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Abstract: Archaea often thrive in environmental extremes, enduring levels of heat, pressure, salinity,
pH, and radiation that prove intolerable to most life. Many environmental extremes raise the
propensity for DNA damaging events and thus, impact DNA stability, placing greater reliance
on molecular mechanisms that recognize DNA damage and initiate accurate repair. Archaea can
presumably prosper in harsh and DNA-damaging environments in part due to robust DNA repair
pathways but surprisingly, no DNA repair pathways unique to Archaea have been described. Here,
we review the most recent advances in our understanding of archaeal DNA repair. We summarize
DNA damage types and their consequences, their recognition by host enzymes, and how the collective
activities of many DNA repair pathways maintain archaeal genomic integrity.
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1. Introduction

Aside from the intrinsic instability of DNA, genomes are threatened by a plethora of endogenous
and exogenous insults. Left unrepaired, DNA damage increases mutation rates, causing adverse
effects on cellular health, with often drastic consequences to cellular and organismal fitness.
Endogenous damage has many sources: genomic material can spontaneously undergo base hydrolysis
or deaminate, and torsional stresses brought about by information processing systems can bring
about genomic instability. Cellular machineries will occasionally incorporate mismatch errors
or ribonucleotide monophosphates (rNMPs) into newly synthesized DNA, and many metabolic
enzymes produce reactive oxygen species (ROS) which may oxidize DNA bases. Cells must also
tolerate exogenous sources of DNA damage which vary depending on the external environment.
Chemical crosslinkers, environmentally generated ROS, ultraviolet light, and ionizing radiations, from
within or which penetrate the atmosphere, all have mutagenic effects on DNA.

Many archaea thrive within niche and extreme environments which can increase rates of DNA
damage. Many halophilic archaea, for example, thrive in shallow salt plains and endure extreme levels
of UV radiation [1], while some hyperthermophilic species persist at temperatures that would easily
denature purified DNA [2,3], and yet, the presumed increased rates of deamination, depurination,
and oxidation are somehow tolerated [4–6]. In addition to growth in the extremes, many archaeal
species maintain genomic stability levels to display similar rates of spontaneous mutation to mesophilic
prokaryotes such as Escherichia coli [7–9]. Perhaps surprisingly, no unique DNA repair pathways
have been described in Archaea (Figure 1), nor extremophilic Bacteria, i.e., Deinococcus radiodurans.
Insight into how Archaea detect and convert damaged DNA bases into repairable substrates has begun
to reveal how genomic integrity is preserved in extremis. Here, we review current knowledge of
archaeal DNA repair pathways and examine both discrepancies and outstanding questions in the field.
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Figure 1. Predicted distribution of pathway-specific archaeal DNA repair proteins by clade [10], 
according to KEGG (Kyoto Encyclopedia of Genes and Genomes) orthologies. Many pathways appear 
conserved, with most variation found in distribution of mismatch repair (MMR) and nucleotide 
excision repair (NER) proteins. 

A multitude of strategies to identify modified nucleotides or damaged DNA structures (here, 
collectively termed recognition) and initiate repair is encoded in most genomes, with processes for 
recognition and repair perhaps best studied within mesophilic bacteria and eukarya. Some DNA 
damage repair can be directly reversed, i.e., photoreactivation of thymine–thymine dimers by 
photolyases and repair of methylation adducts by alkyltransferases such as AlkB [11,12]. However, 
DNA repair more commonly involves pathways which require several specialized enzymes through 
steps of damage recognition, initiation of repair, and final polymerization/ligation of resynthesized 
DNA. Collectively, the cycle of recognition-, initiation-, and ligation-based DNA repair (Figure 2) 
dominates the conserved DNA repair pathways that account for the majority of DNA repair, be it 
double-strand break (DSB) repair, mismatch repair (MMR), ribonucleotide excision repair (RER), 
base excision repair (BER), or both global genomic and transcription coupled nucleotide excision 
repair (GG-NER, TC-NER). The core DNA repair pathways generally consist of recognition factors 
that more often than not cleave the DNA backbone and or glycosidic linkage to the nucleotide base, 
a repair DNA polymerase (DNAP) for strand resynthesis, a nuclease (or the exonuclease activity of 
DNAP) for removal of damaged bases/strands displaced during resynthesis, and DNA ligase to seal 
nicks generated during repair. 

Figure 1. Predicted distribution of pathway-specific archaeal DNA repair proteins by clade [10],
according to KEGG (Kyoto Encyclopedia of Genes and Genomes) orthologies. Many pathways appear
conserved, with most variation found in distribution of mismatch repair (MMR) and nucleotide excision
repair (NER) proteins.

A multitude of strategies to identify modified nucleotides or damaged DNA structures (here,
collectively termed recognition) and initiate repair is encoded in most genomes, with processes for
recognition and repair perhaps best studied within mesophilic bacteria and eukarya. Some DNA
damage repair can be directly reversed, i.e., photoreactivation of thymine–thymine dimers by
photolyases and repair of methylation adducts by alkyltransferases such as AlkB [11,12]. However,
DNA repair more commonly involves pathways which require several specialized enzymes through
steps of damage recognition, initiation of repair, and final polymerization/ligation of resynthesized
DNA. Collectively, the cycle of recognition-, initiation-, and ligation-based DNA repair (Figure 2)
dominates the conserved DNA repair pathways that account for the majority of DNA repair, be it
double-strand break (DSB) repair, mismatch repair (MMR), ribonucleotide excision repair (RER),
base excision repair (BER), or both global genomic and transcription coupled nucleotide excision repair
(GG-NER, TC-NER). The core DNA repair pathways generally consist of recognition factors that more
often than not cleave the DNA backbone and or glycosidic linkage to the nucleotide base, a repair
DNA polymerase (DNAP) for strand resynthesis, a nuclease (or the exonuclease activity of DNAP)
for removal of damaged bases/strands displaced during resynthesis, and DNA ligase to seal nicks
generated during repair.
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Figure 2. Archaeal DNA repair pathways follow similar generalized steps: (i) Recognition of DNA 
damage by pathway-specific enzymes. (ii) Initiation of repair by conversion of DNA damage into 
appropriate and repairable substrate. (iii) Conclusion of repair by resynthesis of damaged DNA from 
a complementary undamaged strand, degradation of damaged strand by flap endonuclease of 
intrinsic DNA polymerase exonuclease activity, and nick ligation by DNA ligase. 

2. Double-Strand Break (DSB) Repair 

DSBs are potentially the most mutagenic of all DNA damaging events. As the name suggests, 
DSBs involve a co-localized break in the phosphodiester backbones of both DNA strands, permitting 
regions of the genome to separate and offering the potential that the wrong ends, or trimmed ends of 
the DNA will be linked with the loss or repositioning of genetic information. DSBs can be generated 
“accidentally” by missteps of information processing machineries, i.e., by mistiming of replication, 
replication–transcription complex conflicts, and replication or transcription through existing DNA 
damage/secondary structures [13–16]. DSBs are also purposefully generated as essential 
intermediates of many nucleic acid metabolism pathways [17–20] and if such pathways are aborted 
prematurely, intermediate complexes may be released inappropriately. Unchecked DSBs can be 
extremely detrimental to cellular health, causing arrests of replication and transcription which may 
lead to apoptosis. The potential cytotoxicity of DSBs necessitates their repair, and thus, multiple 
conserved pathways (both homologous recombination (HR)-based and error-prone) have evolved in 
cells to restore functional genomic architecture. 

2.1. Error-Prone DSB Repair Pathways 

It is likely, especially in Archaea with low or varying ploidy [21,22], that HR is not always a 
readily available pathway for the efficient repair of DSBs. This is highlighted by the evolution of 
alternative methods of DSB repair which do not require an undamaged template strand for repair. 
Two conserved DSB repair methods—Microhomology-Mediated End Joining (MMEJ) and Non-

Figure 2. Archaeal DNA repair pathways follow similar generalized steps: (i) Recognition of DNA
damage by pathway-specific enzymes. (ii) Initiation of repair by conversion of DNA damage into
appropriate and repairable substrate. (iii) Conclusion of repair by resynthesis of damaged DNA from a
complementary undamaged strand, degradation of damaged strand by flap endonuclease of intrinsic
DNA polymerase exonuclease activity, and nick ligation by DNA ligase.

2. Double-Strand Break (DSB) Repair

DSBs are potentially the most mutagenic of all DNA damaging events. As the name suggests,
DSBs involve a co-localized break in the phosphodiester backbones of both DNA strands,
permitting regions of the genome to separate and offering the potential that the wrong ends, or trimmed
ends of the DNA will be linked with the loss or repositioning of genetic information. DSBs can be
generated “accidentally” by missteps of information processing machineries, i.e., by mistiming of
replication, replication–transcription complex conflicts, and replication or transcription through
existing DNA damage/secondary structures [13–16]. DSBs are also purposefully generated as essential
intermediates of many nucleic acid metabolism pathways [17–20] and if such pathways are aborted
prematurely, intermediate complexes may be released inappropriately. Unchecked DSBs can be
extremely detrimental to cellular health, causing arrests of replication and transcription which may lead
to apoptosis. The potential cytotoxicity of DSBs necessitates their repair, and thus, multiple conserved
pathways (both homologous recombination (HR)-based and error-prone) have evolved in cells to
restore functional genomic architecture.

2.1. Error-Prone DSB Repair Pathways

It is likely, especially in Archaea with low or varying ploidy [21,22], that HR is not always a readily
available pathway for the efficient repair of DSBs. This is highlighted by the evolution of alternative
methods of DSB repair which do not require an undamaged template strand for repair. Two conserved
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DSB repair methods—Microhomology-Mediated End Joining (MMEJ) and Non-Homologous End
Joining (NHEJ) [23,24]—are relatively rapid and simple but both pathways are prone to loss of
genetic material.

Microhomology-Mediated End Joining (MMEJ) (Figure 3a) repair is dependent on short regions
of close homology between sequences upstream and downstream of the DSB. These microhomologies
are revealed by cellular exonucleases, allowing complementary sequences to anneal, producing a
flapped substrate which is likely trimmed by flap endonuclease (Fen1) or the Rec J/GINS-associated
nuclease (GAN) before DNA ligase seals the final nick(s) [25]. The unfortunate consequence of
dependence on areas of microhomology is that they can sometimes be located far from the site of
damage, and often intervening sequences are lost during repair [26]. Many details of archaeal MMEJ
require additional studies, but DNA repair products consistent with MMEJ activities have been
observed in both crenarchaea and euryarchaea when studying mechanisms of CRISPR–Cas immunity
systems [27,28].
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exonuclease activity produces complementary ends for conclusion of DNA repair. The proteins that 
mediate NHEJ in many archaeal clades have not yet been defined. 

2.2. Homologous Recombination (HR)-DSB Repair 
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facilitates a more accurate DSB repair mechanism, dependent on homologous recombination (HR-
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Figure 3. “Error-prone” double-strand break (DSB) repair pathways in Archaea: (a) In microhomology
-mediated end joining (MMEJ), small regions of microhomology (yellow) are revealed by exonuclease
activity; annealing and subsequent processing by flap endonuclease and DNA ligase often results in
the loss of genetic information. (b) Non-homologous end joining (NHEJ) in some archaeal species relies
on recognition of broken ends by Ku which brings broken ends together, where exonuclease activity
produces complementary ends for conclusion of DNA repair. The proteins that mediate NHEJ in many
archaeal clades have not yet been defined.

Non-Homologous End Joining (NHEJ) (Figure 3b) does not require large- or even micro-regions
of homology for repair of DSBs. Instead, broken ends are brought together in a protein-mediated
complex involving the DNA end-binding Ku protein and a multitude of likely dynamically associated
DNA repair enzymes. Although the molecular details have not been determined, Ku bound ends
are exonucleolytically processed to generate 3′ ends that can be extended by strand-displacement
synthesis by DNA polymerase [29,30]. Synthesis by DNA polymerase bridges the DSB, allowing DNA
ligase to seal resulting nicks. Archaeal NHEJ relies on exonuclease activity to produce a template for
strand resynthesis and can thus, result small deletions of genetic information.
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2.2. Homologous Recombination (HR)-DSB Repair

The retention of multiple, in some cases many tens of, genomes in some archaeal species facilitates
a more accurate DSB repair mechanism, dependent on homologous recombination (HR-DSB) [31–33].
HR-mediated methods for repairing DSBs have a higher energetic cost but are generally error-free
because an undamaged template strand is made available without the need for strand resectioning
(Figure 4). HR-DSB is considered accurate but it is not without consequence, as crossover events
or gene conversions are common results of HR—likely playing a significant role in the evolution of
archaeal genomes. Recognition of DSB ends and subsequent “resectioning” by exonucleases to produce
single stranded 3′ ends is initiated by the universally conserved Mre11/Rad50 complex (SbcC/SbcD
in Bacteria) with resectioning activities performed by RecBCD [34–37]. Resectioning steps allowing
formation of 3′ ssDNA overhangs in Archaea have historically been unclear, [38,39]. Mre11/Rad50
genes are commonly encoded in operons with both a bipolar helicase HerA and a novel nuclease NurA
in hyperthermophilic archaea, implying a functional link of these three enzymes to drive resectioning
activities [40,41]. Current models suggest HerA and NurA are responsible for activities that generate
the 3′ ssDNA ends after recruitment by the DSB localized Mre11/Rad50 complex [42,43]. In Sulfolobus,
HerA resectioning is required for cell viability with the functional HerA complex existing as a mixture
of hexameric and heptameric states bound around strands of dsDNA. The nuclease NurA is thought to
preferentially bind on the outside of the hexameric HerA–dsDNA substrate, where ATP-dependent
helicase activity of the HerA ring is thought to stimulate NurA activity, likely by coupling translocation
and ssDNA substrate presentation for NurA to degrade [44–47]. How this complex is specifically
activated by Mre11/Rad50 after recognition of DSBs to produce appropriate resectioning remains
elusive and is vitally important information for understanding the initiation of DSB repair by HR.

After resectioning, free ssDNA 3′ ends are recognized by the conserved recombinase RadA
(bacterial RecA; eukaryotic Rad51) which polymerizes along the length of the ssDNA region [48–51].
The resulting dynamic RadA nucleoprotein filament then binds to local dsDNA and searches for a
homologous sequence. Once located, the resulting intermediate structure is referred to as the “D-loop”,
the primary initiation point for HR-DSB repair. D-loop formation permits two alternative and divergent
pathways to complete repair. In some cases, only one 3′ end of the resectioned DSB is captured into a
D-loop and is subsequently used as a starting point for DNA synthesis using the invaded, undamaged
DNA strand as a template in a process termed synthesis-dependent strand annealing (SDSA) [52,53].
The newly synthesized strand is then unwound from the invaded stand, where it can anneal with
homologous sequences on the other side of the DSB to accurately repair the lesion. Unwinding of the
newly synthesized strand is facilitated by the helicase Hel308, which uses a winged-helix domain in a
ratchet mechanism to translocate 3′-5′, simultaneously separating DNA strands in an ATP-dependent
manner [54,55]. SDSA HR-DSBR does not result in a crossover event but can result in gene conversion
if the invaded strand used as a template and the invading strand are heterozygous [56].

Alternatively, both ends of the DSB can be captured, giving rise to a Holliday junction.
Once generated, the Holliday junction must be resolved before repair can be completed. The archaeal
Holliday junction resolvase Hjc specifically recognizes four-way junctions of DNA and uses nuclease
activity to resolve the junction [57,58]. The resultant newly formed junctions can have significant
impacts on genomic integrity and Holliday junction resolution is likely an important point of regulation
for HR-DSBR. The cleavage activity of Hjc is repressed by phosphorylation in Sulfolobus islandicus,
which is consistent with bacterial and eukaryotic resolvases [59,60]; cells are more resistant to high
doses of DNA damaging agents when the phosphomimetic version of Hjc is expressed [61].

How cells commit to an accurate or error-prone DSB repair pathway has significant consequences
for gene conversion, genomic stability, and crossover events. Competition between the pathways is
likely, and in halophilic Archaea, Mre11/Rad50 appears to influence rates of HR [62]. When mutations
to the Mre11/Rad50 complex in Haloferax volcanii were introduced that were predicted to recruit
resectioning enzymes essential for HR, instead of activating HR-DSBR, usage of HR-DSBR became
“unrestrained”. These Mre11/Rad50 mutant strains appeared to grow faster but were more challenged
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by DNA damaging agents, suggesting correct regulation of both error-prone and HR pathways is
required for optimal DNA repair. Notably, halophilic Archaea are generally polyploid, suggesting that
species ploidy may not be completely accurate in determining whether HR-based DSBR methods are
preferred. Post translational modification of DSB repair components, including methylation of the
Mre11/Rad50 complex in Sulfolobus acidocaldarius, likely also contribute to the efficiency and rates of
different DSBR pathways [63,64]. As DSBs are a likely consequence of replication apparatuses reaching
nicks or damaged DNAs, it is perhaps not surprising that many of the DSBR enzymes maintain
interactions with known components of the replicative apparatus. Hjc, Mre11/Rad50, and Hel308 are
all known to interact with DNA replication proteins, reinforcing the link between double-strand break
repair proteins and locating to areas of active replication [34,65,66].
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Figure 4. Homologous recombination-based DSB repair in Archaea. Broken end recognition by
the Mre11/Rad50 complex allows formation of 3′ overhangs by the HerA hexamer. RadA forms a
nucleoprotein filament on the 3′overhangs and facilitates initiated homologous recombination through
strand invasion. In the case of just one strand invasion event, synthesis-dependent strand annealing
(SDSA) can occur before repair conclusion, a non-crossover event. If both strands are involved in
local strand invasion events, a Holliday junction may form, the resolution of which may lead to
crossover events.
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2.3. New Resources Emerging from DSB Repair Pathways

As more molecular details of both HR and error-prone archaeal DSB repair mechanisms emerge,
opportunities for practical molecular biology applications have arisen. The induced and natural
competency of many archaeal species permit genetic manipulations, most dependent on HR-directed
gene conversion and integrations of new DNA. The archaeal Hel308 enzyme, believed to be responsible
for strand displacement during SDSA, has been extensively studied for use in nanopore sequencing [67].
DSB repair is also an essential process for CRISPR viral defense systems found in ~85% of Archaea,
in which Cas enzymes generate guided double-strand breaks which are subsequently repaired by
non-HR DSB repair pathways, NHEJ, and MMEJ [26]. Knowledge of conserved non-HR DSB repair
has allowed for development of the first type II CRISPR–Cas-based genomic editing systems in
archaea [27,68].

3. Mismatch Repair (MMR)

DNA polymerases must not only perform replication with physiologically relevant high speeds
to avoid disruption of proper gene expression, but also with high fidelity. The necessity for fast
DNA synthesis inevitably leads to errors by replicative DNAPs, with incorrect base incorporations
once every 106–1010 nucleotides under normal conditions. In general, misincorporating a purine
for purine (or pyrimidine for pyrimidine) occurs more readily, resulting in transitions (A:T to/from
G:C) rather than transversions (A:T to/from C:G) [69,70]. Failure to efficiently recognize and repair
the resulting mismatches leads to increased mutation rates [71]. The canonical pathway of DNA
mismatch repair (MMR) is the MutL/MutS/MutH pathway, which has been well characterized in
Bacteria and Eukarya [72,73], but many Archaea do not encode obvious homologs of these enzymes.
The apparent lack of MutL/MutS in many Archaea drove efforts to describe an alternative pathway for
mismatched base recognition and resulted in identification of the novel NucS/EndoMS nuclease. Here,
we summarize the MutL/MutS pathway and recent insights into potential Nucs/EndoMS-based MMR.

3.1. MutL/MutS

The MMR machinery in Bacteria is likely localized to nascent DNA strands during DNA
replication, where mismatched bases are first recognized by MutS. Once bound to mismatched DNA,
MutS subsequently recruits MutL, and the MutS–MutL complex can then stimulate the nuclease activity
of MutH. MutH specifically nicks at unmethylated GATC methylation sites, allowing discrimination
between the template and nascent DNA strands. Cutting at unmethylated GATC sites ensures the nick
(and subsequent degradation of mismatched DNA) is performed on the newly synthesized strand,
which likely contains the error. The helicase UvrD is then thought to perform strand displacement,
with subsequent degradation of the damaged strand by generic cellular exonucleases. This allows
DNA polymerase to resynthesize the resulting gap from the undamaged strand and DNA ligase to
seal the nick. Eukaryotic MMR is similar but does not contain MutH or UvrD [74,75]. It is instead
thought that asymmetric loading of MutS/MutL, mediated by interactions with replisome components,
directs MutL nuclease activity to the newly synthesized strand. The eukaryotic repair polymerase
contains both replication and exonuclease activities, which are believed to facilitate removal and
degradation of the damaged strand during resynthesis.

Studies of methanogenic Archaea which encode MutS/MutL homologs indicate that the initial
steps of this pathway are likely comparable to eukaryotic-like MMR. Methanosaeta thermophila MutS1
binds mismatched dsDNA but has low affinity for perfectly matched duplexes. The corresponding
archaeal MutL makes single stranded nicks at the site of mismatches, which are assumed to be directed
to a specific strand in a similar manner to eukaryotic homologs [76]. The importance of MutS/MutL
for MMR, however, does not seem to be ubiquitous, as homologs from halophilic Archaea are readily
deleted with no apparent effect on mutation rate [77], and coupled with the apparent lack of MutH in
Archaea, suggested an alternative MMR pathway was present in these species.
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3.2. NucS/EndoMS

To identify potential MMR enzymes in species apparently lacking MutL/MutS, cosmid-expressed
Pyrococcus furiosus genome regions were screened for the ability to cleave the DNA backbone
at the site of mismatches and resulted in the isolation of NucS/EndoMS [78]. NucS (later aliased
EndoMS) constitutes a novel family of archaeal and bacterial endonucleases originally identified when
bioinformatically screening the genome of Pyrococcus abyssii for an amino acid motif known to bind
the replication clamp PCNA [79]. Initially, NucS/EndoMS was investigated for activity upon branched
structures which arise due to DNA damage or as a replication intermediate, but not for recognition
of mismatched bases [80]. However, deletion of NucS/EndoMS in Mycobacterium smegmatis and
Corynebacterium glutamicum resulted in an increased mutation rate with mutations that match
transitions (the expected result of MMR deficiency), suggesting an in vivo MMR role [81].

Biochemical and structural characterizations of archaeal NucS/EndoMS revealed MMR-like
activities differing significantly from the Mut enzymes, offering dual activities of mismatch recognition
and backbone cleavage in a single enzyme. Apo- and mismatched DNA:NucS/EndoMS complex
structures suggest the enzyme forms a functional dimer and uses a “base-flipping” mechanism used by
many DNA glycosylases (re Base Excision Repair) for recognition of mismatched bases [82–84].
Strikingly, offset cuts are made on opposite strands in vitro by NucS/EndoMS after mismatch
recognition, resulting in a substrate akin to a DSB with two 4 nt 5′ overhangs [70,85]. If this
activity is maintained in vivo, the potentially cytotoxic consequences of DSBs (re DSBR in Archaea)
must then be dealt with—a seemingly disadvantageous way of dealing with a simple mismatched base.
The activity of NucS/EndoMS is likely directed or modulated in vivo through interactions with the
replisome. Both bacterial and archaeal NucS/EndoMS interact with their respective replisome clamp
domains (the bacterial beta-clamp and archaeal PCNA). The interaction between the beta-clamp and
NucS/EndoMS is required for efficient nuclease activity and high-fidelity replication in Bacteria [70].
Additionally, activity upon branched substrates by archaeal NucS/EndoMS is enhanced when in
complex with PCNA [86]. Taken together, it is likely that EndoMS makes contacts with the replisome,
allowing mismatches to be quickly recognized after DNA synthesis, and aiding in resolution of
aberrant forked substrates. However, if NucS/EndoMS-mediated MMR still produces dual cuts of
DNA in the cell, the downstream consequences of the resultant DSB-like product remain unclear
(Figure 5). HR-based DSB repair is a probable compliment pathway, but this is less likely in Archaea,
which spend significant time in a monoploid or diploid state such as the Sulfolobales and certain
methanogens [87]. Furthermore, there remain Archaea without characterized MutL/MutS or EndoMS
enzymes, suggesting undiscovered avenues for MMR in these species.



Biomolecules 2020, 10, 1472 9 of 23Biomolecules 2020, 10, x FOR PEER REVIEW 9 of 23 

 
Figure 5. Potential mismatch repair pathways through NucS/EndoMS. NucS/EndoMS may surveil 
newly synthesized areas of the genome for mismatch incorporations. If a dual cut is made as in vitro, 
a DSB-like substrate would be formed, requiring DSB repair pathways or more immediate repair 
conclusion by DNA Polymerase, Flap endonuclease, and DNA ligase. 

4. Ribonucleotide Excision Repair (RER) 

Purposefully incorporated ribonucleotides are common, i.e., RNA primers for DNA replication, 
and it is posited that many rNTP incorporation events by DNA polymerases are evolutionarily 
conserved [88]. However, the lack of efficient removal of ribonucleotide monophosphates (rNMPs) 
has detrimental effects on genome stability, specifically by altering DNA form and enhancing 
hydrolytic activity brought by the 2′OH, which is lacking in dNTPs [89]. During DNA replication, 
DNA polymerase must not only reduce mismatches by distinguishing between DNA bases but must 
also monitor the usage of dNTPs vs. rNTPs [88]. Cellular concentrations of rNTPs can be magnitudes 
higher than that of dNTPs, and thus, inappropriate incorporations of rNTPs into dsDNA are 
inevitable. Archaeal D family DNA polymerases have been shown to incorporate 1 rNTP every ~1000 
bases, and archaeal B family DNA polymerases every ~2500 bases [90,91]. 

Ribonucleotide excision repair (RER) is the universally conserved pathway for removal of 
rNMPs incorporated into dsDNA. RER is initiated by RNaseH2, generating a nick to the 5′ of the 
embedded rNMP. In Eukarya, the 3′ end generated by this nick is displaced by synthesis by DNA 
polymerase δ/ε, and the resulting flap (with embedded rNMP) is cleaved by flap exonuclease Fen1 
[92]. In Bacteria, the strand displacement synthesis and flap cleavage are both carried out by DNA 
polymerase I [93]. Archaeal RER activities were tracked in Thermococcus kodakarensis lysates lacking 
computationally annotated homologs of RER enzymes on dsDNA substrates with a single embedded 
rNMP [90]. An archaeal RNaseH2 homolog recognizes the rNMP incorporation and nicks at the 5′ 
end, allowing strand displacement synthesis by the family B DNA Polymerase (Pol B) repair DNA 
polymerase in Thermococcus kodakarensis (Figure 6). Consistent with a eukaryotic-like RER 
mechanism, the repair polymerase Pol B does not have flap exonuclease activity, relying instead on 

Figure 5. Potential mismatch repair pathways through NucS/EndoMS. NucS/EndoMS may surveil
newly synthesized areas of the genome for mismatch incorporations. If a dual cut is made as in vitro,
a DSB-like substrate would be formed, requiring DSB repair pathways or more immediate repair
conclusion by DNA Polymerase, Flap endonuclease, and DNA ligase.

4. Ribonucleotide Excision Repair (RER)

Purposefully incorporated ribonucleotides are common, i.e., RNA primers for DNA replication,
and it is posited that many rNTP incorporation events by DNA polymerases are evolutionarily
conserved [88]. However, the lack of efficient removal of ribonucleotide monophosphates (rNMPs)
has detrimental effects on genome stability, specifically by altering DNA form and enhancing
hydrolytic activity brought by the 2′OH, which is lacking in dNTPs [89]. During DNA replication,
DNA polymerase must not only reduce mismatches by distinguishing between DNA bases but must
also monitor the usage of dNTPs vs. rNTPs [88]. Cellular concentrations of rNTPs can be magnitudes
higher than that of dNTPs, and thus, inappropriate incorporations of rNTPs into dsDNA are inevitable.
Archaeal D family DNA polymerases have been shown to incorporate 1 rNTP every ~1000 bases,
and archaeal B family DNA polymerases every ~2500 bases [90,91].

Ribonucleotide excision repair (RER) is the universally conserved pathway for removal of
rNMPs incorporated into dsDNA. RER is initiated by RNaseH2, generating a nick to the 5′ of
the embedded rNMP. In Eukarya, the 3′ end generated by this nick is displaced by synthesis by
DNA polymerase δ/ε, and the resulting flap (with embedded rNMP) is cleaved by flap exonuclease
Fen1 [92]. In Bacteria, the strand displacement synthesis and flap cleavage are both carried out by
DNA polymerase I [93]. Archaeal RER activities were tracked in Thermococcus kodakarensis lysates
lacking computationally annotated homologs of RER enzymes on dsDNA substrates with a single
embedded rNMP [90]. An archaeal RNaseH2 homolog recognizes the rNMP incorporation and nicks
at the 5′ end, allowing strand displacement synthesis by the family B DNA Polymerase (Pol B) repair
DNA polymerase in Thermococcus kodakarensis (Figure 6). Consistent with a eukaryotic-like RER
mechanism, the repair polymerase Pol B does not have flap exonuclease activity, relying instead on the
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flap endonuclease activity of Fen 1. Once the flap is cleaved by Fen1, the resulting DNA nick is ligated
by DNA ligase and the newly synthesized strand is free of embedded ribonucleotides.
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Figure 6. Archaeal ribonucleotide excision repair. Embedded ribonucleotide monophosphates (rNMPs)
are recognized and specifically excised by RNaseH2, resulting in one nucleotide gap with 3′-hydroxyl.
Repair is concluded when DNA polymerase performs strand-displacement synthesis and the activities
of flap endonuclease and DNA ligase remove the original strand and seal the resulting nick.

Embedded single ribonucleotides are sometimes caused by inefficient Okazaki fragment
maturation—the removal of lagging strand RNA primers during DNA replication [94]. In Thermococcus,
Okazaki fragment maturation resembles RER as it relies upon the strand displacement activities of Pol
B, RNaseH2, Fen1, and DNA ligase [95]. In some cases, the 5′-3′ exonuclease activity of GAN is used
to remove the displaced RNA flap in lieu of Fen1, but in the absence of GAN, the RER enzymes Fen1
and RNaseH2 are reported to function together to remove the displaced RNA flap [95,96]. Cells need
either GAN or both Fen1/RNaseH2 for survival, not only suggesting that RER is possibly sufficient
for Okazaki fragment maturation, but also the activity of GAN exonuclease during DNA replication
is sufficient to maintain viable levels of rNTP:dNTP in cellular DNA. Thermococcales are generally
polyploid, raising the possibility that increased homologous recombination events often expose DNA
strands to enzymes responsible for maintaining genomic maintenance—allowing retained DNA repair
pathways to crosstalk and potentially compensate for deficiencies of any individual repair pathway.

5. Base Excision Repair (BER)

Not all DNA damage arises from mistakes made by cellular machineries—in fact, single base loss
(apurinic/apyrimidinic (AP) sites) and modifications (i.e., alkylation, deamination, and oxidation) are the
most common DNA damage. If left unrepaired, these modifications are correlated with high mutation
rates incompatible with sustained life [97–99], and the propensity for such damages may be raised by
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the external environments of the cell. Archaea often occupy niche and extreme environments which
increase the prevalence of exogenous damage sources but nonetheless utilize the universally conserved
base excision repair (BER) pathway to remove damage from DNA [100]. The canonical BER pathway
involves recognition of specific base modifications by a glycosylase appropriate to each modification;
a single glycosylase can recognize multiple modification types. Glycosylases can act as monofunctional
or bifunctional enzymes. Monofunctional glycosylases simply cleave the glycosidic bond between the
base and phosphodiester backbone, “base excision”, leaving an AP site. AP-specific lyases then cleave
the DNA backbone to create a 5′ deoxyribosephosphate (dRP) and 3′ unsaturated aldehyde (UA) moiety
via β-elimination or 3′ phosphate via β/δ-elimination [101]. Bifunctional glycosylases exhibit both base
excision and AP lyase activity. After glycosylase activity, AP nucleases convert the 3′ UA or phosphate
into a free 3′OH for extension by DNA polymerase. DNA polymerase may incorporate just one
nucleotide (short-patch BER) or multiple nucleotides (long-patch BER). In short-patch BER, dRP-lyase
activity of DNA polymerase removes the 5′ deoxyribosephosphate while resynthesizing a single base,
leaving a nick which may be sealed by DNA ligase. In long-patch BER, strand displacement activity
of DNA polymerase displaces the 5′ deoxyribosephosphate containing the strand as multiple bases
are incorporated. The damaged strand can then be removed at a junction site by Flap endonuclease,
and the resulting nick sealed by DNA ligase.

Archaeal BER has been completely reconstituted in vitro (Figure 7). The Ogg-subfamily
archaeal GO glycosylase (AGOG) of Thermococcus kodakarensis [102] recognizes 8-oxo-guanine (8oxoG)
modifications which result from the oxidation of guanine and acts as a bifunctional glycosylase to
perform base excision and cleave the DNA backbone. The activity of AGOG-like BER enzymes leave
a 1 nt gap with a 5′ phosphate and 3′ UA after recognition of a chemically modified base. The 3′

unsaturated aldehyde must be chemically converted to a 3′OH by an AP endonuclease (Endo IV in
T. kodakarensis) before strand-displacement synthesis by Pol B, flap cleavage by Fen1, and ligation of
the resultant nick by DNA ligase. Structural studies of AGOG have also provided insight into the
structural basis of specificity, determining recognition and cleavage of damaged substrates by AGOG
is mediated by a conserved proline and phenylalanine motif allowing appropriate conformational
freedom [103–105].

Recognition of chemically modified DNA in Archaea has also been shown to be mediated directly
by DNA backbone cleavage activity of endonucleases rather than glycosylases. In hyperthermophilic
archaeal species, where temperature-dependent chemical modifications are presumably more common,
the existence of multiple damage repair initiating enzymes is likely advantageous. Alternative excision
repair (AER) pathways do not rely on the excision of the damaged base and subsequent AP site recognition
as separate steps, potentially accelerating the repair of specific damage types. Endonuclease V has
been shown to recognize all deaminated bases in Ferroplasma acidarmanus, and specifically hypoxanthine
(deaminated adenine) bases in Pyrococcus furiosus and Thermococcus barophilus [106]. Endonuclease V
binds and cuts two nucleotides away from the 3′ end of the deaminated base, initiating downstream repair
processes. Another novel nuclease, Endonuclease Q (EndoQ), was recently discovered in P. furiosus and
cleaves the DNA backbone at deaminated bases, oxidized bases, and AP sites [107,108]. Similar to the
MMR enzyme EndoMS and most glycosylases, EndoQ uses a “base-flipping” mechanism, placing bases
in an active site adjacent pocket which allows for cleavage in the event of improper base pairing
resulting from oxidized bases such as 5-hydroxyuracil and 5-hydroxycytosine. The wide substrate
range of EndoQ, coupled with its studied interactions with PCNA, suggest that EndoQ may also
localize to newly synthesized DNA, recognizing DNA damages that may not lead to misincorporations
by DNA polymerase.
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Figure 7. Reconstituted archaeal base excision repair from Thermococcus kodakarensis. AGOG recognizes
8-oxo-G modifications and acts as a bifunctional glycosylase, both excising the damaged base and cleaving
the DNA backbone at the site of damage. The resulting substrate contains a 3′ unsaturated aldehyde
(UA) and 5′ dRP. Damage repair is initiated by the activity of Endonuclease IV, which converts the 3′-UA
to an extendable 3′-hydroxyl group. In long-patch base excision repair (BER), strand displacement
activity of DNA polymerase during synthesis is used in tandem with flap endonuclease and DNA
ligase to conclude repair. In short-patch BER, dRP lyase activity intrinsic to DNA polymerase simply
removes the dRP moiety while synthesizing the correct base from the undamaged strand, and DNA
ligase seals the nick.

New Resources Emerging from BER Pathways

The characterization of a large selection of archaeal BER enzymes specific to particular damage
types has provided an advantageous protocol for biochemical analyses of DNA damages on a
genome-wide scale. In RADAR-seq [109], enzymes specific to a DNA damage type are used
to make lesion-dependent nicks on sequencing libraries prepared from purified genomic DNA.
DNA repair enzymes which create an extendable 3′OH at the nick site are then utilized, followed by
strand-displacement synthesis by DNA polymerase in the presence of methylated dNTPs. Methylated
bases are thus incorporated into the site of DNA damage repair and can be detected via PacBio SMRT
sequencing [110], allowing genome-wide coverage of the locations of a single DNA-damage type.
RADAR-seq has been used to exhibit the increase in genomic rNTP incorporation after deletion of
RNaseH2—which is essential in rNTP removal—and will likely continue to be established as an
accepted method of assessing genome-wide DNA damage.

6. Global Genomic Nucleotide Excision Repair (GG-NER)

Some DNA damages, i.e., UV-induced photoproducts, result in a distortion of the dsDNA helix
which has stalling effects on critical processes such as replication and transcription. DNA repair
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mechanisms have evolved to detect the general distortions of the DNA backbone rather than the actual
modification, which allows detection at a broad range of DNA lesions. Global genomic nucleotide
excision repair (GG-NER) in Bacteria and Eukarya relies on enzymes to recognize the “bulky lesion”
and direct strand-specific cuts on the damaged DNA strand [111,112]. The DNA damage, now between
two nicks, is thus primed for “excision” from the DNA allowing resynthesis from the undamaged
strand, and nick ligation to complete repair. In Bacteria, NER is mediated by the UvrA2/B/C/D enzymes.
Helix distortions are first recognized by the UvrA dimer and damage is subsequently verified by
UvrB [113,114]. The activity of UvrB converts general strand distortion detection by UvrA into damage-
and strand-specific detection, which directs the nuclease activity of UvrC either side of the DNA
damage [112,115]. The UvrD helicase can then excise the damage containing strand from the genome,
allowing for strand resynthesis by DNA polymerase I and nick sealing by DNA ligase. The core
steps of eukaryotic NER resemble a slightly more sophisticated bacterial NER (Figure 8). DNA helix
distortions are first recognized by the XPC repair protein, and then damage is verified by the XPA
protein to form a pre-incision complex. Helicases XPB and XPD then separate DNA strands at the
site of damage; the orientation of the resulting complex allows strand-specific cuts by XPG and XPF
on either side of the site of DNA damage [112,115,116]. The damage containing strand is excised in
complex with TFIIH [117], allowing strand resynthesis by DNA polymerase δ or ε, and nick sealing by
DNA ligase I [118].

Some Archaea encode homologs of bacterial Uvr proteins which appear to be active in bulky
DNA lesion removal, i.e., deletion of UvrA, UvrB, and UvrC in Halobacterium result in significant
UV sensitivity phenotypes [119,120]. The majority of Archaea, however, encode homologs of critical
eukaryotic NER proteins, in particular helicases XPB/XPD and endonuclease XPF (Figure 1) [121].
No NER pathway, however, has yet been explicitly defined in Archaea, with research focusing on
drawing parallels from individual enzymes conserved between Eukarya and Archaea. Such enzymes
tend to exist outside the context of a multi-protein complex, allowing for ease of purification and
crystallization. For example, independent structures of archaeal XPD, normally a component of the
multienzyme TFIIH complex in eukaryotes, from Thermoplasma acidophilum and Sulfolobus acidocaldarius
revealed a distinct four domain structure; disease-causing mutants from human XPD could be mapped
to functionally critical sites of the structures [117,122,123].

While research into archaeal XP homologs has been structurally fruitful, establishing the NER
pathway in Archaea has remained challenging and elusive. Perturbations in the UvrA, UvrB,
and UvrC homologs found in Halobacterium resulted in almost total loss of resistance to UV
exposure, but it remains unseen if these homologs function in a recognized NER pathway, and the
Uvr proteins are only found in a minority of Archaea [119]. Conversely, deletions of XPB, XPD,
and XPF from Thermococcus kodakarensis resulted in only slight sensitivity to moderate doses of UV
irradiation [124], suggesting these enzymes are involved in—but are not required for—UV damage
response. Additional factors could potentially play a role in archaeal NER, and in some cases,
the eukaryotic-like NER enzymes are paired with auxiliary nucleases. XPB helicase is sometimes
found encoded in an operon with a nuclease named Bax1 and these enzyme act in concert to open
a DNA bubble and make cuts [125]. In many XPF-encoding species, the 3′-5′ exonuclease HAN is
often encoded, potentially recapitulating in vitro experiments where XPF and HAN form a functional
nuclease complex [126]. Recent biochemical examinations of archaeal XPF, or Hef, have investigated
the enzyme in the context of replication restart and Holliday junction formation [120,127,128], but it is
possible that XPF performs multiple functions within the cell—including one in an NER pathway.

The lack of direct evidence for NER in most Archaea has led to speculation that there is no conserved
NER pathway in the domain and this deficiency is simply compensated for by increased activity of
repair enzymes during stalled replisome restart after DNA polymerase is stalled by helix distortions.
If a conserved NER pathway involving eukaryotic-like enzymes exists in Archaea, there remain several
unrevealed details and it likely differs significantly from the eukaryotic pathway. Eukaryotic-like
nucleotide excision involves strand nicking by two distinct exonucleases, XPF and XPG, but the latter
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is not found in Archaea. It is feasible that XPF is responsible for both cuts or it only makes one cut in
an MMR-like mechanism. However, of prime importance is the question of damage recognition as
there are no known homologs of the eukaryotic NER damage recognition enzyme XPC in Archaea.
Thus, elucidating how bulky helix-distorting lesions are detected will be of great value in establishing
archaeal NER.
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Figure 8. Eukaryotic global genomic nucleotide excision repair. DNA damages which distort the DNA
double helix are recognized by XPC, which recruits the damage recognition XPA and TFIIH complex.
Components of the TFIIH complex melt strands of DNA around a verified DNA lesion, allowing cuts
of the damaged strand by XPG and XPF. The TFIIH complex uses helicase activity to “excise” the
damaged strand, allowing conclusion of repair by DNA polymerase and DNA ligase I.

7. Transcription Coupled Nucleotide Excision Repair (TC-NER)

In Bacteria and Eukarya, NER can be initiated by recognition of transcription elongation complexes
(TECs) which stall upon DNA lesions entering the active site of RNA polymerase (RNAP) during
transcription, a process termed transcription coupled DNA repair (TCR). Utilizing actively transcribing
RNAPs to sense DNA damage offers an evolutionary advantage as actively transcribed regions of the
genome are actively monitored for lesions. Akin to global NER, TCR has yet to be described in Archaea
but current evidence suggests it is an active pathway in some clades. While studies in crenarchaea
have revealed no significant change in DNA repair of transcribed versus non-transcribed strands [129],
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euryarchaeal species have displayed preferential repair of transcribed DNA strands—a hallmark of
TCR [130]. Additionally, the archaeal RNAP—which closely resembles eukaryotic RNAPII—has been
shown to stall specifically at template strand DNA damage [131].

In eukaryotes, the CSB protein acts as the transcription repair coupling factor (TRCF),
initially recognizing stalled TECs and allowing localization of TFIIH and other NER enzymes directly
to the site of damage [132]. In Bacteria, the transcription termination factor Mfd acts as the TRCF,
simultaneously recruiting the Uvr family of NER enzymes and terminating transcription to prevent
the formation of mutant transcripts [133–135]. There are no homologs of either CSB or Mfd found in
the archaeal domain, suggesting a potential archaeal TCR pathway—and TRCF—evolved separately.
Recently, the first enzyme with transcription termination activity was reported in Archaea, euryarchaeal
termination activity (Eta), and is intimately linked with other nucleic acid metabolic pathways and
is a candidate for acting as the archaeal TRCF [136,137]. Euryarchaeal termination activity (Eta)
requires DNA sequences upstream of RNAP, aids backtracked RNAPs, is ATP-dependent, and is
non-competitive with elongation—all attributes shared with the bacterial TRCF Mfd. The eukaryotic
TRCF, CSB, also requires DNA sequences upstream of a stalled RNAP. Mfd catches up to backtracked
or stalled polymerases by “autonomously” patrolling DNA upstream of TECs [138]. Deletion of Mfd
in Bacteria and Eta in Archaea produce a UV sensitivity phenotype, further suggesting they share an
analogous role [136,139]. However, species which encode Eta also encode eukaryotic XP NER enzymes
which have yet to be implicated in an NER pathway. Without an obvious damage recognition NER
enzyme encoded, it is attractive to think of damage stalled RNAP fulfilling this role. If Eta acts as
an archaeal TRCF analogous to Mfd, but recruits eukaryotic-like NER enzymes, another intriguing
example of an archaeal physiological pathway with both bacterial and eukaryotic-like elements would
be presented (Figure 9) and explicitly evidence TCR as a universally conserved DNA repair pathway
for the first time.
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Figure 9. Current eukaryotic and bacterial models of transcription coupled nucleotide excision repair
(TC-NER) and a hypothetical archaeal model. In all cases, RNA polymerase (RNAP) is arrested
at template-strand DNA damage and recognized by the TRCF-CSB in Eukarya, Mfd in Bacteria,
and potentially Eta in Archaea. The TRCF either backtracks RNAP or terminates transcription while
recruiting NER enzymes directly to the site of damage. Homologs of the eukaryotic XP proteins found
in many Archaea act in our archaeal model.

8. Discussion

Archaeal DNA repair-based research has offered inspiring mechanistic insight into the strategies
of preserving DNA stability in extremes once thought inhospitable. Surprisingly, such strategies are



Biomolecules 2020, 10, 1472 16 of 23

not unique and resemble those found in mesophilic Eukarya and Bacteria. How then, do extremophilic
species maintain low mutation rates in extreme conditions using the “same tools”? Clues may lie in the
apparent crosstalk of archaeal DNA repair pathways or their intimate links with replisome components,
or perhaps extremophilic species successfully protect their genomes, avoiding DNA damages to begin
with. At face value, strategies of recognition of DNA damages and their preparation for the core
resynthesis machinery (i.e., DNAP, Fen1, DNA Ligase) are intrinsically fascinating, but perhaps the most
alluring facet of archaeal DNA repair has recently been the development of new techniques at the protein
and whole-genome level as archaeal species have become more genetically accessible. Novel archaeal
DNA repair enzymes will likely continue to be characterized and find new roles in the exponentially
growing biotechnology world. Bioinformatic approaches, such as RADAR-seq, will continue to provide
population-/genomic-level DNA repair activities, and the continuously developing knowledge of DSBR
in relation to CRISPR systems will surely yield more tools for geneticists. Super-resolution microscopy,
once thought over encumbered by the small size of archaeal cells, has recently become optimized and
used to image foci of DSB sites in H. volcanii [140], offering the DNA repair research as a platform for
development of more broadly applicable procedures. The continued development of these (and new)
technologies, however, will only be progressed alongside our understanding of archaeal DNA repair
as a whole—and thus, identifying and answering the most pressing questions in the field must remain
a priority.

Once thought a detriment to cellular health, the double-strand break is appearing more of an
essential intermediate to many metabolic processes outside of replication, potentially altering our view
of archaeal metabolic biology. How Archaea deal with such an intermediate has been resolved through
multiple pathways (NHEJ, MMEJ, HR), but the next challenge is understanding how cells “decide”
which of these pathways is most appropriate in a given context, and if the ploidy state influences rate
of HR. One such context may be resultant DSBs from EndoMS activity during archaeal MMR which,
if verified, will allow us to probe how cells use DSB substrates purposefully outside of the replisome.
Generating depth to our current understanding is of great importance—but there still remain significant
“unknowns” in the field which have yet to be resolved. Are there alternative pathways for MMR or
BER yet undiscovered—and can recognition enzymes be repurposed? Does NER or the transcription
coupled sub-pathway (TCR) exist in Archaea, and do they more closely mirror a prokaryotic or
eukaryotic system? Finally, as interconnectedness and crosstalk between repair and replication systems
becomes more apparent, how are repair pathways regulated, segregated, or organized in the context of
the prokaryotic cell? The answers to these questions will not only provide a clearer picture of DNA
maintenance in extremis, but likely hold intriguing insights into our own ancestral metabolic history.
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