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Abstract

Combination therapies have emerged as a promising approach for treating complex diseases, particularly cancer. However, predicting
the efficacy and safety profiles of these therapies remains a significant challenge, primarily because of the complex interactions among
drugs and their wide-ranging effects. To address this issue, we introduce DD-PRiSM (Decomposition of Drug-Pair Response into Synergy
and Monotherapy effect), a deep-learning pipeline that predicts the effects of combination therapy. DD-PRiSM consists of two predictive
models. The first is the Monotherapy model, which predicts parameters of the drug response curve based on drug structure and cell line
gene expression. This reconstructed curve is then used to predict cell viability at the given drug dosage. The second is the Combination
therapy model, which predicts the efficacy of drug combinations by analyzing individual drug effects and their synergistic interactions
with a specific dosage level of individual drugs. The efficacy of DD-PRiSM is demonstrated through its performance metrics, achieving
a root mean square error of 0.0854, a Pearson correlation coefficient of 0.9063, and an R2 of 0.8209 for unseen pairs. Furthermore, DD-
PRiSM distinguishes itself by its capability to decompose combination therapy efficacy, successfully identifying synergistic drug pairs.
We demonstrated synergistic responses vary across cancer types and identified hub drugs that trigger synergistic effects. Finally, we
suggested a promising drug pair through our case study.

Keywords: drug combination response; dose-dependent prediction; synergistic drug combination; cancer treatment; precision
medicine

Introduction
The emergence of combination therapies has been a significant
advancement in treating complex diseases, particularly cancer
and various multifactorial disorders [1, 2]. The rationale for using
multiple drugs in one treatment regimen is their potential to
target different disease progression pathways, increasing treat-
ment efficacy and potentially reducing drug resistance risk [2–4].
However, this approach adds complexity to treatment planning as
interactions between drugs can result in unpredictable therapeu-
tic outcomes and side effects [3, 4]. This unpredictability poses a
substantial challenge in the clinical application of combination
therapies.

Predicting the efficacy and safety profiles of combination
therapies is complex, primarily due to the intricate and often
unforeseen interactions among drugs. These interactions,
occurring within in vivo environments, are influenced by
genetic variations, disease heterogeneity, and individual patient
responses. Consequently, the traditional trial-and-error method
for determining effective drug combinations is time-consuming,
costly, and poses significant risks to patient safety.

In response to the growing demand for combination therapy,
extensive in vitro datasets like NCI-ALMANAC have been estab-
lished to study combination therapies and their synergistic effects
[5]. Computational methods such as DeepSynergy [6] have been
developed to predict the synergy of combination therapies by
training neural networks. Following DeepSynergy, most subse-
quent studies about combination therapy like MatchMaker [7],
DeepDDS [8], and AttenSyn [9] predicted synergistic metrics based
on the Loewe additivity [10] or the Bliss independence [11]. How-
ever, these metrics can be misleading as they do not directly
estimate the efficacy of the combination but rather calculate
its additional effect. For example, a combination might show
minimal anticancer efficacy on its own but appear synergistically
effective, leading to an overestimated metric. Additionally, those
studies did not consider the concentration of each drug, although
the dosage combination of drugs is also an important factor
for the synergistic effect of the combination therapy. Previous
studies focused on the prediction of the representative value like
the mean of synergy score, provided by data portals like Drug-
Comb [12]. However, those representative values do not reflect
the synergistic effect of the combination well. For example, the
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combination treatment of 5-fluorouracil and dasatinib is syn-
ergistic on the cell line A2058 when treated in 3.25 and 0.024
μM, respectively (Loewe synergy score: 63.22), while it becomes
antagonistic with the dosage combination of 0.35 and 3 μM (Loewe
synergy score: −12.34); the representative value of Loewe score
provided by DrugComb is 10.93.

To address this problem, concentration-level prediction models
such as IDACombo [13], comboFM [14], and comboLTR [15] were
developed. IDACombo estimates the combination therapy efficacy
based on the independent drug action (IDA) model [16], taking
the maximum efficacy among monotherapies as the efficacy of
the combination therapy. ComboFM predicts the combination
therapy efficacy by modeling feature interactions with a factoriza-
tion machine–based approach. Similarly, ComboLTR also predicts
combination therapy efficacy but utilizes latent tensor recon-
struction to decompose the tensor product instead [17]. Despite
their impressive performance, those studies still have a critical
limitation; they can only predict the efficacy of drug combinations
when the efficacy scores of individual drugs or identifiers are
available. This limitation hinders the practical application of the
research as profiles of all cancer patients were not exposed to the
model during the training phase.

To overcome these challenges, we introduce the Decomposition
of Drug-Pair Response into Synergy and Monotherapy effect (DD-
PRiSM), a deep learning pipeline for predicting the effects of com-
bination therapy. DD-PRiSM comprises two predictive models for
the prediction of treatment efficacy. The first, the Monotherapy
model, is designed to create a drug–response curve by predicting
four key parameters that determine the shape of the curve for a
specific drug and the corresponding cell lines (Fig. 1A). This model
integrates the gene expression, drug structure, and the dosage of
the treatment for the prediction of drug response measured as
cell viability. The second component, the Combination therapy
model, builds upon the cell viability predictions made by the
Monotherapy model, aiming to predict the efficacy of drug com-
binations by analyzing both the individual drug effects and their
synergistic interactions (Fig. 1B). We benchmarked the remark-
able performance of our model by comparison with state-of-the-
art (SOTA) models. After the performance evaluation, we further
analyzed synergistic combinations based on the prediction result
from DD-PRiSM (Fig. 1C). Finally, we suggested a novel synergistic
combination.

Materials and methods
Drug response datasets
Our proposed pipeline, DD-PRiSM, was trained using two datasets:
NCI60 [18] and NCI-ALMANAC [5]. First, we pretrained the
Monotherapy model using the NCI60 dataset to predict the
efficacy of monotherapy treatments. The NCI60 database offers
various growth inhibition metrics such as GI50, TGI, and LC50 for
each cell line–drug pair after treatment. The model was designed
to predict cell viability based on the input of cell line, drug, and its
dosage. The NCI60 dataset was obtained from the National Cancer
Institute (NCI) Developmental Therapeutics Program (DTP) data
portal, specifically the NCI-60 Growth Inhibition Data section.
To mitigate differences between the NCI60 and NCI-ALMANAC
datasets, we fine-tuned the pretrained Monotherapy model using
monotherapy response data available in the NCI-ALMANAC
dataset (Table 1). To ensure data quality and compatibility, we
performed several preprocessing steps on datasets before training
models. For the specification of preprocessing steps, see more
details in Dataset Preprocessing and Fig. S1 in Supplementary

Methods. The drugs and cell lines utilized from the NCI-ALMANAC
dataset are provided in Supplementary Data 1.

To further assess the model’s generalizability, we incorpo-
rated an additional combination therapy response dataset from
O’Neil et al. [19]. Since other studies require tensor indices, we
selected combinations involving cell lines, drugs, and concentra-
tions present in the NCI-ALMANAC dataset. This resulted in 1666
combinations composed of seven cell lines and 15 drugs. The
“X/X0” value, representing the normalized cell volume relative to
the dimethyl sulfoxide (DMSO) control, was used as a cell viability
label. It is important to highlight that the O’Neil dataset exhibited
a markedly different distribution of input concentrations and
combination therapy responses compared to the NCI-ALMANAC
(Fig. S2, Supplementary Data 2). The number of cell lines, drugs,
drug combinations, and responses are described in Table 1.

Data representations
To represent drugs in our models, we utilized the Simplified
Molecular-Input Line-Entry System (SMILES) notation. We directly
acquired SMILES representations of compounds in datasets from
the NCI DTP Data portal. We used RDKit [20] to convert the
SMILES strings into 512-bit Morgan fingerprints, which are binary
vectors that encode the presence or absence of specific molecular
substructures.

Cell lines were represented with gene expression values
grouped by biological pathway. The gene expression data for cell
lines were downloaded from the Cancer Cell Line Encyclopedia
(CCLE) [21] on the Dependency Map (DepMap) [22] portal. We
collected log-transformed transcript per million values of genes
in cell lines. For the normalization, we calculated the z-score of
gene expressions for each cell line, and the sum of all normalized
gene expressions in a cell line became zero.

For the biological network of the Monotherapy model, the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway [23] was
obtained from the Molecular Signatures Database (MSigDB) [24,
25]. The latest version of the KEGG pathway gene set (KEGG-
legacy), which consists of 186 pathways, was used for this study.

Monotherapy response prediction
To calculate cell viability at specific drug dosages, we utilized the
response curve of cancer–drug interactions, which is commonly
modeled using a four-parameter sigmoid function based on the
Hill equation [26]:

y = ymin + ymax − ymin

1 + ek(x−IC50)

where ymin represents the minimum viability, ymax is the maxi-
mum viability, IC50 is the half maximal inhibitory concentration,
and k defines the steepness of the response curve around the
IC50 concentration. The Monotherapy model predicts those four
parameters of the sigmoid function, building upon modifications
from our earlier study, Hierarchical Network for Drug Response
Prediction with Attention (HiDRA) [27]. By predicting these param-
eters, the model is able to reconstruct the entire dose–response
curve, which describes the relationship between drug dosage and
cell viability for each cell line–drug pair. Given a specific dosage,
we input this value into the reconstructed curve to estimate the
resulting cell viability following monotherapy treatment at that
dosage. This approach allows for a more flexible and informative
prediction of cell viability compared to predicting a single value
at a fixed concentration. In addition to predicting cell viability, the
Monotherapy model predicts a metric termed pathway attention
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Figure 1. Schematic overview of DD-Prism. The study consists of two predictive models and an analytical component. (A) The Monotherapy model. This
model reconstructs drug-response curves by learning four key parameters that shape the curves for specific drugs and their corresponding cell lines.
(B) The Combination therapy model. Building upon the predicted cell viability data derived from the Monotherapy model, this model operates with drug
pairs and corresponding cell lines to predict the efficacy of drug combinations by analyzing both individual drug effects and their synergistic interactions.
(C) Analysis of prediction results. This component highlights the application of the model’s predictive outcomes in analyzing drug interactions.
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Table 1. Details of the preprocessed datasets used in this study.

Dataset Number of cell
lines

Number of
drugs

Number of drug
combinations

Number of
responses

NCI60 (monotherapy pretraining) 66 50 893 Not available 10 105 780
NCI-ALMANAC (monotherapy fine-tuning) 44 102 Not available 35 041
NCI-ALMANAC (combination therapy training) 44 102 5032 1 981 135
O’Neil dataset (external validation) 7 15 77 1666

(P), which represents the importance of various biological path-
ways in the drug-treated cell line.

The specific architecture of the Monotherapy model, including
the input features, hidden layers, and pathway attention mecha-
nism, is detailed in our previous study, HiDRA.

Combination therapy response prediction
The Combination therapy model predicts the efficacy of drug
combinations based on the hypothesis that drug interactions can
be deduced from each drug’s mechanism of action on the cell
line, represented as pathway attention in our study. The efficacy
of drug combination is modeled using the following formula:

V = 1 − E

where:
V is cell viability.
E is treatment efficacy.

EC,D1,D2,d1,d2 = αEC,D1,d1 + βEC,D2,d2 + γ

where:
C represents the cell line.
D1 and D2 are the two drugs in the combination.
d1 and d2 are the respective dosages of the drugs.
EC,D1,d1 and EC,D2,d2 represent monotherapy efficacies.
α and β are weights for the monotherapy efficacies.
γ represents the synergistic effect.
The response to the drug combination can be decomposed into

three components: (i) the monotherapy effect of Drug 1, (ii) the
monotherapy effect of Drug 2, and (iii) the synergy effect.

The weights for monotherapy effects determine how much
each monotherapy affects the combination therapy. Two weights,
α for Monotherapy 1 and β for Monotherapy 2, are predicted
by considering the pathway attention and the efficacy of two
monotherapies using fully connected (FC) neural networks.

w2to1 = softmax
(
Tanh

(
FC1

(
PC,D2

)))

αpre = EC,D1,d1 ∗ FC2
(
PC,D1 � w2to1

)

w1to2 = softmax
(
Tanh

(
FC1

(
PC,D1

)))

βpre = EC,D2,d2 ∗ FC2
(
PC,D2 � w1to2

)

α, β = softmax
([

αpre
∥∥βpre

])

Here, PC,D1 and PC,D2 represent the pathway attention from
Monotherapy 1 and Monotherapy 2, � denotes the Hadamard
product, and

[
α
∥∥β

]
represents the concatenation of two vectors.

γ , the synergy effect of two monotherapies, is also calculated
with the same inputs: two efficacies and two pathway attentions
from monotherapies.

γ = FC3
([

EC,D1,d1 ∗ PC,D1

∥∥EC,D2,d2 ∗ PC,D2

])

The architecture of the FC neural network FC3 is identical to
FC2, but they don’t share network parameters.

For the specification of the model, number of layers, and num-
ber of nodes, see more details in Table S1 in Model Specification
in Supplementary Methods.

Training scheme
For the training and evaluation of the Monotherapy model, we
divided each monotherapy dataset into two sets: a training set
(90% of the data) for model training and validation and a test
set (10% of the data). The test set comprised four subsets: the
unseen pair set, the unseen cell line set, the unseen drug set, and
the unseen all set. To create this test set, we first sampled cell
lines and drugs to serve as unseen entities, aiming to make each
subset ∼2.5% of the total dataset. Pairs with either unseen cell
lines or unseen drugs were categorized into stratified test sets: the
unseen cell line set and the unseen drug set, respectively. Pairs
containing both an unseen cell line and an unseen drug were
grouped into the unseen all set. From the remaining pairs with
seen cell lines and drugs, 5% were allocated to the unseen pair
set. The remaining samples were used as a training–validation
set, which was further split into a training set and a validation
set in an 8:1 ratio (Tables S2 and S3). Each pair had three to five
concentrations with corresponding cell viability measurements,
and all dosage-dependent data were utilized during the model
training and testing phases.

As detailed in the Drug Response Datasets section, our
Monotherapy model training utilized two datasets: NCI60 and
NCI-ALMANAC. The first dataset, NCI60, is a large monotherapy
dataset with a sufficient number of samples to effectively train
interactions between cancer cells and drugs. However, since it
lacks a combination therapy response, it is not suitable to train the
entire DD-PRiSM framework. The second dataset, NCI-ALMANAC,
contains both monotherapy response data and corresponding
combination therapy data but has fewer monotherapy samples.
We employed a two-step training process to leverage the strengths
of both datasets. First, we used the extensive NCI60 dataset to
pretrain the Monotherapy model (Fig. S3A). This step allowed the
model to learn broad cancer–drug interactions from a diverse
range of compounds and cell lines. Second, we fine-tuned the
pretrained model trained with the training set of NCI60 using
the monotherapy portion of the NCI-ALMANAC dataset (Fig. S3B).
This step aimed to adapt the model to the specific characteristics
of the NCI-ALMANAC data, which is directly relevant to our
combination therapy predictions. During fine-tuning, we froze
most model parameters to preserve the model’s ability to infer
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cancer–drug interactions through biological pathways. Only the
final layers that predict the four parameters of the response curve
were unfrozen, allowing adjustment for batch effects between
datasets.

For the Combination therapy model, we utilized the combi-
nation data from the NCI-ALMANAC dataset for model training
and evaluation. The test set was constructed with unseen cell
lines and drugs in alignment with the NCI-ALMANAC monother-
apy dataset. Specifically, we created two drug-related unseen
datasets: the unseen one drug set (where only one drug was
excluded from the training and validation sets) and the unseen
two drug set (where both drugs were excluded) (Table S4). The
details of the training scheme are described in Detailed Training
Scheme in Supplementary Methods.

In the training process, we integrated both error-based and
correlation-based loss functions. We used mean squared error
(MSE) as the primary error-based loss function. To address the
tendency of error-based loss functions to converge toward the
training set average, we incorporated a correlation-based loss
function. Inspired by Atmaja and Akagi [28], we implemented a
correlation-harmonized loss function Lcorr.

Lcorr = 1 −
∑(

y − y
) (

ŷ − ŷ
)

√∑ (
y − y

)2
√∑ (

ŷ − ŷ
)2

where y is a true label, ŷ is a predicted label, and y represents the
average of y values.

To address the class imbalance in cell viability, we imple-
mented sample density weighting in the loss function. We esti-
mated the density of cell viability distribution using a Gaussian
kernel and divided the training dataset’s cell viabilities into fixed-
width bins (width = 0.1). Each sample’s cell viability was then
assigned a density-based weight, which was applied to the error
loss to account for this imbalance. The density weighted MSE
LdMSE is calculated as follows:

LdMSE = 1
n

∑ (
1 − γ d

) (
y − ŷ

)2

where d is the density of a given sample’s cell viability on the
sample distribution estimated on the training dataset, and γ

is a hyperparameter controlling the strength of density-based
weighting. All training steps in this study were trained with an
aggregated loss function Ltotal.

Ltotal = αLdMSE + βLcorr

For our study, we set loss-related hyperparameters as α = 1, β

= 0.5, and γ = 0.75. We used the AdamW optimizer [29] to update
model parameters.

To optimize the training process, we implemented learning
rate reduction and early stopping. We initialized the learning rate
at 1e-2 for all training steps except the fine-tuning (1e-3). The
learning rate was reduced by a factor of 10 if the validation loss
did not decrease by more than a threshold value (0.0005) for 10
consecutive epochs. Similarly, we employed early stopping to pre-
vent overfitting, terminating training if the validation loss did not
decrease by more than the threshold (0.0005) for 20 consecutive
epochs.

Performance evaluation
To evaluate the performance of the proposed work, we used four
metrics widely used for the regression task: root mean square
error (RMSE), Pearson correlation coefficient (PCC), coefficient
of determination (R2), and concordance index (C-index). We
further evaluated our framework by comparing each module
with previously published studies. For the Monotherapy model,
we compared its performance against support vector regression
(SVR), a baseline machine learning model, and DeepTTA [30], a
transformer-based model for predicting monotherapy response.
Since those models predict IC50 value, a dosage-independent drug
response metric, we trained and tested them with IC50 values
derived from the NCI-ALMANAC monotherapy data’s cancer–
drug response curves. These curves were reconstructed using
a curve fitting function from the SciPy package [31]. To ensure
robust evaluation, we generated 10 different training, validation,
and test sets by splitting the NCI-ALMANAC monotherapy dataset
using 10 distinct random seeds. For each seed, the training
set, the validation set, and the test set were in an 8:1:1 ratio.
Our Monotherapy model was trained on cell viability data
corresponding to the IC50 training and validation sets, and IC50
values for the test sets were obtained from the reconstructed
response curves corresponding to the IC50 test set.

The Combination therapy model by comparing its performance
against two previously published dosage-dependent combination
response prediction studies: comboFM [14], comboLTR [15], and
IDACombo [13]. ComboFM predicts cell viability after combination
therapy using a factorization machine approach. It incorporates
molecular fingerprints, gene expression data, and entity identi-
fiers as input features. For our comparison, we implemented a
simplified version of comboFM, called comboFM-2, due to limi-
tations in available packages. Specifically, we developed a factor-
ization machine of degree two, where the output is calculated as
the weighted sum of features along with the weighted sum of
the pairwise interactions between two features. The comboFM-
2 model was implemented using the PyTorch framework [32].
Another combination therapy efficacy prediction model, com-
boLTR, employs the latent tensor reconstruction [17], a tensor
decomposition approach similar to the factorization machine. For
comboLTR, we used tensor indices and Molecular ACCess System
(MACCS) fingerprints, as omics data such as CRISPR-Cas9 profiles
were unavailable for most cell lines. It is important to highlight
that the authors of comboLTR reported only a modest perfor-
mance improvement when incorporating cell-line omics data into
tensor indices and the MACCS fingerprints. IDACombo is a study
based on the IDA model [16]; this method computes the efficacy
of combination therapy by selecting the larger of the two indi-
vidual monotherapy efficacies. To ensure a fair comparison with
IDACombo, we used ground truth monotherapy values instead of
those predicted by our Monotherapy model, as IDACombo also
requires and uses these values. This approach allows for a more
direct comparison of the combination prediction capabilities of
each model. We generated 10 datasets, each consisting of a train-
ing–validation set and a test set, by splitting the NCI-ALMANAC
combination therapy data with 10 different random seeds. For
each collection, the training–validation set and test set were split
in a 9:1 ratio. The training–validation set was further divided into
a training set and a validation set with an 8:1 ratio.

Beyond internal validation, we evaluated the performance of
DD-PRiSM against other deep learning–based models using the
O’Neil combination therapy response dataset to demonstrate
the broader generalizability of DD-PRiSM compared to other

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae717#supplementary-data
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approaches. IDACombo was excluded from this external vali-
dation due to its lack of trainable parameters.

The details of the performance comparison and dataset statis-
tics for the performance comparison are specified in Performance
Comparison with Related Studies in Supplementary Methods.

Results
Model performance evaluation
We first investigated the performance of the pretrained Monother-
apy model. The model exhibited outstanding performance on
the unseen pair set of the NCI60 dataset, achieving an RMSE of
0.0830, a PCC of 0.9387, and an R2 of 0.8811 (Fig. 2A). To assess
the generalizability of the Monotherapy model, we evaluated the
performance of it on three stratified test sets: unseen cell line
set, unseen drug set, and unseen all set. The performance of the
pretrained Monotherapy model on stratified test sets is presented
in Fig. S4.

Following pretraining on the NCI60 dataset, we fine-tuned the
Monotherapy model using NCI-ALMANAC data points. Despite
limited data availability, our Monotherapy model demonstrated
strong predictive capabilities on the NCI-ALMANAC dataset.
Notably, it showed an RMSE of 0.0914, a PCC of 0.8791, and
an R2 of 0.7725 on the unseen pair set (Fig. 2B). The fine-tuned
Monotherapy model was similarly evaluated on the stratified test
sets, as was done with the pretrained model. The performance
results on these test sets are shown in Fig. S5. These results
highlight the model’s effective generalization to the new NCI-
ALMANAC dataset.

Next, we investigated the performance of the Combination
therapy model on the combination therapy response data of NCI-
ALMANAC. The Combination therapy model achieved impressive
performance, with an RMSE of 0.0854, a PCC of 0.9063, and an R2 of
0.8209, on the unseen pair set (Fig. 2C). However, its performance
was relatively lower on the stratified test sets, with a PCC of ∼0.75
across all sets. The Combination therapy model’s performance on
these stratified test sets is illustrated in Fig. S6. Notably, through
our data ablation study (Fig. S7), we found that both pretraining
and fine-tuning steps of the Monotherapy model were crucial
for the Combination model’s effectiveness—omitting either step
led to overfitting and significantly reduced generalizability. This
highlights the importance of our two-stage training approach in
achieving robust predictive performance.

We further examined model performance across error intervals
(Fig. 2D). Approximately 90% of the test set showed a correlation
of 0.9 or higher, while the remaining 10% had a PCC of ∼0.625. This
demonstrates DD-PRiSM’s generalizability, accurately predicting
cell viability for most test data points. Next, we assessed model
performance for each cancer type (Fig. 2E). Despite slight varia-
tions among cancer types, the model performed well across all
categories, with PCC values ∼0.9 and RMSE values ∼0.1.

Performance comparison with related studies
To evaluate the robustness of the DD-PRiSM framework, we
compared its performance against other models addressing
similar challenges. First, we compared the Monotherapy model
with SVR, a baseline machine learning model, and DeepTTA, the
transformer-based SOTA model. For this analysis, we used the
monotherapy responses from the NCI-ALMANAC, which was used
as the fine-tuning dataset for the Monotherapy model (Table S5).
Since the compared models predict IC50 directly, cell viability
values of our model were converted to IC50 values through curve
fitting based on the Hill equation. As a result, the Monotherapy

model outperformed SVR but performed slightly below DeepTTA
(Fig. 3). Notably, our model achieved competitive performance
(PCC of 0.8906, averaged over 10 iterations) compared to DeepTTA
(PCC of 0.9219) despite facing an additional challenge. While
DeepTTA was specifically trained to predict IC50 values directly,
our Monotherapy model was trained to predict cell viability
values, from which we then had to extract IC50 values for this
comparison. A key advantage of our Monotherapy model is its
ability to predict drug efficacy across any concentration, as it is
dosage-dependent. In contrast, DeepTTA is limited to predicting
the dosage-independent IC50 value, which does not provide
information on how effective a drug will be at specific dosages.
This makes our model more practical for clinical applications as
it can directly assess whether a particular dosage will effectively
treat cancer—a critical question that DeepTTA cannot address.

Next, we compared the performance of the Combination Ther-
apy model with other dosage-dependent studies, including two
deep learning–based approaches, comboFM and comboLTR, as
well as the rule-based model, IDACombo on combination therapy
responses from the NCI-ALMANAC (Table S6). It should be noted
that the comboFM model was implemented as a second-order
factorization machine that the authors named comboFM-2, and
the comboLTR model was implemented without inaccessible cell-
line multi-omics features, referred to by the authors as “tensor
indices + MACCS.”

Compared with deep learning–based studies, DD-PRiSM
demonstrated a modest performance improvement with statis-
tical significance across most metrics (Fig. 4A, Fig. S8). However,
DD-PRiSM was slightly outperformed by comboFM in terms of
the C-index, indicating that DD-PRiSM provides more precise
predictions of the actual response values, while comboFM is
more accurate in predicting the rank order of responses. As for
comboLTR, DD-PRiSM outperformed it across all metrics.

Meanwhile, DD-PRiSM showed performance improvement
with statistical significance compared to the IDACombo (Fig. 4B,
Fig. S9). Specifically, DD-PRiSM showed an 8.37% improvement in
RMSE, a 1.54% increase in PCC, and a 3.07% improvement in R2

compared to IDACombo.
A notable advantage of DD-PRiSM over previous dosage-

dependent studies is its ability to predict combination therapies
for unseen cell lines or drugs (Fig. S6). In contrast, earlier
models face significant limitations when dealing with unseen
entities. For instance, comboFM and comboLTR rely on one-
hot vectors to represent cell lines, drugs, and concentrations.
These identifier vectors play a crucial role in the model, as
comboFM is based on a factorization machine. Factorization
machines excel at capturing relationships between features
and perform well in recommendation predictions using one-hot
vectors. However, this approach inherently limits the model’s
ability to generalize to unseen entities. Similarly, IDACombo has
its own constraints. Based on the IDA theory, it requires response
values for each monotherapy treatment. This dependency on
pre-existing monotherapy data restricts its applicability to new
drug–cell line combinations. Unlike these previous studies, DD-
PRiSM does not face such constraints when dealing with unseen
data. This flexibility allows DD-PRiSM to make predictions for
novel cell lines and drugs, significantly expanding its potential
applications in combination therapy research.

Performance evaluation on an external dataset
To assess the robustness of DD-PRiSM, we evaluated it alongside
other models using the O’Neil dataset, selecting the model with
the lowest loss from NCI-ALMANAC training.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae717#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae717#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae717#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae717#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae717#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae717#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae717#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae717#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae717#supplementary-data
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Figure 2. Performance of DD-PRiSM. (A) Pretrained Monotherapy model performance on NCI60 dataset. (B) Fine-tuned Monotherapy model performance
on NCI-ALMANAC monotherapy response data. (C) Combination therapy model performance on NCI-ALMANAC combination therapy response data.
(D) PCC between ground truth responses and predictions for the combination therapy dataset, grouped by error interval. (E) Combination therapy model
performance across different cancer types. All panels display results from the unseen pair set.

As a result, among the compared models, DD-PRiSM achieved
the highest performance with a C-index of 0.5968, which was
11.87% higher than comboFM and 17.67% higher than comboLTR
(Fig. 5). However, all models exhibited reduced performance on
the O’Neil dataset due to its out-of-distribution nature compared
to NCI-ALMANAC, especially for the R2 values.

It is well known that the performance of data-driven models,
such as deep learning, significantly drops when applied to out-
of-distribution data [33]. In our case, the O’Neil dataset differs
substantially from NCI-ALMANAC in both drug concentration
distribution and efficacy. Most notably, the O’Neil dataset features
higher drug concentrations (Fig. S2A, Supplementary Data 2),
resulting in lower cell viability measurements compared to
NCI-ALMANAC (Fig. S2B). This distribution shift poses a particular

challenge since all models, including DD-PRiSM, were trained
on NCI-ALMANAC data where combinations typically show
higher viability. Furthermore, models that strongly rely on
tensor indices, like comboFM or comboLTR, are likely to exhibit
significant performance drops on out-of-distribution data, as the
combinations of tensor indices differ from those seen during
training steps.

Large-scale evaluation of synergistic effects in
drug combinations
Following the performance evaluation, we conducted a compre-
hensive analysis of treatment efficacy across all possible cell lines
and drug combinations presented in the NCI-ALMANAC dataset,
using the concentrations provided in the NCI-ALMANAC dataset,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae717#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae717#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae717#supplementary-data
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Figure 3. The performance of DD-PRiSM compared with previous dosage-
independent monotherapy response prediction models. Asterisks show
the statistical significance from the Mann–Whitney U test; ∗ (P < .001).

as the effects of monotherapies and the synergistic effects
hypothesized by our model vary depending on the dosage of each
monotherapy (Fig. 6A). Our primary objectives were to identify the
characteristics of synergistic combinations and discover novel
synergistic pairs that could potentially lead to more effective
cancer treatments.

We analyzed the treatment efficacies of drug combination
results on an extensive dataset comprising 81 million possible
pairs of data points with varying concentrations. This large-scale
analysis revealed a crucial insight: the majority of the treatment
efficacy in drug combinations is predominantly driven by the
effects of individual drugs rather than synergistic interactions.
This conclusion is substantiated by examining the distribution
of the γ value, a key indicator of synergy. We observed that the
highest peak of the γ value distribution is significantly biased
toward 0, which indicates no synergistic effect (Fig. 6B). This find-
ing suggests that true synergistic interactions, while potentially
very impactful, are relatively rare among all possible drug combi-
nations, as reported in previous studies [34, 35].

To focus our investigation on identifying drug combinations
that exhibit synergism, we developed a more refined approach.
We introduced a “reachable synergy” score for each pair of a cell
line and drugs. This score was calculated by taking the max-
imum synergy value across different concentrations, allowing
us to capture the highest potential for synergy in each com-
bination, regardless of the specific concentration at which it
occurred. Using this reachable synergy score, we then applied a
clustering technique to analyze patterns across the entire dataset.
Specifically, we employed the SpectralBiclustering algorithm [36]
from the scikit-learn package [37]. We applied this clustering
method to the reachable synergy values of 226 644 combinations,
which represented all possible pairings of 44 cell lines with 5151
drug combinations (Fig. 6C). The clustering analysis yielded three
distinct clusters of drug combinations, each with unique char-
acteristics. First, the synergistic group with 1739 combinations.
These represent drug pairs that consistently demonstrated high
levels of synergy across multiple cell lines. Second, the moderate
group encompassed 1977 combinations. These drug pairs showed
some synergy but not as consistently or strongly as those in the
synergistic group. Third, the additive group includes 1435 com-
binations. These drug pairs primarily exhibited additive effects,

meaning their combined efficacy was approximately the sum of
their individual effects without a significant synergistic boost.
Importantly, these three groups showed statistically significant
differences in the distribution of their reachable synergy scores
(Fig. 6D).

Next, we investigated the therapeutic categories for each clus-
ter and examined the proportion of each category within the
groups (Fig. 6E). This analysis revealed intriguing patterns in drug
combination efficacy. The synergistic group displayed a signifi-
cantly higher proportion of combinations that included targeted
therapies, as also shown in Jaaks et al. [34]. This finding sug-
gests that the interplay between traditional cytotoxic agents and
molecularly targeted drugs often leads to enhanced therapeu-
tic effects, possibly due to their complementary mechanisms of
action. Conversely, combinations involving non-anticancer drugs
were enriched in the additive group. This observation is particu-
larly interesting as it implies that drugs not primarily designed
for cancer treatment tend to have less synergistic potential when
combined with anticancer agents. However, their presence in
combination therapies might still be valuable for managing side
effects or improving overall treatment outcomes through additive
effects.

Synergism by the cancer type
Previous studies have reported that the synergy effect of com-
bination therapy varies depending on the patient and the can-
cer type [34, 38]. We investigated the reachable synergy score
for each cancer type and compared the distribution of them.
To analyze intensive and informative synergistic combinations,
we filtered data points with two conditions: concentration and
sensitivity. First, we selected the data point whose concentration
range was close to the original NCI-ALMANAC. Second, we used
data points whose combination therapy efficacy is sensitive, but
both monotherapies were not. For this process, we considered
treatment as sensitive if the cell viability after the treatment was
smaller than 30%.

Interestingly, blood cancer cell lines showed significantly
higher reachable synergy than solid tumor cell lines (Fig. 7A). This
result was consistent with previous findings that hematologic
malignancies get synergistic benefits from combination therapy
easily, while combination therapy–based approaches for solid
neoplasms are not well developed [39].

Next, we constructed the drug synergism network with syn-
ergistic combinations for each cancer type. We chose the top
30% synergistic combinations for each cancer type and made
a network that showed the synergistic characteristics of each
drug. First, we analyzed the drug synergism network of leukemia
(Fig. 7B), the most synergistic cancer type. We found that three
drugs act as synergistic agents for leukemia: dasatinib, azaciti-
dine, and bortezomib. A literature survey reveals that dasatinib, a
hub drug with the highest degree, is a promising agent for combi-
nation therapy in leukemia [40, 41]. Combination therapies with
the second hub drug, azacitidine, were also supported by clin-
ical trials: NCT01038635 (azacitidine + lenalidomide; 21st from
234 combinations in our leukemia network) [42], NCT00948064
(azacitidine + vorinostat; 38th from 234 combinations in leukemia
network) [43]. The last hub drug, bortezomib, was also supported
by literature [44].

Then, we focused on lung cancer with the cancer-type non-
small cell lung cancer (NSCLC) to construct the drug synergism
network (Fig. 7C). In contrast to the case of leukemia, the drug syn-
ergism network of NSCLC did not reveal any dominant hub drug.
A drug with the highest degree in the network was pemetrexed, a
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Figure 4. The performance of DD-PRiSM compared with previous dosage-dependent combination therapy response prediction studies. (A) Performance
comparison with deep learning–based studies. (B) Performance comparison with IDACombo, the rule-based study. As IDACombo uses the ground truth
monotherapy viability, we also used the ground truth monotherapy for DD-PRiSM in this comparison. Asterisks showed the statistical significance from
the Mann–Whitney U test; ∗ (P < .001).

Figure 5. The performance of DD-PRiSM and previous dosage-dependent
studies on the external validation. For each compared study, the value in
the parenthesis is the performance improvement of DD-PRiSM compared
to the study.

widely adopted antifolate agent. We found several literatures that
investigated the synergistic potentiality of pemetrexed [45, 46].
Additionally, there were many clinical trials that supported the
synergistic effect of pemetrexed in combination with platinum-
based antineoplastic agents [47, 48]. Carboplatin, the second-
highest-degree drug in our NSCLC network, is also mentioned as
a synergistic agent with pemetrexed, and the combination of
pemetrexed and carboplatin had a high reachable synergy score in
our network (65th from 340 combinations in the NSCLC network)
[48, 49].

Synergistic combinations for each cancer type are specified in
Supplementary Data 3.

Prediction case study
Based on our previous findings, we conducted an in-depth exami-
nation of combinations within the synergistic group that were not
present in the model training dataset. This approach allowed us to
assess the model’s predictive capabilities on novel drug pairs and
potentially uncover clinically relevant synergistic combinations.

Our case study focused on the combination of a proteasome
inhibitor bortezomib and a DNA methyltransferase inhibitor
azacitidine (Fig. 8A). Neither of these drugs was included in
the training data, presenting an ideal opportunity to test the
model’s generalization ability. Notably, existing literature has
demonstrated the synergistic effects of this combination against
multiple myeloma cells [50, 51], providing a valuable benchmark
for our predictions. We concentrated our analysis on the RPMI-
8226 cell line, a well-established model for multiple myeloma. To
begin, we evaluated the performance of our Combination therapy
model on this specific drug pair. The model exhibited exceptional
predictive accuracy, with an RMSE of 0.1450, a PCC of 0.9378, and
an R2 of 0.8751 (Fig. 8B). These robust performance metrics lend
substantial credibility to the subsequent detailed analyses and
interpretations of the model’s predictions.

Following this validation, we investigated decomposed synergy
values predicted by our model (Fig. 8C and D). The combination
of RPMI-8226 + bortezomib + azacitidine revealed intriguing pat-
terns. We observed that the overall magnitude of the synergistic
effect escalated in correlation with increasing concentrations
of azacitidine. This dose-dependent relationship suggests that
higher doses of azacitidine may be crucial in maximizing the
synergistic potential of this combination.

Interestingly, our model’s predictions for bortezomib revealed
a more complex pattern. High synergy efficacy was predicted not
only at elevated concentrations but also at lower doses (Fig. 8D).
While the magnitude of the synergistic effect varied with borte-
zomib concentration, our results strongly indicated that the mere
presence of bortezomib, rather than its concentration, was the
primary driver of synergy.

Discussion
In this study, we introduced DD-PRiSM, a novel framework for
predicting the efficacy of combination therapy using predicted
monotherapy efficacy and the effects of monotherapy on biolog-
ical pathways. DD-PRiSM addresses several key challenges in the
field of drug combination prediction, offering significant advan-
tages over previous approaches.

A major strength of DD-PRiSM is its ability to predict anticancer
therapy response in a concentration-dependent manner, which

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae717#supplementary-data
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Figure 6. Drug combination analysis of DD-PRiSM’s results. (A) Synergy effects differ across the concentration of the drug combination. (B) Distribution
of three coefficients, α: the coefficient of the Monotherapy 1, β: the coefficient of the Monotherapy 2, and γ : the synergy effect, for all valid combinations.
(C) The clustering results on the reachable synergy from all valid combinations. The left group is a synergistic group, the middle group is a moderate
group, and the right group is an additive group. (D) The distribution of reachable synergy for each group. (E) The composition of combinations for each
group. For all panels, asterisks showed the statistical significance of the hypergeometric test with the group; ∗ (P < .001).
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Figure 7. Cancer type–specific analyses. (A) The distribution of reachable synergy scores for each cancer type. Two navy boxes are for two blood cancer
types, myeloma and leukemia, and the other boxes are for solid cancer types. (B, C) The drug synergism network whose nodes are drugs and the edges
are the predicted synergism between drugs. The red node is a chemotherapy drug, the yellow node is a targeted therapy drug, and the blue node is a
nonanticancer drug. The edge width is proportional to the reachable synergy score of the combination. (B) The leukemia cancer type. (C) The NSCLC
cancer type.
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Figure 8. The predicted cell viability and components of RPMI-8226 + azacitidine + bortezomib decomposed by the DD-PRiSM. (A) The mechanism
of action of two focused drugs, the proteasome inhibitor bortezomib and the DNA methyltransferase inhibitor azacitidine (created with BioRender.
com). (B) The predicted result of RPMI-8226 + azacitidine + bortezomib with the Combination therapy model. (C) Predicted viability. (D) Synergy efficacy
decomposed from the predicted viability.

is crucial for determining the synergism of drug combinations.
For instance, a low IC50 does not necessarily translate into high
drug efficacy as the maximum achievable effect may not be
substantial enough to cure the patient. Similarly, synergy scores
based on Loewe additivity or Bliss independence only indicate
relative benefits, without providing a complete picture of the
drug’s true therapeutic potential. In contrast, cell viability data
derived from the full dose–response curve offer a more direct and
comprehensive view of whether an anticancer drug can achieve
the desired therapeutic outcome. This concentration-dependent
information is far more valuable for precision medicine as it
reflects the drug’s actual efficacy across a range of concentrations
rather than being limited to a single, dose-independent metric like
IC50 or synergy scores.

Notably, our combination therapy model outperformed other
dose-dependent models such as IDACombo, comboFM, and com-
boLTR. In addition to its strong performance, DD-PRiSM offers the
distinct advantage of being able to predict novel data points with-
out the need for pre-existing monotherapy data or dependence
on specific features defined during training, providing greater
flexibility compared to previous models.

One of the most significant innovations of DD-PRiSM is its abil-
ity to decompose combination therapy efficacy into monotherapy
efficacies and synergistic effects. This decomposition provides
valuable insights into the mechanisms underlying drug synergies.

Our clustering analysis of synergy effects revealed that targeted
therapy drugs tend to have synergistic effects with other drugs
more frequently than chemotherapy or nonanticancer drugs. This
finding could have important implications for the design of future
combination therapies. Additionally, DD-PRiSM offers a guide-
line for personalized medicine by recommending combination
therapies with optimal drug concentration pairs when a strong
synergistic effect is present, while suggesting monotherapy if the
synergy is either absent or not significant enough to justify poten-
tial side effects. This capability enhances the model’s applicability
in tailoring treatments to individual patients.

Our cancer type–related analysis yielded results consistent
with previous discoveries, showing that the hematopoietic malig-
nancies more readily exhibit synergistic effects compared to the
solid tumors. This observation underscores the importance of
considering cancer types when designing combination therapies.
Furthermore, our drug synergism networks unveiled hub drugs
for each cancer type that could serve as core agents for the
combination therapy. Many of these predictions were supported
by existing clinical trials, validating the potential of our approach
to identify clinically relevant drug combinations.

Despite these strengths, it is important to acknowledge the
limitations of DD-PRiSM. Like previous studies, our model showed
relatively low performance on drugs that were not included in
the training dataset. It is a well-known problem that phenotypic

BioRender.com
BioRender.com


DD-PRiSM | 13

response prediction models show performance drop on unex-
plored drugs, whether the model uses physicochemical descrip-
tors [52–54] or graph-based features [8, 55, 56]. These phenomena
imply the fact that we need more informative drug features for
the phenotypic prediction.

In summary, we introduced DD-PRiSM, a drug combination
response prediction model that integrates both the efficacy and
mechanisms of individual monotherapies. The model can decom-
pose the efficacy of a combination therapy into the contributions
from each monotherapy and the synergistic interaction between
them. DD-PRiSM showed its versatility across various cancer types
and drug classes, highlighting distinct synergism patterns for
each cancer type. We also reported a curated list of predicted
synergistic combinations, which could be a valuable resource for
future research and clinical studies. As we continue to refine and
expand this approach, we anticipate that DD-PRiSM will become
an invaluable resource for personalized medicine, enabling the
identification of truly synergistic combinations tailored to indi-
vidual patients and cancer types.

Key Points

• DD-PRiSM (Decomposition of Drug-Pair Response into
Synergy and Monotherapy effect) uniquely integrates
the monotherapy efficacy prediction of two drugs to
forecast combination therapy outcomes, offering a more
comprehensive approach than existing models.

• DD-PRiSM can decompose combination therapy efficacy
into individual drug effects and synergistic interactions,
providing unprecedented insights into the mechanisms
of drug synergies.

• Our model outperforms current state-of-the-art dosage-
dependent prediction methods, demonstrating remark-
able accuracy in predicting combination therapy effica-
cies.

• Unlike previous models, DD-PRiSM can make predictions
for unseen cell lines and drugs, significantly expand-
ing its potential applications in combination therapy
research.

• The ability of DD-PRiSM to predict synergistic combi-
nations tailored to individual cancer types opens new
avenues for personalized treatment strategies.

Supplementary data
Supplementary data are available at Briefings in Bioinformatics
online.
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