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Atherosclerosis is a kind of chronic inflammatory cardiovascular disease. Epigenetic regulation plays a crucial role in atherosclerosis.
Our study was aimed at finding potential biomarkers associated with the occurrence of atherosclerosis. Two datasets were downloaded
from the Gene Expression Omnibus (GEO) database. The epigenome-wide association study (EWAS) analysis was performed on
methylation data using CpGassoc package. The differential expression analysis was conducted on mRNA data using limma
package. The GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) functional enrichment was done in
clusterProfiler package. Finally, the logistic regression model was constructed using generalized linear model (glm) function.
Between atherosclerotic vs. nonatherosclerotic samples, totally 4980 cytosine-phosphate-guanine (CpG) sites (annotated to 2860
genes) and 132 differentially expressed genes (DEGs) related to atherosclerosis were identified. The annotated 2860 genes and 132
DEGs were significantly enriched in 9 and 4 KEGG pathways and 289 and 132 GO terms, respectively. After cross-analysis, 6
crucial CpG sites were screened to build the model, including cg01187920, cg03422911, cg08018825, cg10967350, cg14473924, and
cg25313204. The diagnostic model could reliably separate the atherosclerosis samples from nonatherosclerotic samples. In
conclusion, the 6 CpG sites are probably potential diagnostic biomarkers for atherosclerosis, including cg01187920, cg03422911,
cg08018825, cg10967350, cg14473924, and cg25313204.

1. Introduction

Atherosclerosis is a common chronic inflammatory cardiovas-
cular disease [1], and its consequent clinical manifestations are
still the leading causes of death worldwide, especially in the
elderly [2–4]. It usually originates from foam cells and fatty
streaks in arterial walls, eventually leading to vessel-
occluding plaques after several complex stages [1]. Besides,
many cardiovascular diseases (CVDs) resulted from athero-
sclerosis are also important risk factors for patients, such as
coronary heart disease and stroke [5]. Atherosclerosis cannot
be diagnosed until a clinical feature emerges in many cases,

which would increase the morbidity and mortality of the com-
plications indirectly [6]. Consequently, despite new athero-
protective drugs and therapies have been applied, further
exploration of early detection method of atherosclerotic lesion
would be conducive to prompt intervention for patients.
Currently, the crucial roles of genes and methylation varia-
tions in atherosclerosis have been demonstrated [7, 8], which
indicates the atherosclerotic molecular heterogeneity and
pathogenic complexity. Nevertheless, it is still necessary to
identify novel potential biomarkers associated with the occur-
rence of atherosclerosis to provide more possible alternatives
for atherosclerosis-related clinical decision-making.
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DNA methylation is a common and important epige-
netic mechanism in multiple biological processes, involving
many cellular phenomena [9]. It is also a relatively stable
marker during gene transcription [10]. Recently, aberrant
DNA methylation has been increasingly reported to be
related to various diseases, including atherosclerosis [11].
For instance, the ABCG1 methylation status has been evi-
denced to be negatively correlated with high-density lipo-
protein cholesterol level, which might then contribute to
the progression of atherosclerosis [12]. Moreover, multiple
crucial factors involved in atherosclerosis, such as inflamma-
tory response [13] and oxidative stress [14], have been influ-
enced by the methylation status of the relative genes directly
or indirectly, indicating that DNA methylation indeed
involves in atherosclerosis. However, the role of DNA meth-
ylation in atherosclerosis is rarely explored in most studies.
To find more novel possible biomarkers for atherosclerosis,
we have integrated the gene expression and methylation data
in the present study.

Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/) is a public genomics data
repository, involving gene expression and methylation data.
Moreover, EWAS (epigenome-wide association studies) is a
useful tool to explore the methylation variations and related
diseases. Herein, via an integrated analysis of the gene
expression and methylation data obtained from the GEO
database, we expected to find potential biomarkers associ-
ated with the occurrence of atherosclerosis and build a
diagnostic model, in order to provide more reference
information for clinical decision-making of atherosclerosis
in the future.

2. Materials and Methods

2.1. Research Objects. In this study, three datasets were down-
loaded from the GEO database, which included methylation
data GSE46394 and the mRNA expression profile GSE43292
and GSE20129. In GSE46394 dataset, there were totally 49
samples’methylation data, comprising 15 atherosclerotic lesion
samples and 34 aortic tissue samples. All samples’ detailed
information is shown in Table S1. In another dataset
GSE43292, totally 64 samples’ mRNA expression data were
collected, which included 32 atherosclerotic lesion samples
and 32 nonatherosclerotic tissue samples. There were 135
samples in GSE20129 dataset, comprising 57 atherosclerotic
samples and 78 nonatherosclerotic samples. Among them,
119 samples were processed on Illumina HumanRef-8 V2.0
expression beadchip platform, and the rest 16 samples were
processed on Illumina HumanHT-12 V4.0 expression
beadchip platform.

2.2. EWAS (Epigenome-Wide Association Study) Analysis.
To find the atherosclerosis-related cytosine-phosphate-
guanine (CpG) sites, we used the CpGassoc package (https://
cran.r-project.org/web/packages/cpgassoc/index.html) of R
language (version 3.5.2) to analyze the data in GSE46394 data-
set. The FDR < 0:000001 was used to select CpG sites in the
promoter region (TSS200 (transcription start sites (TSS)),
TSS1500, and 1st Exon).

2.3. Differentially Expressed Gene Analysis. Regarding the
mRNA data in GSE43292 dataset, the differentially
expressed genes (DEGs) between atherosclerosis specimens
and nonatherosclerotic specimens were identified using
“limma” function package of R [15]. The DEGs with jlog2
FCj > 1 and P:adjust < 0:05 were considered significant.

2.4. Functional Enrichment Analyses. Subsequently, the GO
(Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes
and Genomes) enrichment analyses were conducted on the
DEGs as well as the corresponding genes of differential
CpG sites, using the clusterProfiler package [16] of R. The
P:adjust < 0:05 was applied to screen the significantly
enriched functional terms.

2.5. Protein-Protein Interaction (PPI) Network Analysis.
STRING database is a useful tool for analyzing and predict-
ing the functional interactions of proteins. We used STRING
(version 11.0) [17] (https://string-db.org/) to analyze the
functional interactions of proteins, and the PPI network
was visualized using Cytoscape (version 3.7.2) [18].

2.6. Logistic Regression Prediction Model Construction.
Logistic regression is a common method in classification,
referring to predicting the classifications basing on a group
of variables [19]. In our present work, the β value of various
CpG sites were used for the prediction of sample type (ath-
erosclerosis or nonatherosclerotic). Firstly, we selected the
overlapped genes between the DEGs (based on mRNA pro-
file) and the identified CpG sites’ corresponding genes, and
then, the CpG sites of the corresponding overlapped genes
were obtained. Among which, the CpG sites located on
CpG island would be used for logistic regression model con-
struction. Based on two types of samples (atherosclerosis or
nonatherosclerotic samples), the β value of various CpG
sites were included as a continuous independent variable,
and the sample type was included as a dichotomous
response value. The logistic regression model was con-
structed using generalized linear model (glm) function of R.

3. Results

3.1. Results of EWAS Analysis in Atherosclerotic Samples.
The screening process of atherosclerosis-related CpG sites
has been displayed in Figure 1(a). Firstly, to obtain
atherosclerosis-related CpG sites, we have analyzed the
methylation data in GSE46394 dataset. After conducting
EWAS analysis, we got the Manhattan map of CpG sites
on various chromosomes, and each point represents a CpG
site in Figure 1(b). The horizontal dashed line refers to
log10(FDR), and the CpG sites above the dashed line met
FDR < 0:000001. Then, a total of 4980 CpG sites located
on promoter region were successfully identified to associate
with the occurrence of atherosclerosis, which were anno-
tated to 2860 mRNAs (Figure 1(b)). The genomic distribu-
tion of the CpG sites is shown in Figure 1(c), among
which most CpG sites located on the open sea. Moreover,
we also analyzed the exact promoter region distribution of
the CpG sites, and most CpG sites located on TSS1500
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Figure 1: Continued.
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region (Figure 1(d)). The detailed CpG sites are summarized
in Table S2.

3.2. The Atherosclerosis-Related Differentially Expressed Genes.
Subsequently, based on the mRNA data in GSE43292 dataset,
significant atherosclerosis-related DEGs were screened. Com-
pared with the nonatherosclerotic samples, a total of 132
DEGswere identified in atherosclerotic samples, amongwhich
56 DEGs were downregulated and 76 DEGs were upregulated
(Figure 2(b)). The expression levels of the DEGs were signifi-
cantly differential between atherosclerotic samples and non-
atherosclerotic samples (Figure 2(a)). All 132 DEGs are
summarized in Table S3.

3.3. Construction of PPI Network. The above 132 DEGs were
then subjected to a PPI analysis using STRING database.
Those interaction pairs with minimum required interaction
score > 0:4 were screened, and PPI network was visualized
in Cytoscape software. The node and edge represented gene
and interaction, respectively. There were a total of 100 nodes
and 102 edges in the PPI network (Fig S1).

3.4. Functional Enrichment Results. To preliminarily obtain
the functional information of the atherosclerosis-related
genes, we have performed enrichment analyses on the CpG
annotated genes and DEGs, respectively.

For the 2860 genes annotated by atherosclerosis-related
CpG sites, they were significantly enriched in 9 KEGG path-
ways (Figure 3(a)), 197 Biological Process (BP) terms, 60

Cellular Component (CC) terms, and 32 Molecular Function
(MF) terms (P:adjust < 0:05). Among which, the top 20 BP,
CC, and MF terms are displayed in Figures 3(b)–3(d), sepa-
rately. The detailed results are shown in Table S4.

Additionally, functional enrichment analyses were also
conducted on the 131 DEGs associated with atherosclero-
sis. Our results showed that 131 DEGs were significantly
enriched in 4 KEGG pathways (Figure 4(a)), 100 BP terms
(the top 20 terms are displayed in Figure 4(b)), 19 CC
terms (Figure 4(c)), and 13 MF terms (Figure 4(d))
(P:adjust < 0:05). Detailed information of the terms is
listed in Table S5.

3.5. Logistic Regression Prediction Model Construction.
Furthermore, to find more important CpG sites related to
atherosclerosis, the cross-analysis was conducted on 2860
genes (annotated by 4980 CpG sites) and 131 DEGs; finally,
we identified 32 overlapped genes. Then, the original corre-
sponding CpG sites of these 32 overlapped genes were
found, a total of 56 CpG sites. Only the CpG sites located
on CpG island were selected to construct the logistic regres-
sion model. Finally, 6 CpG sites were screened to build the
model, including cg01187920, cg03422911, cg08018825,
cg10967350, cg14473924, and cg25313204, and the corre-
sponding annotated genes are listed in Table 1. These 6 cru-
cial CpG sites were all located on the TSS or 1st Exon
regions, indicating their important epigenetic regulation on
annotated genes. Accordingly, the expression levels of these
6 vital annotated genes in validation dataset were then
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Figure 1: The atherosclerosis-related CpG sites and their distribution. (a) The flowchart of atherosclerosis-related CpG sites screening. (b)
Manhattan map of CpG sites on all chromosomes. Horizontal axis: chromosome; vertical axis: -log10 (P value). (c) The distribution of the
CpG sites on CpG island. (d) The distribution of the CpG sites on exact promoter region.
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evaluated. In GSE20129 dataset, CARTPT, RYR2, CNTN4,
PDZRN3, and SLC22A3 all showed differential expression
levels in atherosclerosis vs. nonatherosclerotic samples
(Fig S2A–S2E). Among them, PDZRN3 was significantly
highly expressed in atherosclerosis samples compared
with nonatherosclerotic samples (Fig S2E).

Subsequently, atherosclerosis or nonatherosclerotic
sample type was taken as the dependent variable, a regres-
sion model based on the 6 CpG sites was established using
glm function, and the atherosclerosis risk formula was dis-
played below. Risk = 518:9722 ∗ cg01187920 + 634:4440 ∗
cg03422911 + ð−2139:4961Þ ∗ cg08018825 + ð−1645:4335Þ ∗
cg10967350 + 715:9397 ∗ cg14473924 + 213:9591 ∗ cg
25313204. The risk score > 0 represented that atherosclerosis
will happen, while the risk score < 0 represented that

atherosclerosis will not occur. There was a significant risk
score difference between atherosclerosis samples and non-
atherosclerotic samples (P < 0:0001) (Figure 5(h)). Our results
suggested that the logistic regressionmodel we built could reli-
ably separate the atherosclerosis specimens from the
nonatherosclerotic specimens (Figure 5(g)). Besides, the sig-
nificantly differential β value of each CpG site could be
observed between atherosclerosis samples and nonathero-
sclerotic samples (Figures 5(a)–5(f)), which further evidenced
the crucial role of the 6 CpG sites in the occurrence of athero-
sclerosis. Additionally, the area under curve (AUC) value of
our logistic regression model was 1 (Fig S3A), indicating the
accuracy of our model. There was no significant outlier in
the model (Fig S3B), and independent variables and depen-
dent variables showed a great linear correlation (Fig S3C).

Control

12

10

8

6

4

Ex
pr

es
sio

n 
va

lu
e

Case

(a)

5

4

3

2
56 down-regulated

76 up-regulated

–L
og

10
 (a

dj
.P

.V
al

)

1

0

–2 –1 0 1
Log2 (fold change)

2

Below threshold

Up-regulated
Down-regulated

(b)

Figure 2: The atherosclerosis-related DEGs in GSE43292 dataset. (a) The expression level heat map of the DEGs. (b) The significant DEGs
between atherosclerotic samples and nonatherosclerotic samples. Blue: downregulated genes; red: upregulated genes.
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Figure 3: The results of enrichment analyses of the 2860 genes annotated by atherosclerosis-related CpG sites. (a) The significantly enriched
9 KEGG pathways. (b) The top 20 significantly enriched BP terms. (c) The top 20 significantly enriched CC terms. (d) The top 20
significantly enriched MF terms.
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Figure 4: The results of enrichment analyses of the 131 DEGs. (a) The significantly enriched 4 KEGG pathways. (b) The top 20 significantly
enriched BP terms. (c) The 19 significantly enriched CC terms. (d) The 13 significantly enriched MF terms.
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Collectively, our findings indicated that our logistic regression
model was able to distinguish the atherosclerosis samples from
nonatherosclerotic samples accurately.

4. Discussion

Emerging studies indicate the important role of methylation
in atherosclerosis [20]; thus, we herein explored potential
CpG sites associated with the onset of atherosclerosis in this
study. Based on the integrated analysis of atherosclerotic
gene expression and methylation data from three GEO data-
sets, 6 CpG sites were found to be closely related to the
occurrence of atherosclerosis. The diagnostic model con-
structed based on them further validated their crucial roles
in the onset of atherosclerosis.

As a pivotal epigenetic modification, DNA methylation
often regulates cell function via gene silence [11]. Given
the high morbidity and mortality of atherosclerosis and its
complications, many studies have revealed possible associa-
tions between methylation and atherosclerosis pathology
[21, 22]. Moreover, atherosclerosis has even been considered
as a kind of epigenetic disorder [23]. Accumulating evidence
indicates the influence of aberrant DNA methylation on
inflammatory response and endothelial injury [9]. Thus,
we aimed to further explore the potential CpG sites as diag-
nostic biomarkers for atherosclerosis. After conducting
EWAS analysis, 4980 CpG sites were associated with athero-
sclerosis, corresponding to 2860 genes. Besides, we have also
identified 132 DEGs between atherosclerotic and nonathero-
sclerotic samples in another dataset GSE43292, which were
probably associated with the onset of atherosclerosis. Then,
there were totally 32 overlapped genes between the two data-
sets, corresponding to 56 CpG sites. As the importance of
methylation of CpG islands is widely known [24], 6 CpG sites
on CpG islands were subsequently selected to build the logistic
regression model. The model could reliably separate athero-
sclerosis samples from the nonatherosclerotic ones.

These 6 CpG sites were annotated to 6 genes, CARTPT
(CART Prepropeptide), RYR2 (Ryanodine receptor 2),
SEL1L3 (SEL1L family member 3), CNTN4 (Contactin 4),
PDZRN3 (PDZ domain containing ring finger 3), and
SLC22A3 (Solute carrier family 22 member 3). Some evi-
dence supporting our findings can be found from several
previous studies. For example, SEL1L3 has been suggested
to probably involve in cardiovascular mechanisms and
blood pressure regulation [25], which reminded us that
cg08018825 methylation might influence the SEL1L3

expression and affect the atherosclerosis status indirectly.
The CNTN4 genotypes were indicated to be correlated with
an excess of cardiovascular events [26], but howCNTN4 influ-
enced atherosclerosis was not clarified in our study. Addition-
ally, a recent study reported that SLC22A3 polymorphisms
might decrease the risk of coronary heart disease by against
inflammatory response [27], which implied that the inflam-
mation response may be affected by cg25313204 methylation
on SLC22A3 in atherosclerosis. Although PDZRN3 has been
rarely reported in atherosclerosis as far as we know, PDZRN3
has been evidenced to involve in multiple developmental pro-
cesses, such as vascular morphogenesis [28], differentiation of
myoblasts [28], and endothelial intercellular junctions [28].
Nevertheless, the role of CARTPT and PDZRN3 methylation
in atherosclerosis has been firstly revealed in our study. Collec-
tively, the epigenetic regulation of these 6 genes potentially
exerted crucial roles in the onset of atherosclerosis, and further
exploration of them will be probably helpful to better under-
stand atherosclerosis.

Furthermore, we have also preliminarily studied the
functional information of atherosclerosis-related genes
based on the GO and KEGG enrichment results. The 2860
genes annotated by atherosclerosis-related CpG sites in
GSE46394 were significantly enriched in 9 KEGG pathways
and 289 GO terms. The 132 DEGs in GSE43292 were signif-
icantly enriched in 4 KEGG pathways and 132 GO terms.
Among which, there was one overlap pathway between the
two datasets, cAMP signaling pathway. It has been recently
evidenced that cAMP signaling pathway was activated in
atherosclerosis; besides, aspirin could inactivate cAMP
pathway to suppress atherosclerosis progression via down-
regulating the vascular smooth muscle cells (VSMCs) prolif-
eration rate [29]. Notably, the vascular smooth muscle
contraction pathway was also significantly enriched in our
study, whose related endothelial dysfunction has been con-
sidered as one of the important atherosclerotic initiators
[30, 31]. Moreover, another research revealed that the stim-
ulation of cAMP pathway-induced autophagy was probably
involved in antiatherosclerosis and anti-inflammation [32].
Endothelial inflammation was reported to be attenuated
through cAMP pathway induced autophagy [33]. The vital
role of inflammation in various stages of atherosclerosis
has been widely studied [3]. Additionally, the platelet activa-
tion and inflammatory environment have been considered
promising therapeutic targets preventing atherosclerosis
[34]. For all above, our findings are consistent with the
previous studies.

Table 1: The corresponding annotated genes of 6 core CpG sites.

ID FDR UCSC_RefGene_Name Location

cg01187920 5.79E-07 CARTPT 1st Exon

cg03422911 9.56E-07 RYR2 TSS1500

cg08018825 9.20E-07 SEL1L3 TSS1500

cg10967350 8.04E-07 CNTN4 TSS1500

cg14473924 6.03E-07 PDZRN3 TSS200

cg25313204 1.63E-07 SLC22A3 TSS1500

TSS: transcription start sites.
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Figure 5: Continued.
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5. Conclusions

In summary, an integrative analysis has been performed on the
atherosclerotic gene expression and methylation data, and a
diagnostic signature based on 6 CpG sites has been revealed.
After accuracy evaluation, our diagnostic model can reliably
distinguish atherosclerotic samples from nonatherosclerotic
ones. Among the 6 regulated genes by these crucial CpG sites,
PDZRN3 exhibits significantly higher expression in atheroscle-
rotic samples, deserving further investigation.
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