsat 7 Enhanced Thematic Mapper Plus

Fire regime The type, frequency, patterns, and seasonality of wildfire as 

it typically occurs in a particular environment, often used 

to characterize different types of forest biomes

FRI Fire Return Interval; the average number of years between 

significant wildfire events in a given site

Gray phase The stage of spruce beetle-induced mortality in which the 

dried needles fall from the tree, accumulating as dry fuel 

on the forest floor, leaving the deceased trunk standing and 

defoliated. This is preceded by the “red phase”

KENWR Kenai National Wildlife Refuge

LFRDB LANDFIRE Reference Database

MLE Maximum Likelihood Estimate

NDVI Normalized Difference Vegetation Index. The ratio of 

visible red light to near-infrared light reflected from a 

surface, this metric is commonly used proxy for vegetation 

health and productivity

OLI Landsat 8 Operational Land Imager

Parasitoid An organism that engages in a parasitic relationship with a 

host organism, living attached to or within the host’s body 

for most of its life span before ultimately killing, 

sterilizing, or entirely consuming its host. This is in 

contrast with ‘true’ parasites, which do not necessitate the 

death of the host

Red phase The stage of spruce beetle-induced tree mortality in which 

dry (red) needles remain on the tree; this is followed by the 

“gray phase”

SNAP Scenarios Network for Alaska and Arctic Planning

Surface fire Wildfire that spreads predominantly through a forest’s 

under understory vegetation. This is characteristic of fire 
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regimes in boreal forests. This is opposed to a crown fire, 

which spreads between treetops

TM Landsat 5 Thematic Mapper

Underburning Forest fire that spreads at ground level but does not spread 

to the canopy

USFWS United States Fish and Wildlife Service

USGS United States Geological Survey

WV-3 WorldView-3 Satellite Sensor (DigitalGlobe, Inc.)
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Figure 1. 
Location of the study area and the Kenai National Wildlife Refuge within Alaska.
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Figure 2. 
Land cover classification process for 2014 imagery.

Hess et al. Page 15

Remote Sens (Basel). Author manuscript; available in PMC 2020 February 04.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



Figure 3. 
Conversion from forest to herbaceous/ shrubland based on land cover classifications from 

1995 and 2014.
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Figure 4. 
NDVI change between 1995 and 2014.
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Figure 5. 
Fire Risk Map
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Figure 6. 
AUC 0.5 cut-off value
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Table 1.

Vegetation class and corresponding number of fire-events and random points created

Vegetation Class Fire-Events Non-Fires

Developed 240 240

Barren 6 6

Black Spruce 218 218

Mixed Forest 320 320

Shrublands 104 104

Herbaceous 90 90

Wetlands 192 192
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Table 2.

Factor coefficients and their statistical significance

Factor Coefficient P > |z|

Aspect −0.0117 0.000

Slope 0.6532 0.000

Elevation 0.0011 0.094

Temperature −0.1626 0.000

Vegetation −0.1626 0.000
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Table 3.

Model Confusion Matrix Probability of Detection (POD) and False Alarm Ratio (FAR) 
1

Predicted Not Predicted %Correct

Fire 500 74 93.4

No Fire 698 49 86.7

Percentage 90.6

1
The cut-off value is .500.
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