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Abstract 

Background:  Heart sound measurement is crucial for analyzing and diagnosing 
patients with heart diseases. This study employed phonocardiogram signals as the 
input signal for heart disease analysis due to the accessibility of the respective method. 
This study referenced preprocessing techniques proposed by other researchers for the 
conversion of phonocardiogram signals into characteristic images composed using 
frequency subband. Image recognition was then conducted through the use of convo‑
lutional neural networks (CNNs), in order to classify the predicted of phonocardiogram 
signals as normal or abnormal. However, CNN requires the tuning of multiple hyperpa‑
rameters, which entails an optimization problem for the hyperparameters in the model. 
To maximize CNN robustness, the uniform experiment design method and a science-
based methodical experiment design were used to optimize CNN hyperparameters in 
this study.

Results:  An artificial intelligence prediction model was constructed using CNN, and 
the uniform experiment design method was proposed to acquire hyperparameters for 
optimal CNN robustness. The results indicate Filters ( X1 ), Stride ( X3 ), Activation functions 
( X6 ), and Dropout ( X7 ) to be significant factors considerably influencing the ability of 
CNN to distinguish among heart sound states. Finally, the confirmation experiment 
was conducted, and the hyperparameter combination for optimal model robustness 
was Filters ( X1) = 32, Kernel Size ( X2) = 3 × 3, Stride ( X3) = (1,1), Padding ( X4) as same, 
Optimizer ( X5) as the stochastic gradient descent, Activation functions ( X6 ) as relu, and 
Dropout ( X7) = 0.544. With this combination of parameters, the model had an average 
prediction accuracy rate of 0.787 and standard deviation of 0.

Conclusion:  In this study, phonocardiogram signals were used for the early prediction 
of heart diseases. The science-based and methodical uniform experiment design was 
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used for the optimization of CNN hyperparameters to construct a CNN with optimal 
robustness. The results revealed that the constructed model exhibited robustness and 
an acceptable accuracy rate. Other literature has failed to address hyperparameter 
optimization problems in CNN; a method is subsequently proposed for robust CNN 
optimization, thereby solving this problem.

Keywords:  Phonocardiogram, Heart disease, Robust optimization, Convolutional 
neural network, Uniform design

Background
Phonocardiogram (PCG) and electrocardiograph (ECG) signals are commonly used 
for observing and analyzing heart diseases. Vibration waves generated by the turbulent 
blood flow, the contraction of the myocardium, the closing of the heart valves, and the 
vibrations generated by the blood impact on ventricular or aortic walls create PCG sig-
nals [1]. Adults with healthy hearts produce two distinctive heart sounds per cardiac 
cycle, namely S1 and S2. Other sounds may also occur during the cardiac cycle, such 
as S3, S4, and heart murmurs. Heart sound intensity, heart sound frequency, and the 
relationship between each heart sound reflect the condition of the heart valve, cardiac 
muscle function, and blood flow inside the heart. Using stethoscopes, physicians can 
hear patients’ heartbeats and observe changes in heart sounds to determine their heart 
disease condition [1]. Accordingly, PCG signals are vital to the analysis and diagnosis of 
heart diseases. Because PCG signals are easier to acquire than ECG signals, this study 
employed PCG signals as the input signals for heart disease analysis.

Scholars have used the Markov model to classify heart sounds in the cardiac cycle; 
some have included heart sound duration and the variations among heart sound states 
in their analyses. To distinguish S1 and S2, Schmidt et  al. [1] combined the duration 
of heart sounds collected in clinical environments with the duration-dependent hid-
den Markov model to classify heart sound state, yielding a 98.8% accuracy rate. Springer 
et al. [2] integrated the use of logistic regression–based hidden semi-Markov model and 
heart sound duration, achieving an average F1 score of 95.63 ± 0.85%. Liu et al. [3] used 
eight public datasets to evaluate the performance of the logistic regression-based hidden 
semi-Markov model in distinguishing S1 and silent systole states as well as S2 and silent 
diastole states, revealing an average F1 score of 98.5% and 97.2%, respectively.

In heart sound collection, environmental influences may cause excessive noise in PCG 
signals, creating problems in subsequent identification and analysis. Therefore, noise 
preprocessing is necessary for the effective extraction and computation of signal char-
acteristics in heart sound data and for the enhancement of model accuracy. Various 
denoising techniques, such as the wavelet packet transform technique, are available for 
reducing noise in sound. Messer et al. [4] employed optimal wavelet packet transform to 
successfully reduce noise in the PCG signals of patients with heart diseases and analyzed 
optimal wavelet families, decomposition criteria, and threshold values for noise reduc-
tion in heart sound data. Scully et al. [5] used the wavelet packet transform technique 
and verified that biological signal parameters detectable by mobile phones, including 
breathing frequency, cardiac R–R intervals, and blood oxygen saturation, are accurate 
enough for analysis. Joy et al. [6] proposed a wavelet packet transformation technique 
that uses a simple threshold rule to stably increase the signal-to-noise ratio (SNR). Zeng 
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et al. [7] combined the fast Fourier transform technique with the wavelet packet trans-
form technique to reduce noise in PCG signals collected with wearable electronic med-
ical devices; their results revealed that the method effectively filtered out PCG signal 
noise and successfully retained pathology information.

Because the PCG signal discussed in this study is within a certain frequency range, in 
addition to using the wavelet packet transformation technique for signal preprocessing, 
this study employed wave filtering preprocessing to achieve the required preprocessing 
effect. This method has been used by other scholars to process PCG signals. For exam-
ple, Potes et al. [8] passed PCG signals through a band pass filter to control the signal 
frequency between 25 and 400 Hz and conducted subsequent analysis; Bozkurt et al. [9] 
used the gammatone filter for PCG signal preprocessing. The two aforementioned study 
cases indicate that wave-processed PCG signals improve subsequent analysis. Therefore, 
this study adopted a feature extraction approach, extracting PCG signals within a spe-
cific range, to effectively mitigate the influence of PCG signal noise.

Deep-learning techniques have been widely applied in intelligent classification. For 
example, convolutional neural network (CNNs), a common deep-learning technique in 
which data is processed before use, serves as the basis for heart sound classification [8–
10]. Based on the three aforementioned studies, CNN-based heart sound classification 
techniques yield favorable outcomes. Therefore, this study employed CNNs as the core 
system for heart sound classification.

However, CNNs require the tuning of multiple hyperparameters, resulting in the 
hyperparameter optimization problem. To construct a robust and optimized CNN, this 
study adopted the uniform design experiment approach and used the science-based and 
methodical experiment design method to optimize CNN hyperparameters.

Methods
Data preprocessing

Figure 1 presents the preprocessing process, in which PCG signals are segmented using 
asynchronous methods [9]; this requires the setting of two parameters. The frame size is 
set as 2 s and the hop size as 1 s. Subsequently, the gammatone filter is employed as the 
wave filter to further segment the segmented PCG signal. The computation process is as 
follows:

Step 1	� Based on the set frequency bands, compute the central frequency for the cor-
responding counts of data [11].

Step 2	� Use the central frequency to compute 10 wave filter parameters for each band, 
which are used in the four independent linear wave filters.

Step 3	� According to their serial numbers, input segmented PCG signals into the 
wave filters with set parameters for computation. The filtered results are the 
subband signals.

In this study, the frequency band was set to contain 16 subbands, resulting in cen-
tral frequencies of 878.06, 768.221, 669.281, 580.159, 499.881, 427.569, 362.432, 303.76, 
250.909, 203.304, 160.422, 121.795, 87.0014, 55.6604, 27.4295, and 2  Hz, which com-
puted by Python codes [11].
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Subsequently, the Hilbert transform technique was applied for the wavelet transfor-
mation of subbands. After numerous conversions, the real-valued signals were con-
verted into complex signals comprising complex numbers. Subsequently, the absolute 
values of the numbers were extracted to generate the wavelet effect of the signals.

The data were then compressed to the set time resolutions (32 in this study) and 
subjected to zero-mean and normalized amplitude processing. Standardized data 
processing facilitates and enhances the convergence speed and performance of the 
subsequent classification model.

Convolution neural network hyperparameters

CNN comprises three main layers, namely the convolutional, pooling, and fully con-
nected layer. In order to compare with the best system developed by Bozkurt et  al. 
[9], the CNN model used in this study includes 2 convolutional layers followed by 
max-pooling and drop-out layers. In this study, the following considered but not 
limited hyperparameters require tuning in the convolutional layer: “Filters,” “Ker-
nel Size,” “Stride,” “Padding,” and “Activation function.” In the fully connected layer, 
only the Dropout percentage hyperparameter, “Dropout,” requires tuning. Therefore, 
Python software language was used to construct the system. When Python is used 
to train CNN by using the Keras module, the “Optimizers” hyperparameter must be 

Fig. 1  Data preprocessing process
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set. Various types of optimizers are available for use, including the stochastic gradient 
descent and the Adam optimizer.

In summary, the optimization of multiple hyperparameters is necessary for CNN con-
struction. Accordingly, this study employed the experimental design method to optimize 
the classification model.

Use of an experiment design method to stabilize and optimize the classification model

The experiment design method employs mathematical statistics and uses methodical sci-
ence-based procedures and methods to design suitable experiments. The method thereby 
reduces the number of times the experiment must be repeated, reducing the time and 
money required, and optimizes the experiment process through suitable analysis methods. 
This study employed the uniform design method as its experiment design method [12–15]. 
A key feature in uniform design is the uniform layout distribution of the factor levels in 
an experiment, which results in experiment points that are uniformly scattered within the 
range of the experiment parameters. Because it leads to experiments in which the experi-
ment points are uniformly scattered, uniform design is suitable for optimization with fewer 
repeated experiments under high level numbers and wide parameter ranges. Accordingly, 
it is suitable for solving and searching optimization problems on a global scale.

In contrast with the uniform design method, another famous experiment design 
method named “Taguchi method” is suitable for fewer factors, fewer factor levels and 
factors with interaction. Generally speaking, Taguchi method was adopted to solving 
and searching optimization problems on a local area due to fewer factor levels. There-
fore, Taguchi method is not appropriate for this study.

The results of uniform design experiments enable researchers to identify the optimal 
combination of variables in the experiment through direct observation. Researchers can 
also use regression analysis to compute parameter model regression equations. By using 
this regression equation as the objective function, researchers can employ genetic algo-
rithms to compute the optimal combination of parameters and directly search for the 
optimal combination within the limited number range [16–18].

Model evaluation method

After model training was complete, the researchers input the test set into the model to 
evaluate its performance. The computed results were first compiled into a confusion 
matrix, and the assessment indicators, namely accuracy, F-score, sensitivity, and speci-
ficity, were separately computed [19].

The values of the suitable evaluation indicators were converted using the SNR to facili-
tate the analysis of the experiment design results. The SNR equation for each experiment 
is as follows:

in which −x is the average value of the evaluation indicator results ( ̄x =
∑n

i=1
xi
n ) , m is the 

target value (m = 1),σ is the standard deviation ( σ =

√

1
n−1

∑n
i=1 (xi − x̄)2) and n is the 

repeated times for each experiment.

(1)SNR = −10log
[

(x̄ −m)2 + σ 2
]

,
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Results and discussion
Description of datasets

In this study, data were collected from the PCG signal database PhysioNet/CinC Chal-
lenge 2016 [20]. Because the datasets were unbalanced, data augmentation was neces-
sary in the training set to increase the counts of abnormal PCG signals and balance the 
data counts for normal and abnormal data [9]. For data augmentation, the researchers 
conducted upsampling on randomly-selected cases of abnormal PCG signal data. After 
the amplitudes of the selected PCG signals are randomly adjusted from 10 to 20%, the 
adjusted signals are saved as a new PCG signal file. Once the counts are equal for normal 
and abnormal data, the data expansion procedure is complete. The distribution of nor-
mal and abnormal PCG data in the training set, validation set, and test set are presented 
in Table 1.

Results and discussion of uniform design experiments

As described, the construction of CNNs requires the optimization of multiple hyperpa-
rameters. In this study, seven hyperparameters were selected for the experiment design, 
namely Filters ( X1) , Kernel Size ( X2) , Stride ( X3) , Padding ( X4) , Optimizer ( X5) , Activa-
tion functions ( X6) , and Dropout ( X7) . The experiment design was planned using the 
U10(107) Uniform Experiment Design Table (Table  2). Note that the learning rates of 
Optimizer SGD and Adam are setting as 0.01 and 0.001, respectively.

According to the experiment distribution in Table  2, the researchers executed 10 
sets of experiments and repeated each experiment five times ( xi, i = 1, 2, . . . , 5) . The 
researchers used Eq. (1) to convert the accuracy parameter values into the SNR values. 
Table 3 presents the SNR evaluation results of the training, validation, and test set. The 

Table 1  Distribution of PCG signal data

Dataset Normal Abnormal Total

Training set 1854 1854 3708

Validation set 502 502 1004

Test set 150 151 301

Table 2  U10(107) Uniform experiment design

Experiment 
number

Filters Kernel size Stride Padding Optimizer Activation 
functions

Dropout

1 2 3 × 3 1 × 1 Valid SGD relu 0.8

2 4 3 × 3 2 × 2 Valid Adam relu 0.6

3 8 3 × 3 1 × 1 Same Adam tanh 0.4

4 16 3 × 3 1 × 1 Same SGD tanh 0.2

5 32 3 × 3 2 × 2 Same SGD tanh 0

6 2 2 × 2 1 × 1 Valid Adam relu 0.8

7 4 2 × 2 2 × 2 Valid Adam relu 0.6

8 8 2 × 2 2 × 2 Valid SGD relu 0.4

9 16 2 × 2 1 × 1 Same SGD tanh 0.2

10 32 2 × 2 2 × 2 Same Adam tanh 0
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results indicate that the combinations in experiments 4 and 9 may be optimal; both 
experiments yield high SNR values, namely − 0.9971 and − 0.7069, respectively.

By using data from Table 3 as regression analysis data, the researchers used the test set 
SNR as the dependent variable ( Y  ) and Filters ( X1) , Kernel Size ( X2) , Stride ( X3) , Pad-
ding ( X4) , Optimizer ( X5) , Activation functions ( X6) , and Dropout ( X7) as independent 
variables. The regression equation is presented in Eq. (2) (R-value = 0.9997):

In the equation, the p values of Filters ( X1 ), Stride ( X3 ), Activation functions ( X6 ), and 
Dropout ( X7 ) are < 0.05, indicating that these factors are significant and affect the mod-
el’s performance more. Genetic algorithm searching for the optimal parameter combina-
tion by using Eq. (2) revealed the optimal combination to be Filters ( X1) = 32, Stride ( X3

) = (1,1), Activation functions ( X6 ) as relu, and Dropout ( X7) = 0.544. The experiment 
results presented in Tables 2 and 3 reveal that the model’s performance improved when 
the Optimizer ( X5) parameter was set as the SGD. The optimal values for Kernel Size 
( X2) and Padding ( X4) are obtained in subsequent experiments.

Validation experiment results and discussion

The researchers next conducted full factorial experiments, namely confirmation experi-
ments, on the nonsignificant factors Kernel Size ( X2) and Padding ( X4) ; each set of 
experiments was repeated three times. Table  4 presents the experiment combinations 
of the confirmation experiment and Table 5 presents the test accuracy rate, F1 score and 

(2)
Y = (−22.783)+34.58X1+ (−8.5734)X3+ (−5.4072)X6+58.978X7+ (−43.237)X2

7

Table 3  SNR evaluation results for the training, validation, and test sets

Experiment combination Training set SNR Validation set SNR Test set SNR

1 − 8.8592 − 5.2119 − 4.7965

2 − 10.9555 − 7.7709 − 4.4645

3 − 3.2841 − 1.9047 − 1.9789

4 − 0.1185 − 0.0403 − 0.9971

5 − 2.7631 − 1.4347 − 3.7911

6 − 8.2711 − 5.8263 − 4.4475

7 − 10.3979 − 8.3514 − 5.2433

8 − 6.9688 − 4.5524 − 4.2700

9 − 0.1878 − 0.6176 − 0.7069

10 − 2.4236 − 2.1116 − 2.9854

Table 4  Experiment combinations of the confirmation experiment for optimal Kernel Size (X2) and 
Padding (X4)

Experiment 
combination

Filters Kernel size Stride Padding Optimizer Activation 
functions

Dropout

1 32 2 × 2 1 × 1 Same SGD relu 0.544

2 32 2 × 2 1 × 1 Valid SGD relu 0.544

3 32 3 × 3 1 × 1 Same SGD relu 0.544

4 32 3 × 3 1 × 1 Valid SGD relu 0.544
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False Positive. The results indicate that, when the significant factors are set, the model 
retains robustness, and no major changes are exhibited when other factors are adjusted. 
Therefore, Kernel Size ( X2) and Padding ( X4) are nonsignificant factors. Table 5 indicates 
that the combination in Experiment 3 had the highest mean accuracy rate, 0.787, and a 
standard deviation of closing to 0 as well as highest F1. Therefore, the hyperparameter 
combination that optimized the model’s robustness is confirmed to be Filters ( X1) = 32, 
Kernel Size ( X2) = 3 × 3, Stride ( X3) = (1,1), Padding ( X4) as same, Optimizer ( X5) as 
the SGD, Activation functions ( X6 ) as relu, and Dropout ( X7) = 0.544. As a result of the 
comparison with same test data, the combination in Experiment 3 finally obtained the 
prediction effect with the accuracy of 0.951, sensitivity of 0.892 and specificity of 0.953, 
which is better than the best system developed by Bozkurt et al. [9] with the accuracy of 
0.815, sensitivity of 0.815 and specificity of 0.785.

Conclusions
To achieve the early prediction of heart diseases, this study employed PCG signals for 
heart disease analysis and CNN for the construction of an artificial intelligence pre-
diction model. After data preprocessing, the uniform experiment design method was 
adopted to derive hyperparameters yielding a CNN with optimal robustness. The results 
revealed Filters ( X1 ), Stride ( X3 ), Activation functions ( X6 ), and Dropout ( X7 ) to be 
significant factors, each of which considerably influences the discrimination ability of 
CNN. Finally, the confirmation experiment revealed the hyperparameter combination 
that optimized the model’s robustness: Filters ( X1) = 32, Kernel Size ( X2) = 3 × 3, Stride 
( X3) = (1,1), Padding ( X4) as same, Optimizer ( X5) as SGD, Activation functions ( X6 ) as 
relu, and Dropout ( X7) = 0.544. This combination provided the model with mean testing 
accuracy of 0.787 and a standard deviation of closing to 0. The results reveal that this 
combination of parameters yields a model with a high level of robustness and acceptable 
accuracy. Other literature has failed to address the CNN hyperparameter optimization 
problem, so this study proposes a solution for robust optimization of the model.

Abbreviations
CNN: Convolutional neural networks; PCG: Phonocardiogram; ECG: Electrocardiograph; SNR: Signal-to-noise ratio.
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