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Mesenchymal stem cells (MSCs) derived from adipose tissue, bone marrow, cord

blood, and other tissues, have recently attracted much attention as potential

therapeutic agents in various diseases because of their trans-differentiation

capacity. However, recent studies have suggested that MSCs also appear to con-

tribute to tumor pathogenesis by supporting tumor microenvironments, increas-

ing tumor growth, and eliciting antitumor immune responses. Although some

studies suggest that MSCs have inhibitory effects on tumor development, they

are overwhelmed by a number of studies showing that MSCs exert stimulatory

effects on tumor pathogenesis. In the present review, we summarize a number

of findings to provide current information about the therapeutic potential of

MSCs in various diseases. We then discuss the potential roles of MSCs in tumor

progression.

D espite tremendous efforts made in many countries to
improve current treatment and diagnosis strategies, many

malignant tumors still remain unresponsive to conventional
treatments such as chemotherapy and radiation. Former thera-
peutic strategies for most cancers have focused on the cancer
cell itself. However, many recent studies have suggested that
coordinated communications between cancer cells and their
surrounding microenvironment exert a more profound effect on
the development of malignancy than has previously been
appreciated.(1) The tumor environment is made up of cancer
cells as well as a number of cellular components, including
endothelial cells, fibroblasts, mesenchymal stem cells (MSCs),
and various inflammatory cell types.(2) Cancer cells release
regulatory molecules that stimulate the surrounding stromal
cells to proliferate and migrate into the tumor. These stromal
cells, in turn, release various cytokines that promote tumor
growth, invasion, and resistance to chemotherapy or radiation.
The ability of tumor-associated MSCs to modulate the tumor

microenvironment has been the subject of intense investigation in
the fields of cancer research. Although some studies suggest that
MSCs have inhibitory effects on cancer cell growth and metasta-
sis,(3–5) they are overwhelmingly outnumbered by a number of
studies showing that MSCs have the ability to migrate into tumor
sites(6) and exert stimulatory effects on tumor development.(7)

In the present review, we summarize a number of results to

provide a detailed overview of therapeutic implications of
MSCs in regenerative medicine and the potential roles of MSCs
in tumor development as the constituents of the tumor microenvi-
ronment.

Characterization of MSCs

In early 1970’s, Friedenstein et al.(8) were the first to identify the
presence of mouse BM-derived fibroblast-like cells (now known
as MSCs) that had the capacity to give rise to multiple cell lin-
eages, including osteoblast and chondrocyte. Over the years, a
large number of studies have provided evidence in support of their
potential applications in tissue engineering and regenerative medi-
cine. MSCs are classically defined by their potential to differenti-
ate into three different mesodermal lineages, namely adipocytes,
chondrocytes, and osteoblasts.(9,10) Under appropriate culture con-
ditions MSCs have also been differentiated into endodermal (ep-
ithelial cells and hepatocytes) and ectodermal (neuronal cells)
cells; hence, their differentiation potential is not limited to meso-
dermal derivatives.(11–14) Commonly, MSCs were further charac-
terized by the expression of a range of cell positive (CD29, CD44,
CD49, CD73, CD90, CD105, CD106, CD140b, CD166 and
STRO-1) and negative (CD11b, CD14, CD19, CD31, CD34,
CD45 and CD133) surface antigens.(10) Using these cell surface
markers, we were able to isolate MSCs from multiple human
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tissues, including adipose tissue, amniotic fluid, BM, peripheral
blood, fetal liver, and UCB.(15–18)

In vivo Niche for MSCs

It was previously thought that MSCs primarily reside in the
BM in so-called niches. MSCs are considered to be an essen-
tial constituent of the BM microenvironment where they sup-
port basal hematopoiesis. However, many recent studies
suggest that they have also been identified in other tissues,
such as adipose tissue, lung, muscle, periodontal ligament, sali-
vary glands, skin, and UCB.(19) Accumulating evidence has
revealed that MSCs can repair injured tissue through direct dif-
ferentiation toward mesoderm/mesenchyme lineages.(20) Fur-
thermore, they may also be able to repair damaged tissues
through paracrine actions.(21) Besides these tissue repair func-
tions, increasing evidence from recent studies demonstrates
that MSCs are capable of suppressing the immune response
through direct cell–cell contact and/or secreted soluble fac-
tor.(22)

Therapeutic Potential of MSCs in Regenerative Medicine

Mesenchymal stem cells represent one of the few multipotent
adult stem cells that are already widely clinically used for tis-
sue repair/regeneration. Besides the traditional mesoderm/mes-
enchymal differentiation potential, MSCs can differentiate into
extra-mesenchymal lineages, such as ectodermal and endoder-
mal lineage cells. Recent studies have suggested that MSCs
have trans-differentiation capacity and may thus be a promis-
ing therapeutic resource for regenerative medicine. Further-
more, MSCs are easily accessible from donors and expandable
in vitro on a large scale without posing significant ethical
problems, making them a reliable cell source for many clinical
applications. As well as providing scaffolding architecture,
MSCs themselves are critical for niche formation and mainte-
nance in BM by secreting various cytokines that influence
hematopoiesis.(23) Indeed, MSCs have previously been shown
to accelerate healing and hematopoietic recovery in breast can-
cer patients receiving chemotherapy.(24) Furthermore, MSCs
have long been reported to have immune privilege status with
low MHC I and no MHC II expression; this property is
thought to enable MSCs transplantation with a low risk of cel-
lular rejection.(25) The immunosuppressive properties of MSCs
are achieved through paracrine inhibition of T- and B-cell pro-
liferation and differentiation.(26) Currently, MSCs have also
been used to treat a variety of bone-related diseases. The
osteogenic differentiation potential of MSCs has been used to
treat and manage bone fractures alone or in combination with
scaffolds with a high clinical success rate.(27) In clinical stud-
ies, Stamm et al.(28) have also shown that autologous BM-
derived MSCs are effective in treating myocardial infarction.
Consistent with this study, it was observed that MSCs can dif-
ferentiate into functional myocardial-like cells in vitro,
although the underlying pathophysiological mechanisms
remain to be elucidated.(29,30) Systemically injected MSCs into
animals with traumatic brain injury has also been shown to
preferentially migrate to the site of injury and improve
recovery, although whether these therapeutic effects are a
result of secretion of neuromodulatory factors or direct differ-
entiation into neural cells remains to be elucidated.(31,32)

Therefore, MSCs are one of the most interesting areas of stem
cell research demanding further investigation into their clinical
use.

Potential Tumorigenicity of MSCs-Based Therapies

Mesenchymal stem cells have been discovered in multiple
adult tissues including bone, cartilage, fat, muscle, and tendon
and exhibit extensive self-renewal ability and wide multi-line-
age differentiation potential.(33) Indeed, a number of non-clini-
cal studies and clinical trials have reported promising
beneficial effects of MSCs transplantation.(34–37) However, sev-
eral studies have observed potential adverse effects of MSCs,
including tumor growth, metastasis, and transformation into
cancer cells.(38–40) Recently, it was reported that human pul-
monary tissue-derived MSCs exhibit high proliferative capacity
with unbalanced chromosomal rearrangements, but there was
no evidence of malignant transformation.(41) Moreover,
Houghton et al.(42) demonstrated that bone marrow-derived
MSCs progressed to gastric epithelial cancer in mice experi-
mentally infected with Helicobacter hepaticus. These adverse
effects may be explained by a heterogeneous MSCs population
used in experiments carried out by Rosland et al.(43) and Rubio
et al.(44) that was originally contaminated by cells that initially
grew slowly and then transformed into cancer cells.(45,46)

Moreover, current immune-deficient animal models may not be
suitable for predicting tumor initiation or progression. It was
highlighted that the immunological status of experimental ani-
mals should be considered in studies designed for evaluation
of tumorigenicity of MSCs. When MSCs were allogeneically
transplanted into immunocompetent mice, immune rejection of
allogeneic cells may prevent development of tumor in vivo. To
date, no cancer has been diagnosed or has recurred in clinical
trials that would originate from experimentally given MSCs.
However, potential tumorigenicity of MSCs should be further
explored and monitored in order to elucidate the risk of poten-
tial tumorigenicity related to MSCs-based therapies.

MSCs as a Direct Cellular Origin of Cancer

The origin of cancer cells is an area of ongoing research.
Recently, MSCs have been indicated as the cellular origin of cer-
tain chromosomal translocation-associated solid tumors.(47)

Indeed, a number of studies have suggested that the introduction
of the FLI-1/EWS fusion protein into MSCs may cause transfor-
mation of these cells into malignant sarcoma cells.(48) Consistent
with these studies, ectopic expression of other oncogenic pro-
teins, such as the FUS/CHOP fusion protein or synovial sarcoma
translocated protein (SYT-SSX1), in human MSCs can cause
transformation of MSCs into myxoid liposarcomas(49) or sar-
coma cells,(50) respectively. Taken together, these studies sup-
port the hypothesis that MSCs may represent target cells for
oncogenic development of sarcoma. In addition, the CXCR6 sig-
naling pathway stimulates transformation of MSCs into cancer-
associated fibroblasts which secrete various tumor stimulating
factors.(51) Interestingly, Houghton et al.(42) found that MSCs
may initiate gastric cancer development by fusing with gastric
mucosal cells under Helicobacter pylori infection. However, it
is yet to be determined whether or not MSCs also give rise to
other cancer types. Transformations of MSCs into malignant
cells are summarized in Figure 1, highlighting the role of the
signaling proteins in stimulating tumorigenesis.

MSCs Migrate Preferentially Towards Tumor Sites

Rapidly growing cancers have been shown to induce a persis-
tent inflammatory microenvironment which may be similar to
that evoked by the wound-healing response.(52) Interestingly,
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accumulating evidence indicates that MSCs are able to prefer-
entially migrate into tumor sites in a similar way to how they
are recruited into sites of injury.(53) Indeed, systemically
injected MSCs accumulated at tumor sites in tumor-bearing
mice with limited homing capacity to other organs.(54,55) Fac-
tors responsible for MSCs recruitment to tumors have emerged
as a new exciting research field. Recent advances have shown
that the factors responsible for the recruitment of hematopoi-
etic stem cells (HSC), such as basic fibroblast growth factor
(bFGF),(56) hepatoma-derived growth factor (HDGF),(57)

interleukin-6 (IL-6),(58) monocyte chemotactic protein-1
(MCP-1),(59) stromal-cell derived factor (SDF-1),(60) urokinase
plasminogen activator (uPA),(61) and vascular endothelial
growth factor (VEGF),(56) have also been involved in the
migration capacity of MSCs toward tumor xenografts (Fig. 2).
Although various factors are responsible for MSCs tropism,
inflammatory-related responses appear to be important regula-
tors of MSCs recruitment to tumor sites. However, it is

important to note that the inhibition of a single factor alone
appears to be effective, but not sufficient to completely disrupt
MSCs homing and migration into tumor sites.(62) These results
suggest that the sophisticated interplay of multiple components
appears to be involved in their tropism to tumors. MSCs
recruitment to developing tumors with great affinity may initi-
ate a vicious cycle in tumor progression, causing further
recruitment of MSCs to tumor sites, thereby exacerbating vari-
ous steps of tumor development such as proliferation/apoptosis,
invasion, metastasis, and angiogenesis.(19,63)

Role of MSCs in Cancer Pathogenesis

Tumor initiation and progression is not only affected by
genetic alterations in the tumor cell itself but potentially also
by non-tumor cells present in the microenvironment. In addi-
tion to neoplastic cells, the tumor microenvironment is com-
posed of multiple non-tumor cell types, including blood vessel

Fig. 1. Activation of various oncogenic proteins in mesenchymal stem cells (MSCs) can induce malignant transformation. (a) Introduction of var-
ious oncogenic proteins (FLI-1/EWS, FUS/CHOP, and synovial sarcoma translocated protein [SYT-SSX1]) into MSCs may cause transformation of
these cells into malignant sarcoma cells. (b) C-X-C motif chemokine receptor 6 (CXCR6) signaling pathway stimulates the transformation of MSCs
into cancer-associated fibroblasts. (c) Cell fusion between MSCs and gastric mucosal cells under Helicobacter pylori infection increases the risk of
developing gastric carcinoma.

Fig. 2. Various factors are responsible for mesenchymal stem cells (MSCs) tropism towards tumor sites. Various factors, such as basic fibroblast
growth factor (bFGF), hepatoma-derived growth factor (HDGF), interleukin 6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), stromal cell-
derived factor 1 (SDF-1), urokinase-type plasminogen activator (uPA), and vascular endothelial growth factor (VEGF), have been involved in the
migration capacity of MSCs toward tumor xenografts.
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cells, various immune cells, fibroblasts, and MSCs. In particu-
lar, MSCs have been shown to communicate with cancer cells
directly through gap junctions as well as indirectly through
soluble factors such as cytokines, chemokines, complement
factors, growth factors, metabolites, and proteolytic enzymes.
Contribution of MSCs to tumor pathogenesis has been the sub-
ject of intense scientific research in recent years. As their
potential roles in cancer pathogenesis are still being elucidated
in detail, several possible mechanisms through which MSCs
promote cancer progression and metastasis are summarized in
Table 1.

Direct actions on cancer cells. Recent observations suggest
that MSCs produce and secrete a number of paracrine factors,
such as chemokines, cytokines and growth factors, thereby reg-
ulating tumor progression and metastasis in many tumors.
Indeed, MSCs-derived inflammatory modulators, such as
CXCL1, CXCL2 or CXCL12, have been shown to accelerate
tumorigenesis in a wide range of tumor models through their
respective receptors CXCR2 and CXCR4 on the cells.(64,65)

Similarly, MSCs-derived inflammatory chemokines, including
IL-6 and IL-8, have been shown to promote malignant poten-
tial in multiple cancer models, such as colon(66) and breast.(67)

Consistently, recent studies have revealed that fluorescence
dye-labeled MSCs migrated into rapidly growing breast cancer

xenografts and increased CSC subpopulations through a para-
crine mechanism involving IL-6 and CXCL7.(67)

Indirect actions on cancer cells. Recent studies have demon-
strated the MSCs typically facilitate angiogenesis through para-
crine secretion of angiogenic growth factors.(68) Indeed, MSCs
may stimulate tumor neo-angiogenesis within the primary
tumor through the production and secretion of tumor angiogen-
esis factor, such as angiopoietins, EGF, galectin-1, IGF-1,
KGF, and VEGF(47,69) and are intimately involved in the
recruitment of endothelial cells, thereby promoting the forma-
tion of new blood vessels in and around a tumor.(70,71) Further-
more, recent studies have demonstrated that MSCs can
differentiate into endothelial cells, resulting in significant
increased tumor vascularity.(72,73) These observations highlight
the distinct aspect of their tumor-supporting potential and sug-
gest that targeting MSCs appears to be one of the most
promising treatment strategies for highly vascularized tumors.

Immunomodulatory characteristics of MSCs. Recent investiga-
tions have demonstrated that MSCs may also act as an
immune regulator to suppress both innate and adaptive immu-
nity.(74,75) MSCs may modulate immune responses through
regulation of the proliferative capacities of various immune
cells which are important in maintaining self-tolerance and
immune homeostasis. Indeed, MSCs have been shown to

Table 1. Summary of the role of MSCs in cancer pathogenesis

Action mechanism Target Cell type References

Direct actions on cancer cells Release cytokines (CXCL1, CXCL2, and CXCL12) Breast cancer 64,65

Release inflammatory factors (IL-6 and IL-8) Colon cancer

Breast cancer

66,67

Indirect actions on cancer cells Release angiogenesis factor (angiopoietins, EGF,

galectin-1, IGF-1, KGF, and VEGF)

Colon cancer

Skin cancer

47,69

Immunomodulatory effects Inhibit B-cell function B-cell 76

Inhibit natural killer cell function Natural killer cell 77

Inhibit T-cell function T-cell 78,79

CXCL, chemokine (C-X-C motif) ligand; EGF, epidermal growth factor; IGF, insulin-like growth factor; IL, interleukin; KGF, keratinocyte growth
factor; MSCs, mesenchymal stem cells; VEGF, vascular endothelial growth factor.

Fig. 3. Schematic diagram summarizing the
potential roles of mesenchymal stem cells (MSCs) in
tumor development. Although some studies
suggest that MSCs have inhibitory effects on cancer
cell growth and metastasis, they are
overwhelmingly outnumbered by a number of
studies showing that MSCs have the ability to
migrate into tumor sites and exert stimulatory
effects on tumor development by secreting a
number of paracrine factors, such as chemokines,
cytokines, growth factors, and immune modulatory
factors. CXCL, chemokine (C-X-C motif) ligand; EGF,
epidermal growth factor; IGF-1, insulin-like growth
factor; IL, interleukin; KGF, keratinocyte growth
factor; NK, killer cell; VEGF, vascular endothelial
growth factor.
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significantly inhibit B-cell proliferation and maturation(76) as
well as NK cells,(77) resulting in less secretion of soluble
immune mediators and NK-mediated cytotoxicity, respectively.
Consistent with these results, MSCs have recently been shown
to inhibit the proliferation of CD4+/CD8+-activated T cells by
cell–cell contact.(78) MSCs may even suppress T-cell prolifera-
tion indirectly by regulating the proliferation and maturation of
immune-regulatory DC, which trigger generation of regulatory
T cells.(79)

Taken together, the immunomodulatory properties of MSCs
may be mediated, at least in part, by direct cell–cell contact
and/or specific immune-modulatory factors secreted by MSCs,
thereby promoting tumor growth and progression. A schematic
diagram summarizes the potential roles of MSCs in tumor
development (Fig. 3).

Inhibitory Effects of MSCs on Cancer Cell Growth

In contrast to the tumor-stimulatory effect of MSCs, various
studies have shown that MSCs inhibit tumor progression and
metastasis by suppressing immune responses, inhibiting angio-
genesis, suppressing Akt and Wnt signaling, and inducing apop-
tosis or cell cycle arrest in the G0-G1 phase.(80) Indeed, co-
administration of glioma cells and MSCs resulted in signifi-
cantly decreased tumor growth and angiogenesis by suppressing
Akt signaling in a murine experimental model.(81) Subsequently,
several studies have also demonstrated tumor suppressive
effects of MSCs in multiple types of cancer. Ohlsson et al.(82)

showed that MSCs effectively inhibited the growth of colon car-
cinoma by infiltrating immune cells in vivo. MSCs also exhib-
ited potent antitumor activity of both hematopoietic and non-
hematopoietic origin by inducing G1 phase cell cycle arrest.(83)

In addition, Clarke et al.(5) showed that MSCs reduce migration
and invasion of human breast cancer cells through regulating
the secretion of TIMP-1 and -2. Similarly, MSCs can signifi-
cantly decrease the proliferation of chronic myelogenous leuke-
mia in a cell-to-cell contact-independent way and these
suppressive effects were achieved through DKK-1 (dickkopf-1)
secretion.(84) Khakoo et al. also reported that tumor-suppressive
effects of MSCs can be correlated with their ability to inhibit
target cell Akt signaling activity in a contact-dependent way.(85)

A potential mechanism of MSCs-mediated tumor cell suppres-
sion could also be related to its immunosuppressive effects. As
modulators of immune responses, MSCs produce multiple
immunomodulators that suppress the growth of various immune
cells by arresting the early stages of the cell cycle.(86,87) These
MSCs-mediated inhibitory effects on multiple types of immune
cells can also be produced on other “non-immune” cells. In this
context, Ramasamy et al.(83) demonstrated that MSCs inhibit
cell proliferation of multiple malignant cell types of both
immune and non-immune origin. Importantly, these conflicting
results regarding the influence of MSCs on tumor development
may be caused by various experimental conditions such as dif-
ferences in time points after treatment, different cell source
(adipose tissue, bone marrow, and peripheral blood), and route
of cell administration (intramuscular, intravenous, and subcuta-
neous injection).(19) Therefore, the role of MSCs in cancer pro-
gression and metastasis is under debate and its molecular
mechanism is not yet fully established.

Communication Between MSCs and Cancer Through EV

Extracellular vesicles are 40–1000-nm membrane-enclosed
vesicles that are produced and released by the pinching off

of the outer membrane.(88) EV are released from various cell
types, including MSCs, constitutively or under stimulation,
and exert different effects depending on the target cell.(89)

MSCs-EV express some characteristic markers of their
origin, such as CD29, CD44, CD73, and CD105.(90) MSCs-
EV also contain a variety of molecules associated with
MSCs self-renewal and multi-lineage differentiation potential
(TGF-b, MAPK, PPAR etc.),(91) lipids, and genetic materials
(mRNA and miRNAs)(92) involved in multiple biological
functions.

Tumor-supportive effects of MSCs-EV. Vallabhaneni et al.(93)

demonstrated that bone marrow-derived MSCs-EV contain a
large amount of tumor-supportive small RNA (miRNA-21 and
34a), and approximately 150 different factors, most of which
are known tumor-supportive proteins such as PDGFR-b,
TIMP-1, and TIMP-2. Indeed, they also demonstrated the
tumor supportive function of these EV in a breast cancer xeno-
graft model.(93) Zhu et al.(94) also revealed that MSCs-EV pro-
mote tumor growth in vivo by enhancing VEGF expression
and ERK1/2 signaling activity in gastric and colon cancer
xenograft models. Umbilical cord-derived MSCs-EV can pro-
tect against cisplatin-induced renal oxidative stress and apopto-
sis in vivo and in vitro.(95) Subsequently, Yang et al.(96)

demonstrated that MSCs-EV were associated with the acquisi-
tion of protumorigenic properties by enhancing the expression
of MMP-2 and MSCs-specific markers (CD73 and CD90) in
breast and ovarian cancer cells. In addition, Salomon et al.(97)

have revealed that placental MSCs-EV promote the migration
and angiogenic tube formation of microvascular endothelial
cells under hypoxic conditions. Lin et al.(98) noted that
MSCs-EV stimulate the migration and growth of breast cancer
cells by enhancing Wnt/b-catenin signaling. Taken together,
these findings suggest that MSCs-EV can mediate intercellular
communication to improve tumor growth and metastasis.

Antitumor effects of MSCs-EV. In contrast to the tumor-stimu-
latory effect of MSCs-EV, various studies have shown that
bone marrow-derived MSCs-EV induced cell-cycle arrest in
the G0/G1 phase and apoptosis of multiple types of cancer
cells such as hepatoma, Kaposi’s sarcoma, and ovarian cancer
cells, in vitro and in vivo.(99) Lee et al.(100) observed that
MSCs-EV suppressed angiogenesis by down-regulating VEGF
expression in tumor cells, which lead to angiogenesis inhibi-
tion in vitro and in vivo. Moreover, liver stem cell-derived EV
inhibited the growth of multiple types of cancer cells such as
glioblastoma, hepatoma, and lymphoblastoma cells, both
in vitro and in vivo.(101) Another study has also presented the
same result; MSCs-EV exhibited a potent anti-angiogenic
activity by releasing multiple miRNAs that target VEGF in
human nasopharyngeal carcinoma cells.(102) These findings
suggest that EV transfer from the various MSCs may suppress
tumor growth and angiogenesis. However, the role of MSCs-
EV in tumor development is still controversial and their
molecular mechanisms are not yet fully established.

Conclusion

Growing evidence shows that besides the traditional meso-
derm/mesenchymal differentiation potential, MSCs can differ-
entiate into extra-mesenchymal lineages, such as ectodermal
and endodermal cells. Therefore, MSCs are one of the most
interesting areas of stem cell research demanding further inves-
tigation for their clinical use. However, it is also clear that
tumor-derived cytokines have a remarkable capacity to attract
MSCs to the tumor microenvironment. The remarkable tropism
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of MSCs for primary and metastatic tumor sites has been
observed with almost all cancer types. It is generally thought
that MSCs may be involved in multiple stages of cancer devel-
opment as a source of soluble regulatory factors to regulate
immune surveillance, tumor growth, and tumor angiogenesis
and, when in direct contact with cancer cells, MSCs affect
tumor growth, apoptosis, and chemodrug resistance. Although
increased attention is now focused on the effects of MSCs on
tumor progression, current knowledge about the involvement
of MSCs in tumor progression and metastasis and their under-
lying mechanisms are still at an early stage. Therefore, more
detailed information about the mutual interactions between
MSCs and cancer cells will undoubtedly lead to more effective
clinical therapy in the future.
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Abbreviations

BM bone marrow
CSC cancer stem cell
CXCL chemokine (C-X-C motif) ligand
DC dendritic cell
EGF epidermal growth factor
EV extracellular vesicle
IGF insulin-like growth factor
IL interleukin
KGF keratinocyte growth factor
miRNA microRNA
MSCs mesenchymal stem cells
NK natural killer
PDGFR platelet-derived growth factor receptor
PPAR peroxisome proliferator-activated receptor
SYT-SSX1 synovial sarcoma translocated protein
TGF-b transforming growth factor beta
UCB umbilical cord blood
VEGF vascular endothelial growth factor
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