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Abstract Zn2+ ions are essential in many physio-
logical processes, including enzyme catalysis, protein 
structural stabilization, and the regulation of many 
proteins. The affinities of proteins for  Zn2+ ions span 
several orders of magnitude, with catalytic  Zn2+ ions 
generally held more tightly than structural or regula-
tory ones. Metal carrier proteins, most of which are 
not specific for  Zn2+, bind these ions with a broad 
range of affinities that overlap those of catalytic, 
structural, and regulatory  Zn2+ ions and are thought 
to be responsible for distributing the metal through 
most cells, tissues, and fluid compartments. While 
little is known about how many proteins obtain or 
release these ions, there is now considerable experi-
mental evidence suggesting that metal carrier proteins 
may be responsible for transferring metals to and 
from some  Zn2+-dependent proteins, thus serving as 
a major regulatory factor for them. In this review, the 
biological roles of  Zn2+ and structures of  Zn2+ bind-
ing sites are examined, and experimental evidence 
demonstrating the direct participation of metal carrier 
proteins in enzyme regulation is discussed. Mecha-
nisms of metal ion transfer are also offered, and the 
potential physiological significance of this phenom-
enon is explored.
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Zn2+ ions in biological systems

Metal ions are critical to many biochemical processes 
and are recognized as vital micronutrients. Of these 
metals, zinc is by far the most commonly used in 
biological systems, often acting as a Lewis acid in 
enzyme catalysis (Bertini et al. 1985). Zinc has a full 
d shell and no ligand field stabilization energy; thus, 
it is chemically stable regardless of its coordination 
geometry. This ensures that catalytic  Zn2+ ions can 
change geometry during catalysis to accommodate 
substrates and transition states as needed (Zastrow 
and Pecoraro 2014).  Zn2+ only has one oxidation state 
and thus does not participate in redox reactions, mak-
ing it stable in the changing chemical environments 
that can occur in cells during many physiological pro-
cesses. Together, these properties make  Zn2+ an ideal 
biological catalyst.

Although  Zn2+ is abundant within the body, little 
of it is freely dissolved. Since it can compete with 
other metal ions for binding sites, free  Zn2+ levels are 
kept extremely low. The experimentally determined 
intracellular concentration of  Zn2+ is approximately 
0.4 nM (Vinkenborg et al. 2009). The free  Zn2+ con-
centration in the extracellular compartment is also 
maintained at a very low level, around 0.7 nM (Frank-
lin et al. 2005). In plasma, free  Zn2+ levels are simi-
larly low, generally accepted to be somewhere around 
0.2 nM (Magneson et al. 1987). Most of the free  Zn2+ 
ions are quickly removed from cells by transporters in 
a mechanism called zinc muffling (Colvin et al. 2010), 
or are buffered by sequestering them with metal car-
rier proteins (Krezel and Maret 2016). Because of 
the low concentration of free zinc, it can serve as a 
secondary messenger both inside of cells (Yamasaki 
et al. 2007) and outside of cells (Fukada and Kambe 
2014) in a phenomenon known as zinc signaling. The 
temporary increase in  Zn2+ concentration to  10–9 M 
or above during zinc signaling can alter the functions 
of many proteins and enzymes (Maret 2011; Yama-
saki et al. 2007).

Coordination of  Zn2+ ions in proteins

Since  Zn2+ is so abundant and most of it is bound 
to proteins, it is unsurprising that a large number of 
proteins in living organisms contain zinc. An esti-
mated 3200 genes of the human genome, comprising 

roughly 15% of total protein-encoding genes, encode 
proteins that bind or are predicted to bind zinc ions 
(Andreini et  al. 2006). These binding sites typically 
follow a pattern in which two of the metal-coordinat-
ing residues are 1–3 residues away in the protein’s 
primary structure, creating a stable base, with other 
zinc ligands located some distance away to allow for 
the formation of secondary structures that provide 
flexibility for positioning and orienting the coordinat-
ing residues (Vallee and Auld 1990). There have been 
few exceptions to this pattern until recent discoveries 
revealed non-canonical binding sites that coordinate 
some regulatory and structural  Zn2+ ions, redefin-
ing the current understanding of zinc coordination in 
proteins.

An analysis of crystallographic structures of pro-
teins containing bound zinc ions reveals that they are 
typically coordinated by 4 (tetrahedral), 5 (trigonal 
bipyramidal), or 6 (octahedral) ligands, with 4 being 
the preferred coordination number. The preference 
for tetrahedral coordination appears to stem from the 
small size of the  Zn2+ ion; as the number of ligands 
increases, repulsion forces increase and can destabi-
lize the complex (Laitaoja et al. 2013). While little is 
known about the link between coordination geometry 
and  Zn2+ affinity, there are indications that coordina-
tion geometry can influence the chemical reactivity 
of the ion. Mathematical modeling of the deproto-
nation of water by  Zn2+ indicated that an octahedral 
coordination geometry raised the pKa of the reaction, 
suggesting that a tetrahedral coordination geometry 
would result in more efficient deprotonation at physi-
ological pH levels (Bertini et  al. 1990). Thus, tetra-
hedral geometries would be expected to predominate 
among  Zn2+-dependent hydrolytic enzymes. Simi-
larly, site-directed mutagenesis of a bacterial  Zn2+ 
aminopeptidase indicated that differences in coor-
dination geometry can influence the polarity and 
electrophilic nature of the  Zn2+ ion during catalysis 
(Ataie et  al. 2008). Likewise, trigonal bipyramidal 
and octahedral geometries introduced by metal sub-
stitutions in carbonic anhydrase were shown to cause 
changes in the distribution of water molecules in the 
active site, altering the ability of the protein to stabi-
lize the transition state and lowering overall catalytic 
efficiency (Kim et al. 2020).

The most abundant zinc-coordinating amino 
acid residues found in proteins are cysteine 
(approximately 33%), histidine (approximately 
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31%), and aspartate or glutamate (approximately 
18%). There are also a sizable number of water 
molecules (about 9%) that make up the fourth 
ligand of 3-residue coordination sites with tetrahe-
dral geometries (Laitaoja et al. 2013). Although it 
has been difficult to establish correlations between 
the  Zn2+ affinity of a protein and its coordina-
tion geometry or the identity of its coordinating 
ligands, a few trends have been noted through stud-
ies of zinc finger proteins. One study suggested that 
cysteine ligands increase the affinity of individual 
zinc fingers for their structural  Zn2+ ions, as the 
alteration of a  Cys2His2 zinc finger to  CysAspHis2 
or  CysGluHis2 caused a 100-fold loss in affinity 
for the structural  Zn2+ ion of the protein (Imani-
shi et  al. 2012). Likewise, zinc fingers contain-
ing natural substitutions of glutamate or aspartate 
for one of the coordinating cysteine or histidine 
resides bound  Zn2+ with a lower affinity (Kluska 
et  al. 2018a). It was suggested that some of the 
observed loss in  Zn2+ affinity could be explained 
by protein structural changes that cause the loss 
of normal hydrogen bonding and electrostatic 
interactions that would otherwise stabilize, orient, 
and/or polarize the coordinating residues (Kluska 
et al. 2018b). Although substitution of an essential 
cysteine or histidine residue with an acidic residue 
affected  Zn2+ affinity, there appears to be no dis-
cernable difference in affinity between cysteine and 
histidine as a coordinating residue. An analysis of 
the  Zn2+ affinities of  Cys2His2,  Cys2HisCys, and 
 Cys4 coordination chemistries noted no significant 
differences in metal affinity, although some differ-
ences in the enthalpic and entropic components of 
stability were observed (Rich et  al. 2012). Addi-
tional analyses of zinc finger proteins reveals that 
the identity of the metal-coordinating ligands alone 
is not sufficient to predict  Zn2+ affinity, and that the 
thermodynamic stabilization effects of surround-
ing amino acid residues can have a drastic effect on 
this affinity (Kochanczyk et  al. 2015; Miloch and 
Krezel 2014). While there are general trends in the 
abundance of certain metal-coordinating residues 
among different classes of enzymes with catalytic 
 Zn2+ ions (Laitaoja et  al. 2013), no set guidelines 
that correlate these differences in affinity to the 
identity of the metal-coordinating residues have 
been established.

The roles of  Zn2+ ions in proteins

Zn2+ ions assume a variety of roles in proteins that 
can be characterized as catalytic, structural, or regu-
latory. Examples of these various types of ions are 

Fig. 1  The diversity of  Zn2+ binding sites in protein by 
type. a Catalytic. Aminopeptidase A/glutamyl aminopepti-
dase (4KXC) contains a catalytic  Zn2+ ion bound by 3 pro-
tein ligands (2 histidines and a glutamate residue) and a water 
molecule that coordinate the ion in a tetrahedral geometry 
(Yang et al. 2013). b Structural. The  Zn2+ binding site of the 
 Cys2His2 zinc finger of TFIIIA (1UN6) (Lu et al. 2003) illus-
trates an example of a structural  Zn2+ ion. c Regulatory. Cas-
pase-6 (4FXO) contains a regulatory  Zn2+ ion, in which the 
bound metal is coordinated in a distorted tetrahedral geometry 
through interactions with histidine, lysine, and glutamate resi-
dues. A water molecule is the fourth ligand. The glutamate is 
coordinated to the  Zn2+ ion through a bidentate interaction 
(Velazquez-Delgado and Hardy 2012). Protein structure figures 
were created with Mol* Viewer (Sehnal et al. 2021) and RCSB 
PDB
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shown in Fig.  1. The best studied examples are 
catalytic  Zn2+ ions, which are commonly found in 
hydrolytic enzymes where they are most often used 
to polarize and activate a water molecule to increase 
its nucleophilicity at physiological pH levels (Ber-
tini et  al. 1985). An example of this can be seen in 
the structure of aminopeptidase A/glutamyl amin-
opeptidase (Yang et al. 2013), in which the catalytic 
 Zn2+ ion is held through interactions with two histi-
dines and a glutamate residue; the fourth ligand is a 
water molecule (Fig. 1a). In most cases, the activated 
hydroxide is held in the correct orientation by adja-
cent hydrogen bonds to make it available for reaction 
with the substrate (Christianson and Cox 1999). Inter-
actions of the transition state with the  Zn2+ ion and 
nearby amino acid residues stabilize it as the geome-
try of the substrate changes during catalysis (Thomp-
son et  al. 2006; Thompson and Hersh 2003). The 
transition state is resolved and the active site regener-
ated by a proton shuttle that is usually mediated by a 
nearby histidine (Christianson and Cox 1999) or glu-
tamate residue (Matthews 1988). Since catalytic  Zn2+ 
ions are an integral part of these enzymatic mecha-
nisms, most of them would be expected to be tightly 
bound. Experimental evidence mostly supports this, 
with most having  Kd values at the sub-nanomolar 
level or below (Table 1 and Fig. 2).

As more protein three-dimensional structures 
are being determined, many previously undetected 

non-catalytic  Zn2+ ions are being discovered. Most of 
these have been classified as either structural or regu-
latory. Structural zinc ions can be further classified 
as either participating in the stabilization of active 
site structures, transducing signals across the pro-
tein, and/or orienting active site residues (Dutta and 
Bahar 2010). Structural zinc ions may also facilitate 

Table 1  Metal binding 
affinities of proteins 
containing catalytic  Zn2+ 
ions

Protein Kd  (Zn2+)

Carbonic anhydrase 1 pM
(McCall and Fierke 2000)

Aminopeptidase B 0.37 pM
(Hirose et al. 2006)

Superoxide dismutase 1 (SOD1) 77 pM
(Crow et al. 1997)

Angiotensin-converting enzyme (ACE) 640 pM
(Schullek and Wilson 1988)

Sorbitol dehydrogenase 6 pM
(Krezel and Maret 2008)

Carboxypeptidase A 0.5 nM
(Williams 1960)

Dipeptidyl peptidase III (DPP III) 0.45 pM
(Fukasawa et al. 2011)

Glyoxalase I 27 pM
(Sellin and Mannervik 1984)

Matrix metalloproteinase-3 (MMP-3/stromelysin) 20 pM
(Maret 2004)

Fig. 2  Comparison of the  Zn2+ binding affinities of proteins 
with varying types of binding sites. The experimentally deter-
mined zinc affinities  (Kd,  Ki, or  IC50) of catalytic, structural, 
regulatory, and metal carrier zinc binding sites, grouped by 
type
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protein–protein interactions through interactions with 
amino acid residues near the surfaces of both inter-
acting partners to stabilize quaternary structures (Lin 
et al. 2016). Structural  Zn2+ ions are common in zinc 
finger proteins, which utilize them to stabilize the 
structure of the nucleic acid binding domain (Krishna 
et  al. 2003). An example of a structural  Zn2+ ion in 
the transcription factor TFIII is shown in Fig. 1b. The 
ion is coordinated to four protein ligands that hold a 
loop and a helix of the protein together to stabilize 
the tertiary structure of the protein (Lu et  al. 2003). 
Regardless of the precise role of structural  Zn2+ ions 
in these types of proteins, their affinities are often 
somewhat lower than that of proteins with catalytic 
 Zn2+ ions (Table 2 and Fig. 2).

In addition to participating in catalysis and sta-
bilizing protein structures,  Zn2+ ions can serve as a 
regulatory factor for many enzymes. Previously unde-
tected regulatory  Zn2+ ions are now being discovered 
in many proteins and enzymes, often bound to non-
canonical zinc binding sites. For example, protein 

tyrosine phosphatase 1B, aldehyde dehydrogenase, 
glyceraldehyde 3-phosphatase, cathepsin B, and cas-
pase-3, among others, are inhibited by  Zn2+ ion con-
centrations in the nanomolar range (Maret 2013a). 
The regulatory  Zn2+ ion of caspase-6 (Fig.  1c) is 
shown as an example. The metal is bound by 3 amino 
acid residues (a histidine, a glutamate, and a lysine 
residue) and a water molecule in a distorted tetrahe-
dral geometry (Velazquez-Delgado and Hardy 2012).

Due to the common use of reducing agents and 
chelating agents in assay buffers, many regulatory 
 Zn2+ ions have often escaped detection; thus, there 
are likely many more enzymes and proteins that uti-
lize them. Although the concentration of free zinc is 
kept below the level at which binding of it to many 
of these enzymes would be significant, it is likely 
that the  Zn2+ concentration could rise enough above 
this level during the transient increases in zinc con-
centration that have been observed during zinc sign-
aling, making this a physiologically relevant regu-
latory mechanism for many proteins. As expected, 
regulatory  Zn2+ ions are usually held with lower 
affinities than are structural or catalytic ones (Table 3 
and Fig. 2), suggesting their lability under changing 
conditions.

Metal carrier proteins distribute  Zn2+ 
throughout the body and serve as regulatory 
factors for many  Zn2+‑dependent proteins 
and enzymes

Although there is no consensus on what proteins are 
primarily responsible for distributing  Zn2+, much of it 
appears to be trafficked throughout the body by metal 
carrier proteins. Most of the  Zn2+ in plasma is car-
ried by albumin or α2-macroglobulin, with a small 
amount associated with other proteins, like transferrin 
(Harris 1983). In other compartments, zinc is shuttled 
by metal carrier proteins such as lactoferrin, casein, 
transferrin, S100 proteins, metallothioneins, and ceru-
loplasmin (Blakeborough et al. 1983; Pabon and Lon-
nerdal 2000).  Zn2+ binding and transport has not been 
identified as the primary (or sole) role of any of these 
carriers, and very few, if any, appear to be specific for 
it. Likewise, the affinities of metal carrier proteins for 
 Zn2+ vary greatly, spanning several orders of magni-
tude (Fig.  2; Table  4). Some metal carrier proteins, 
like metallothioneins, are somewhat  Zn2+-specific 

Table 2  Metal binding affinities of proteins containing struc-
tural  Zn2+ ions

Structural  Zn2+ ions Kd  (Zn2+)

Estrogen receptor 1 (hER-α) 0.1 nM, 0.5 nM
(Payne et al. 2003)

Glucocorticoid receptor 0.2 nM, 0.3 nM
(Payne et al. 2003)

PDLIM1 3.1 fM
(Sikorska et al. 2012)

Sp1 600 pM, 300 nM, 4 μM
(Posewitz and Wilcox 1995)

TFIIIA 100 nM
(Huang et al. 2004)
10 nM, 26 μM
(Makowski and Sunderman 

1992)
p53 2.1 nM

(Yu et al. 2014)
NZF-1 140 pM

(Berkovits and Berg 1999)
MTF-1 31 pM

(Guerrerio and Berg 2004)
Rhodopsin 0.1 μM

(Stojanovic et al. 2004)
Suppressor of fused (SUFU) 1.89 nM

(Jabrani et al. 2017)
Sonic hedgehog (SHH)  ≤ 100 pM

(Day et al. 1999)
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and exhibit very high affinities for  Zn2+, with  Kd val-
ues in the low picomolar range. Others, such as the 
S100 family of proteins, have medium–high affinities 
for  Zn2+ that are generally in the nanomolar range. 
Carriers that are more specific for other metal cati-
ons, such as members of the transferrin family, gen-
erally exhibit much lower affinities for  Zn2+. This 
broad range of affinities may serve to accommodate 
the metalation and demetalation of proteins across the 
spectrum from those with very high  Zn2+ affinities, 
such as  Zn2+-dependent catalytic enzymes, to those 
with significantly lower  Zn2+ affinities, such as pro-
teins that contain regulatory  Zn2+ ions (Table 4 and 
Fig. 2).

Many metal carrier proteins carry  Zn2+ ions in 
binding sites that are located near the periphery of 
the protein or in an otherwise accessible location, as 
shown by the examples in Fig.  3. Metallothioneins 
are small metal carrier proteins with multiple bind-
ing sites that have widely varying affinities. Figure 3a 
shows a  Zn2+ binding site in MT2 (Braun et al. 1992) 
that utilizes four cysteine residues; it is located near 
the end of a loop along the outside of the protein 

(Fig.  3b). In lactoferrin, the  Zn2+ ion is coordinated 
near the center of the protein with an octahedral 
geometry that utilizes a histidine, two tyrosines, an 
aspartate, and a bidentate interaction with a bound 
carbonate ion (Fig. 3c) (Jabeen et al. 2005). Although 
the metal is bound near the center of the protein, there 
is a large cleft along the surface of the protein that 
makes the site more accessible to solvent (Fig.  3d). 
The  Zn2+ binding site of S100A8, shown in Fig. 3e, 
coordinates the ion with four histidine residues. The 
protein forms homodimers with two of these binding 
sites located at each edge of the protein, with the sites 
formed from two histidines contributed by each mon-
omer (Fig. 3f) (Lin et al. 2016).

The accessibility and labile nature of  Zn2+ ions 
bound to metal carrier proteins, in combination with 
their broad range of affinities, suggest that metal 
carrier proteins may be responsible for inserting or 
removing  Zn2+ ions in other proteins, in turn regu-
lating their activities. The delivery or removal of 
regulatory  Zn2+ ions can greatly affect enzymatic 
activity, while the removal of catalytic and structural 
ones may serve as a check on the activities of some 

Table 3  Metal binding 
affinities of proteins 
containing regulatory  Zn2+ 
ions

Regulatory  Zn2+ ions Kd or  IC50  (Zn2+)

Mitochondrial aconitase 2 μM
(Costello et al. 1997)

Dimethylarginine dimethylaminohydrolase (DDAH) 4 nM
(Knipp et al. 2001)

Receptor protein tyrosine phosphatase β (PTPRB) 21 pM
(Wilson et al. 2012)

Protein tyrosine phosphatase 1B (PTPN1) 17 nM
(Haase and Maret 2003)

Caspase-3  < 10 nM
(Maret et al. 1999)

Caspase-6 150 nM
(Velazquez-Delgado and Hardy 2012)

Caspase-9 1.5 μM
(Huber and Hardy 2012)

Carboxypeptidase A 0.71 μM
(Larsen and Auld 1991)

Protein C 70–80 μM
(Sen et al. 2010)

Fructose 1,6-bisphophatase 30 nM
(Pontremoli et al. 1978)

Glyceraldehyde-3-phosphate dehydrogenase 150 nM
(Maret et al. 1999)

Ca2+-ATPase 80 pM
(Hogstrand et al. 1999)
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proteins under changing chemical conditions or regu-
latory proteolysis. Indeed, many studies over the past 
few decades have indicated that metal carrier proteins 
may play a significant role in regulating the activ-
ity of enzymes by supplying or removing  Zn2+ ions 
as needed. In support of this hypothesis, some recent 
findings that demonstrate this type of phenomenon 
are reviewed, and the possible mechanisms and physi-
ological significance of these findings are discussed.

Some ZnT proteins can act as zinc chaperones 
for  Zn2+‑dependent enzymes

In humans, the 14 ZIP and 9 ZnT proteins are respon-
sible for the movement of  Zn2+ ions in and out of 
cells. In general, ZIPs transport zinc into the cyto-
plasm of cells from the extracellular compartment 
and from intracellular compartments, and ZnTs move 
it in the opposite direction (Baltaci and Yuce 2018). 

Table 4  Metal binding 
affinities of metal carrier 
proteins for  Zn2+ ions

Protein Stoichiometry Kd  (Zn2+)

Metallothionein-1 7
(Muñoz and Rodríguez 1995)

1.3 pM
(Muñoz and Rodríguez 1995)

Metallothionein-2 7
(Krezel and Maret 2007)

0.5 pM
(Jacob et al. 1998)
0.8 pM
(Muñoz and Rodríguez 1995)
1.6 pM, 0.1 nM, 20 nM
(Krezel and Maret 2007)

Metallothionein-3 7
(Hasler et al. 2000)

3.2 pM
(Hasler et al. 2000)

Metallothionein-4 Not reported Not reported
Lactoferrin 2

(Jabeen et al. 2005)
Not reported

Ceruloplasmin Not reported Not reported
S100B Not reported 94 nM (Wilder et al. 2003)
S100A2 Not reported 25 nM (Randazzo et al. 2001)
S100A3 Not reported 11 μM (Fohr et al. 1995)
S100A5 Not reported 2 μM (Schafer et al. 2000)
Calcyclin (S100A6) Not reported 100 nM (Kordowska et al. 1998)
Psoriasin (S100A7) 1

(Murray et al. 2012)
100 μM
(Vorum et al. 1996)
1 nM
(Murray et al. 2012)

Calprotectin (S100A8/A9) 3.4 nM, 8.2 nM
(Damo et al. 2013)

S100A12 2
(Cunden et al. 2016)

 < 10 nM
(Cunden et al. 2016; 

Dell’Angelica et al. 1994)
S100A15 2

(Murray et al. 2012)
2.5 nM
(Murray et al. 2012)

α2-Macroglobulin 16
(Adham et al. 1977)
20
(Pratt and Pizzo 1984)

0.3 μM
(Adham et al. 1977)
0.8 μM
(Pratt and Pizzo 1984)

Albumin 1
(Ohyoshi et al. 1999)

80 nM
(Ohyoshi et al. 1999)

Transferrin 2
(Harris 1983)

16 nM, 400 nM
(Harris 1983)

α-fetoprotein 5
(Permyakov et al. 2002)

10 nM, 10 μM (× 4)
(Permyakov et al. 2002)
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Together, these proteins regulate the intracellular 
concentration of  Zn2+, as well as within most cellular 
organelles (Kimura and Kambe 2016). These proteins 
are largely responsible for the control of zinc signal-
ing in cells (Kambe 2014) and in the regulation of the 
intracellular  Zn2+ concentration through zinc muf-
fling (Colvin et al. 2010).

In addition to their roles in transporting zinc 
across membranes, some ZnT proteins have 
been reported to act as zinc chaperones for some 
enzymes. ZnT5/ZnT6 heterodimers and ZnT7 
homodimers have both been demonstrated to be 

necessary for the metalation of the apo form of 
tissue-nonspecific alkaline phosphatase (TNAP) in 
the endoplasmic reticulum. This involves a two-step 
mechanism involving the stabilization of the apoen-
zymes followed by direct zinc loading of the active 
site (Fujimoto et  al. 2016; Fukunaka et  al. 2011). 
Based on the phenotypes observed in cell knock-
out models of ZnT1, ZnT4, and metallothionein-1, 
it was also suggested that there are other proteins 
that first hand off the  Zn2+ ions to ZnT5/ZnT6 and 
(ZnT7)2 through a mechanism analogous to the cop-
per chaperone mechanism of Atox1 (Kambe et  al. 

Fig. 3  Zinc binding sites in metal carrier proteins. a One of 
the  Zn2+ binding sites in the β-domain of rat metallothionein-2 
(4MT2) shows the ion coordinated in a tetrahedral geometry by 
four cysteine residues (Braun et al. 1992). b This  Zn2+ binding 
site in MT2 resides in a loop near the protein’s outer surface, 
shown near the top of the panel. c Structure of the  Zn2+ bind-
ing site in the C-terminal lobe of lactoferrin (1SDX), show-
ing an octahedral coordination geometry. There are 6 ligands, 
which include a histidine, two tyrosines, and an asparate 
residue. The remaining two ligands are contributed through a 

bidentate interaction with a carbonate ion (Jabeen et al. 2005). 
d The  Zn2+ binding site of LTF is located near the center of 
the protein, accessible through a wide cleft. e The S100A8 
homodimer (5HLV) contains two  Zn2+ binding sites consist-
ing of four histidine residues, two from each monomer, that 
coordinate the ion in a tetrahedral geometry (Lin et al. 2016). 
f The two  Zn2+ binding sites of S100A8 are located on either 
side of the molecule at the dimer interface at the periphery of 
the complex. Protein structure figures were created with Mol* 
Viewer (Sehnal et al. 2021) and RCSB
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2016), which transfers  Cu2+ directly to the copper 
transporters ATP7A and ATP7B.

Regulation of  Zn2+‑dependent proteins 
and enzymes by metallothioneins

Metallothioneins (MTs) are a group of small intra-
cellular sulfhydryl-containing proteins that have 
been implicated in the homeostasis of zinc and cop-
per. Although they have the highest affinity for these 
metals, MTs are also capable of binding other metal 
cations, such as  Cd2+, and may help sequester them 
to protect the cell from heavy metal poisoning (Mas-
ters et al. 1994a). These small metal-binding proteins 
have also been implicated in many other physiologi-
cal processes, such as inflammation and immunity 
(Subramanian Vignesh and Deepe 2017) and in the 
regulation of intracellular  Zn2+ levels through zinc 
buffering (Colvin et al. 2010).

In humans, there are eleven functional metal-
lothioneins that fall into four groups: MT1, 2, 3, and 4 
(Moleirinho et al. 2011; Si and Lang 2018). They are 
61–68 residue proteins with a large number of highly 
conserved cysteine residues that coordinate various 
metal ions (Zalewska et al. 2014). MT1 and MT2 are 
the most ubiquitously expressed, with MT3 mostly 
limited to excitatory neurons in the central nervous 
system (Masters et  al. 1994b; Palmiter et  al. 1992) 
and MT4 limited to stratified squamous epithelia of 
the cutaneous membrane (Quaife et al. 1994).

Thionein (T), the apo form of metallothionein, is 
an intrinsically disordered protein that adopts a more 
defined tertiary structure consisting of two domains, 
β and α, upon binding metal ions. Four metal ions 
bind first to the C-terminal α-domain, forming a fused 
six-membered ring structure with the coordinat-
ing sulfhydryl groups of the protein. The N-terminal 
β-domain binds 3 metal ions to form a six-membered 
ring in a distorted chair formation. The structure of 
an occupied  Zn2+ binding site in the β-domain of 
MT2 is shown in Fig.  3a, where it is coordinated 
with four cysteine residues (Braun et  al. 1992). The 
high cysteine content also suggests lability of the site 
under changing redox conditions, which could act as 
a switch that makes the ion available. The binding 
site is located in a loop near the surface of the protein 
(Fig. 3b), where it is accessible to solvent or an inter-
acting protein.

MTs have a very high affinity for zinc; however, 
the individual binding sites have a broad range of 
affinities. The four highest affinity sites exhibit 
 Kd values in the low picomolar range and would 
be expected to be mostly saturated at physiologi-
cal intracellular  Zn2+ concentrations. The other 
three sites, with  Kd values between 0.1 and 20 nM 
(Krezel and Maret 2007), would likely accept or 
donate metal ions as needed. This supports the pur-
ported role of MTs in zinc buffering, binding or 
releasing of  Zn2+ into the intracellular free  Zn2+ 
pool as needed to maintain steady state levels by 
proxy of multiple zinc binding sites with widely 
different affinities (Colvin et al. 2010). The varying 
affinities of the  Zn2+-binding sites in MTs, as well 
as their apparent accessibility, raises the possibil-
ity that these binding sites may interact with and 
regulate other metal-dependent proteins. Numerous 
studies indicate that this is indeed true.

In 1991, it was shown that purified T could inhibit 
the DNA-binding activity of the zinc finger-contain-
ing transcription factor Sp1, but not Oct1, which is 
not zinc-dependent (Zeng et al. 1991a). The reported 
dissociation constants of the two proteins, 600  pM 
for the high-affinity binding site of Sp1 (Posewitz 
and Wilcox 1995) and 0.3 pM for MT1 (Muñoz and 
Rodríguez 1995), suggests that this interaction is 
likely one-way, although it is theoretically possible 
that MT could donate zinc ions to apo-Sp1 from one 
of its lower affinity binding sites. Although the T/MT 
ratio in most cells is quite low, it was suggested that 
even slight increases in T concentration might act as 
a brake on Sp1 activity (Zeng et al. 1991a). Likewise, 
T can remove zinc ions from transcription factor IIIA 
(TFIIIA) (Zeng et al. 1991b). The physiological sig-
nificance of this interaction was established through 
observations of the presence of T in tumor cells and 
its direct interaction with TFIIIA. The  Zn2+ transfer 
was hypothesized to be a second order reaction with a 
rate constant of 30  M−1  s−1 and a half-time of 40 min, 
which would be physiologically relevant at cellular 
concentrations of T and free  Zn2+. In both cases, the 
donor protein is predictably the one with the lowest 
 Zn2+ affinity, which suggests an equilibrium trans-
fer mechanism as suggested by Huang et  al. (2004) 
(Fig.  4a). The  Zn2+ ion first dissociates from the 
donor protein and enters the free  Zn2+ pool, immedi-
ately followed by binding of the ion by the acceptor 
protein.
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While the previous interactions appear to occur 
through an equilibrium transfer mechanism with  Zn2+ 
affinity as the primary determinant of the direction 
of ion movement, there are some interactions of MTs 
with other  Zn2+-dependent proteins that suggest other 
mechanisms are possible. For example, the movement 
of  Zn2+ ions between T/MT and some zinc finger 
proteins can occur in both directions. For example, 

Cano-Gauci and Sarkar (1996) demonstrated both 
metalation and demetalation of the estrogen receptor 
(ER) zinc finger by MT and T, respectively. Because a 
tenfold higher concentration of T/MT was required to 
observe metal transfer with ER versus TFIIIA, it was 
suggested that differences in the zinc ligands in ER 
 (Cys4 versus  Cys2His2) or structural differences in the 
individual zinc fingers might explain the differences 

Fig. 4  Mechanisms of 
 Zn2+ ion transfer between 
metal carriers and 
 Zn2+-dependent enzymes. 
a Equilibrium transfer 
mechanism. The  Zn2+ ion 
of the donor protein (green) 
dissociates and enters the 
free  Zn2+ pool, followed by 
the binding of the free  Zn2+ 
ion by the acceptor protein 
(red). b Shared ligand 
mechanism. Protein–protein 
interactions between the 
donor (green) and acceptor 
(yellow) proteins exposes 
binding site residues of the 
acceptor protein, which 
coordinate to the  Zn2+ ion 
to form an intermediate 
in which the  Zn2+ ion is 
shared by the two proteins. 
Disengagement of the 
protein complex causes the 
 Zn2+ ion to remain with 
the acceptor protein after 
the proteins dissociate. c 
Altered affinities mecha-
nism. Protein–protein inter-
actions between the donor 
(green) and acceptor (red) 
proteins induce conforma-
tional changes that reduce 
the affinity of the donor 
protein for the  Zn2+ ion 
and/or enhance the affinity 
of the acceptor. The  Zn2+ 
ion dissociates from the 
donor and is then bound by 
the acceptor protein. Cre-
ated with BioRender.com. 
(Color figure online)
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in kinetics. Differences in thermodynamic parameters 
of  Zn2+ binding between  Cys4 and  Cys2His2 zinc fin-
ger binding sites (Rich et al. 2012) might be a more 
reasonable explanation for these observations given 
that there are no discernable differences in  Zn2+ affin-
ity between these two types of zinc fingers. Bidirec-
tional transfer of  Zn2+ between the  Cys2His2 zinc 
finger of tramtrack (TTK) and T/MT has also been 
reported, although affinity of the zinc finger of TTK 
for  Zn2+ is unknown (Roesijadi et al. 1998). In these 
cases, however,  Zn2+ ion transfer does not always 
proceed from a lower affinity donor to a higher affin-
ity acceptor, suggesting that other mechanisms, such 
as protein–protein interactions, may be necessary.

One possible mechanism was suggested through 
the characterization of interactions of T with the well-
characterized tumor suppressor protein p53. The p53 
protein, which is activated under stress conditions, 
contains a DNA-binding motif that is stabilized by 
a structural zinc ion (Meplan et  al. 2000). Consist-
ent with reports of T interacting with other metal-
dependent DNA-binding proteins, it was discovered 
that T can cause the misfolding of p53 and loss of 
DNA-binding activity by removing the structural 
 Zn2+ ion from the protein’s DNA-binding domain. 
 Zn2+ removal was driven by the direct binding of 
sulfhydryl groups of T to the bound  Zn2+ of p53 (Xia 
et  al. 2009). Protein–protein interactions between T 
and p53 were confirmed by co-immunoprecipitation 
(Ostrakhovitch et al. 2006) and surface plasmon reso-
nance experiments (Xia et al. 2009). It was proposed 
that demetalation of p53 by T occurs through a shared 
ligand transfer model in which the  Zn2+ ligands of the 
acceptor displace one or more of the  Zn2+ ligands of 
the donor, followed by displacement of the remain-
ing bonds of the donor by additional metal-binding 
residues of the acceptor (Fig. 4b). The idea that metal 
ions can bridge protein–protein interactions is not 
new; for example,  Zn2+ can cause the dimerization of 
hexa-histidine  (His6) affinity tags (Evers et al. 2008), 
and  His6 affinity tags have been observed to interfere 
with the activity of some enzymes containing cata-
lytic  Zn2+ ions (Thompson et al. 2003). This model is 
also supported through direct observations of shared 
ligand metal transfer with other transition metals. For 
example, stopped-flow fluorescence experiments sug-
gest the shared ligand transfer of  Cu+ ions between 
the E.  coli CusF and CusB proteins (Chacon et  al. 
2018).

Interactions of MTs with proteins containing 
catalytic  Zn2+ ions have also been observed. This 
was first demonstrated by the reactivation of the apo 
form of carbonic anhydrase  (Kd = 1  pM) by MT1 
(Li et  al. 1980; Udom and Brady 1980). Likewise, 
MT2 possesses the ability to donate  Zn2+ ions to 
the apo form of sorbitol dehydrogenase  (Kd = 6 pM) 
at the T/MT ratio typically present at physiological 
conditions (Krezel and Maret 2008) and can acti-
vate the apo forms of MMP-9 (Zitka et  al. 2011) 
and δ-aminolevulinic acid dehydratase (Goering 
and Fowler 1987) as well.  Zn2+ ions have also been 
observed moving in the opposite direction, from a 
donor protein with a catalytic  Zn2+ ion to a thionein 
acceptor. T possesses the ability to inhibit carboxy-
peptidase A, ostensibly by chelation of the active site 
 Zn2+ ion (Jacob et al. 1998). The affinity of carboxy-
peptidase A for its catalytic  Zn2+ ion  (Kd = 0.5  nM) 
(Williams 1960), is lower than most other cata-
lytic  Zn2+ ions, and is well within the ability of T to 
compete with it. T also demonstrated a weak ability 
to extract the catalytic zinc ion from alkaline phos-
phatase (Jacob et al. 1998). The study noted that the 
interaction did not proceed naturally, as predicted 
by thermodynamics, because of chemical buffering 
agents in the assay, such as citrate and glutathione, 
that are usually present at high concentrations in cells.

The most likely mechanism for the previous find-
ing is the equilibrium transfer mechanism (Fig.  4a), 
in which  Zn2+ ions are released from lower affinity 
binding sites of MT in response to changes in redox 
potential (Maret and Vallee 1998; Spahl et al. 2003; 
St Croix et al. 2002), making them available for sub-
sequent protein metalation. In the interactions with 
carbonic anhydrase and sorbitol dehydrogenase, how-
ever, the  Kd of the enzyme for the catalytic  Zn2+ ion 
is comparable to the high-affinity  Zn2+ binding sites 
of MT (Table  4). Thus, the enzymes would not be 
expected to be fully metalated by this mechanism, 
suggesting that an alternative mechanism is likely. 
One such possibility is the altered affinities mecha-
nism, in which the direct transfer of  Zn2+ is facili-
tated through protein–protein interactions that alter 
the affinity of one or both proteins for the  Zn2+ ion 
(Fig.  4c). There is also experimental support for 
this model. Studies of protein–protein interactions 
between the bacterial AztD and AztC proteins dem-
onstrated the release of a  Zn2+ ion from AztD and 
the binding of the ion by AztC. Mutagenesis of AztD 
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indicated that negative cooperativity between the two 
metal binding sites in the protein allowed release of 
the ion, followed by its subsequent binding by the 
acceptor (Neupane et al. 2019).

Regulatory  Zn2+ ions are generally held with 
much lower affinities than are structural and cata-
lytic ones (Kochanczyk et  al. 2015; Maret 2013b), 
providing a strong possibility that MTs may regulate 
the activity of proteins that utilize them. Since MTs 
generally have a higher affinity for the metal than do 
proteins with regulatory  Zn2+ sites, the ions would 
be expected to move to T as an acceptor. This phe-
nomenon has been observed through the ability of 
T to extract the regulatory  Zn2+ ions of caspase-9 
(Maret et al. 1999) and protein tyrosine phosphatase 
1B (Krezel and Maret 2008), both of which exhibit 
a lower  Zn2+ affinity than T (Table  3 and Table  4). 
Surprisingly, however, the direct transfer of  Zn2+ 
from MT to an inhibitory regulatory binding site in 
aconitase has been observed (Feng et al. 2005). Since 
aconitase has a  Zn2+ affinity that is several orders of 
magnitude lower than MT, the altered affinities mech-
anism seems a more likely method of transfer in this 
case.

MTs are primarily intracellular proteins; accord-
ingly, the earlier examples of the regulation of zinc-
dependent proteins by MTs are limited to intracellular 
proteins. This is consistent with the proposed role of 
MTs in zinc buffering of the intracellular compart-
ment, where they not only regulate the free intracel-
lular zinc pool, but also may add or remove metals 
from intracellular proteins that might not otherwise 
be able to obtain them from the free zinc pool. A few 
recent findings, however, indicating that MTs are also 
present within the extracellular compartment (Chung 
et  al. 2008; Hao et  al. 2007), raising the possibility 
that they may regulate extracellular zinc-dependent 
proteins as well. Observations that serum albumin 
binds and interacts with MTs (Atrian and Capdevila 
2013) also suggests that MTs may be also involved in 
moving zinc ions from plasma to interstitial fluid to 
make them available to cells.

Regulation of  Zn2+‑dependent enzymes 
by lactoferrin

Lactoferrin (LTF) is a member of the transferrin fam-
ily, which is comprised of proteins implicated in iron 

transport that likely arose from repeated duplica-
tions of a single ancestral iron-binding protein gene 
(Lambert et al. 2005). Since its discovery in 1939 as 
an iron binding protein and in 1960 as component of 
human milk (Brock 2012), it has been extensively 
studied and implicated primarily in the absorption 
and recycling of iron. Because iron is crucial for life 
for almost all living organisms, LTF has a well-char-
acterized anti-microbial activity that is due to its abil-
ity to sequester iron away from microorganisms (Far-
naud and Evans 2003). LTF is a major component of 
neutrophil granules (Furmanski and Li 1990; Wong 
et  al. 2009) and has thus been implicated in regu-
lating other aspects of innate immunity, including 
inflammation. Recent studies have indicated that LTF 
attenuates IL-6 production (Rosa et al. 2017), inhibits 
neutrophil extracellular trap (NET) formation (Okubo 
et al. 2016), and reduces reactive oxygen species gen-
eration (Kruzel et al. 2013), among other activities.

LTF is an extracellular glycoprotein consisting of 
two lobes, each containing a single metal binding 
site. Ferric ions are bound to each site by two tyros-
ine residues, one aspartate residue, and one histidine 
residue, and are further coordinated with the oxygen 
atoms of a bound carbonate anion (Baker and Baker 
2004). Although LTF binds  Fe3+ with highest affin-
ity (Baker et al. 2003), it is capable of binding many 
other metal cations, including  Cu2+,  Ce4+, and  Zn2+, 
with little to no change in the tertiary structure of the 
protein (Baker et al. 2000; Jabeen et al. 2005; Smith 
et  al. 1992). The structure of the  Zn2+-bound C-ter-
minal lobe of LTF has been determined, showing that 
the ion is bound near the center of the domain in an 
octahedral geometry that also requires binding of 
a carbonate ion (Fig. 3c). Despite its location in the 
interior of the protein, the  Zn2+ ion is largely acces-
sible through a deep cleft that runs across the protein 
surface (Fig.  3d). It was also noted that the glycan 
bound to  Asn545 lies near the entrance to the cleft and 
may play a role in regulating its accessibility (Jabeen 
et al. 2005).

Because transferrin exhibits a much lower  Kd for 
 Fe2+ than for  Fe3+ (Baker et  al. 2003), it is likely 
that LTF exhibits a lower affinity for other divalent 
metal cations, such as  Zn2+. Since the concentration 
of free  Zn2+ ions in living systems is kept at a very 
low level relative to other metals, the role of LTF in 
 Zn2+ homeostasis is unclear. Nevertheless, signifi-
cant amounts of zinc are bound to LTF in human milk 
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(Ainscough et  al. 1980), and  Zn2+-saturated LTF 
exhibits altered biochemical properties (Harrington 
1992; Li et  al. 2009; Marchetti et  al. 1998, 1999). 
Thus, it is likely that zinc binding by LTF may serve 
an important physiological function.

In addition to its considerable roles in innate 
immunity, LTF has been demonstrated to interact 
with and regulate  Zn2+-dependent proteins as well. 
Apolactoferrin possesses the ability to chelate the 
zinc ion from the active site of MMP-2, but only 
when the enzyme is lacking the hemopexin regula-
tory domain. While this interaction may be a form 
of extracellular zinc buffering, it is also possible that 
the interaction serves to regulate the activity of the 
enzyme once its regulatory domain has been removed 
as a way of attenuating its activity. It was further 
noted that MMP-2 inhibition by LTF was markedly 
increased at temperatures above 37  °C (Newsome 
et  al. 2007), hinting that this interaction may reflect 
the role of LTF in innate immunity as well as enhance 
its zinc buffering properties under physical and 
chemical conditions that might cause demetalation 
of many metalloproteins. Although it is still unclear 
if the removal of the hemopexin domain of MMP-2 
is a physiologically relevant step in the regulation of 
extracellular matrix turnover and regulation, there is 
some published evidence showing that this event does 
indeed occur under physiological conditions (Brooks 
et al. 1998). This would imply that the observed inter-
action between LTF and MMP-2 may be important. 
The ubiquitous expression of LTF by most glands and 
epithelia (Aisen and Listowsky 1980) further suggests 
the physiological relevance of these interactions.

Although the  Zn2+ affinity of neither lactofer-
rin nor MMP-2 has been directly measured, it was 
observed in the earlier study that the form of MMP-2 
lacking the hemopexin domain has a lower affinity for 
the catalytic  Zn2+ ion than does the full-length form, 
which makes it more susceptible to inhibition by zinc 
chelation (Newsome et  al. 2007). The equilibrium 
transfer mechanism (Fig.  4a) was suggested as the 
most likely mechanism; however, other mechanisms 
cannot be fully ruled out. The observation that the 
attached N-linked glycan is located near the binding 
cleft of the protein suggests that other mechanisms 
may govern the movement of metal ions into and out 
of LTF.

The zinc chelation activity of LTF is not limited 
to host enzymes, which may extend its antimicrobial 

activities well beyond nutritional immunity. Several 
recent findings indicate that LTF can also inhibit path-
ogen metalloproteins. For example, LTF also inhibits 
the RgpA/B and Kgp proteases of Porphyromonas 
gingivalis, ostensibly through direct interaction of the 
C-terminal lobe of LTF and the zinc ion in the pro-
tease active site (Dashper et al. 2012). Likewise, LTF 
has also become a target of bacterial virulence factors 
and siderophores. For example, ZmpB, a virulence 
factor of Bukholderia cenocepacia, is a zinc metallo-
protease that cleaves lactoferrin, among other targets 
(Kooi et al. 2006). In Neisseria, the LbpAB protein is 
responsible for extracting iron from LTF. Since LTF 
exhibits a lower affinity for  Zn2+, it is theoretically 
likely that Neisseria or other bacterial species may 
utilize LTF as a source for this metal as well.

Regulation of  Zn2+‑dependent enzymes 
by ceruloplasmin

Ceruloplasmin (CP) is an abundant carrier protein in 
plasma that is primarily responsible for the transport 
of  Cu2+ ions. It is encoded by a single gene, located 
on chromosome 3, that gives rise to a 120 kDa pro-
tein that is heavily glycosylated (Linder 2016). CP is 
the most abundant copper carrying protein found in 
human plasma, carrying 6  Cu2+ ions (Zaitseva et al. 
1996). It is also a multicopper oxidase that oxidizes 
substrates by transferring electrons to a bound cop-
per ion and then to a trinuclear copper center where 
four electrons are then transferred to oxygen to form 
water (Bento et al. 2005). The primary physiological 
reaction catalyzed by CP is the oxidation of  Fe2+ to 
 Fe3+, which allows the binding of iron to transferrin 
(Harris et  al. 1999). Structurally, the major domains 
of the protein are interconnected by exposed loop 
domains, which make the protein very susceptible to 
proteolysis. This susceptibility is likely linked to its 
physiological activity, since it has been shown that 
cleavage of CP by thrombin eliminates the ability of 
CP to inhibit myeloperoxidase (Samygina et al. 2013; 
Sokolov et al. 2008).

Although > 95% of serum  Cu2+ is bound to CP 
(Hellman and Gitlin 2002), at least 50% of plasma 
CP is thought to remain in the apo form (Hirano et al. 
2005; Middleton and Linder 1993), suggesting the 
possibility that CP may play a role in the homeosta-
sis of other metal ions. Although < 2% of serum CP 



200 Biometals (2022) 35:187–213

1 3
Vol:. (1234567890)

contains bound  Zn2+ (Lindley et al. 1997; McKee and 
Frieden 1971; Samygina et al. 2008), highly elevated 
zinc levels due to supplementation often result in cop-
per deficiencies (Prasad et al. 1978), suggesting that 
CP may also participate in  Zn2+ homeostasis under 
some conditions. It has also been suggested that  Zn2+ 
may play a role in regulating the physiological func-
tion of CP in the rat through observations that the 
 Zn2+-bound enzyme adopted a disordered state more 
characteristic of the apoenzyme (Samygina et  al. 
2017). This, in turn, likely affects its interactions with 
other proteins.

CP has been demonstrated to have strong anti-
inflammatory properties, primarily through its inter-
actions with pro-inflammatory enzymes. In particular, 
CP has been demonstrated to form complexes with 
MMP-2 and MMP-12 through experiments demon-
strating co-localization of the proteins in preparations 
of CP isolated from citrated human plasma (Sokolov 
et al. 2009). However, experiments to analyze gelati-
nolytic activity of the two MMPs in the presence of 
CP were not performed. The binding of the two pro-
teins was postulated to be due to their affinity for hep-
arin, which is seen in other proteins that form com-
plexes with CP. There is ample evidence, however, 
that apoCP possesses the ability to regulate many 
metal-dependent enzymes, such as MMP-2 (Thomp-
son 2012) and other enzymes with contain catalytic 
and regulatory  Zn2+ ions (Vasilyev 2019). Likewise, 
CP has been shown to interact with LTF and the 
metal-containing protein myeloperoxidase, raising the 
possibility that it has the capability to interact with 
other metalloproteins as well (Sokolov et al. 2014).

Additional evidence for the regulation of zinc-
dependent enzymes by CP it its reported interac-
tion with activated protein C (aPC) (Walker and Fay 
1990). CP bears strong homology to the aPC binding 
domains of factors V and VIII. Likewise, binding of 
CP to aPC has been demonstrated in  vitro. Subse-
quent experiments by others have demonstrated that 
the interaction of aPC with endothelial cell protein C 
receptor (ECPR) is modulated by  Zn2+ bound to the 
γ-carboxyglutamate (Gla) domain of aPC (Sen et al. 
2010). Together, these results raise the possibility 
that CP may directly participate in the regulation of 
the coagulation cascade, possibly by interacting with 
the bound metal near the N-terminal Gla domain of 
aPC. In the latter study, it was noted that the appar-
ent  Kd for  Zn2+ binding by aPC was ~ 70–80 μM, well 

above the plasma free  Zn2+ concentration of 0.2 nM. 
Although the affinity of CP for  Zn2+ has not been 
experimentally determined, it would suggest that the 
mechanism of the interaction might involve deliv-
ery of the metal to aPC by CP through a hypotheti-
cal transfer mechanism, such as the shared ligand or 
altered affinity mechanism (Fig.  4). The observation 
that  Zn2+-bound rat CP adopts a disordered struc-
ture (Samygina et al. 2017) further suggests that the 
increased mobility of domains within the protein 
could easily interact with a target protein to facilitate 
metal ion transfer through one of these mechanisms.

Regulation of  Zn2+‑dependent proteins 
and enzymes by members of the S100 family 
of proteins (calprotectin, calcyclin, and S100A12)

S100 proteins (soluble in 100% ammonium sulfate) 
are a family of calcium-binding signaling proteins 
in vertebrates that contain a conserved EF-hand 
calcium-binding motif, which is shared with other 
calcium-binding proteins such as calmodulin and 
troponin-C. Currently, there are 24 known S100 pro-
teins in humans, with the majority of them encoded 
by genes located in a cluster on chromosome 1q21 
(Marenholz et al. 2004). Members of the S100 fam-
ily contain two EF-hand calcium-binding motifs: 
an N-terminal EF-hand containing a 14-amino acid 
 Ca2+-binding loop unique to S100 proteins, and a 
C-terminal EF-hand containing a 12-amino acid 
 Ca2+-binding loop that is identical to other calcium-
binding proteins (Kawasaki et al. 1998).

S100 family genes are very well conserved 
throughout vertebrate evolution, and it is thought that 
they evolved through a series of gene duplication and/
or exon shuffling events (Ravasi et al. 2004). Because 
S100 proteins are so well conserved, it is unsurprising 
that members of this family have been implicated in 
many physiological processes, including the regula-
tion of cell division, inflammation, and  Ca2+ home-
ostasis, among others. The secretion of some S100 
proteins can be induced by cytokines and toll-like 
receptor ligands, suggesting that they may function as 
extracellular alarmins or damage-associated molecu-
lar patterns (DAMPs) that regulate inflammation and 
the innate immune response. Several S100 proteins, 
including S100A7 (psoriasin), S100A8/S100A9 
(calprotectin), and S100A12, are also involved in 
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nutritional immunity, binding  Zn2+,  Cu2+, and  Mn2+ 
ions and limiting their availability to potential patho-
gens (Zackular et al. 2015). S100 proteins have also 
been implicated in many intracellular regulatory pro-
cesses, including the regulation of apoptosis, cell dif-
ferentiation, and energy metabolism (Donato et  al. 
2013).

Many S100 proteins are capable of binding zinc 
in addition to calcium (Baudier et  al. 1986; Fili-
pek et  al. 1990). Cysteine-free  Zn2+-binding sites 
were observed in the crystal structures of psoriasin 
(Brodersen et al. 1999), S100B (Wilder et al. 2005), 
and S100A8 (Lin et  al. 2016). Cysteine-containing 
 Zn2+-binding sites in S100A2 were deduced through 
NMR and homology modeling experiments (Ran-
dazzo et  al. 2001).  Zn2+ binding alters the biologi-
cal activity of some members of the family, while in 
others it can induce dimerization. In S100A7,  Zn2+ 
induced dimerization by creating a binding site at 
the dimer interface containing an N-terminal histi-
dine and aspartate residue from one subunit and two 
C-terminal histidine residues from the other subu-
nit (Brodersen et  al. 1999). Zinc can also promote 
dimerization of S100A8. One of two  Zn2+ binding 
sites of a S100A8 homodimer is shown in Fig.  3e. 
The  Zn2+ ion is coordinated by four histidine resi-
dues, two from each monomer (Lin et al. 2016). Both 
binding sites are located at the periphery of the pro-
tein (Fig.  3f), where they are accessible to solvent 
and to potential protein targets. Similar  Zn2+-binding 
sites have been hypothesized for S100A9, S100A12, 
S100B (Brodersen et al. 1999), and S100A6 (calcyc-
lin) (Maler et al. 1999). Additional low-affinity bind-
ing sites were also observed in S100A12 under condi-
tions that caused aggregation of the protein (Moroz 
et al. 2009).

Zinc binding by S100 proteins is often linked to 
 Ca2+ binding. In many cases,  Ca2+ binding can affect 
the affinity of the protein for  Zn2+. S100B, which can 
bind a total of 8  Zn2+ ions, exhibits negative coop-
erativity between the  Ca2+-binding sites and the four 
low-affinity  Zn2+-binding sites, ostensibly due to a 
conformational change (Baudier et al. 1986). In con-
trast, no such inhibition of the  Zn2+-binding sites due 
to  Ca2+ binding was observed in calcyclin (Filipek 
et al. 1990) or S100A9 (Raftery et al. 1996). Despite 
the variety of affinities of these proteins for  Zn2+ and 
its varied effects on their physiological functions, 
there is ample experimental evidence that at least 

some members of the S100 family are involved in the 
regulation of other  Zn2+-dependent proteins.

The most well-characterized member of this family 
is calprotectin (CALP), a heterodimeric complex of 
S100A8 and S100A9 that forms a heterotetramer in 
the presence of  Ca2+ (Strupat et al. 2000). Like other 
S100 proteins, CALP is capable of binding zinc ions 
at a site distinct from the protein’s calcium-binding 
motif (Raftery et al. 1996). CALP is found in both the 
intracellular and extracellular compartments and par-
ticipates in many different physiological processes. 
CALP comprises about 50–60% of the total protein 
present in the specific granules of neutrophils (Fager-
hol et  al. 1990; Johne et  al. 1997), and is generally 
thought to mediate nutritional immunity by seques-
tering  Zn2+ away from bacteria and other pathogens 
as its primary physiological function (Besold et  al. 
2018; Sohnle et  al. 2000). Subsequent experiments 
have revealed that calprotectin also functions as an 
extracellular alarmin that activates Toll-like recep-
tor 4 (TLR4) (Ehrchen et al. 2009; Vogl et al. 2018), 
and that CALP can induce apoptosis in tumor cells by 
withholding  Zn2+ from them (Yui et  al. 2002). Fur-
thermore, CALP secretion is strongly stimulated dur-
ing inflammation (Wang et  al. 2018), further under-
scoring its role in the innate immune response.

CALP also appears to regulate many 
 Zn2+-dependent enzymes in the extracellular com-
partment, much as MT does in the intracellular com-
partment. Most prominently, CALP may regulate the 
activity of many MMPs, including MMP-1, -2, -3, 
-7, -8, -9, and -13, through a zinc chelation mecha-
nism (Isaksen and Fagerhol 2001). The ability of 
calprotectin to extract the zinc ion from the various 
MMPs varied greatly, mostly likely due to differ-
ing  Zn2+ affinities and solvent accessibility. Calpro-
tectin inhibition was most effective against MMP-8 
 (IC50 = 0.3  μM) and MMP-13  (IC50 = 0.5  μM), and 
less effective against the gelatinases MMP-2 and -9 
 (IC50 = 2.8 μM and 5 μM, respectively) and MMP-7 
 (IC50 > 11  μM). Since the plasma concentration of 
CALP is around 1 nM (Cikot et al. 2016), this would 
not be expected to be a physiologically relevant inter-
action. However, very high local concentrations of 
CALP are present in the extracellular matrix around 
neutrophils upon degranulation and would likely be 
high enough to facilitate this reaction. It was surmised 
that the high concentrations of calprotectin needed to 
inhibit the enzymes was due to a much lower affinity 
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of calprotectin for  Zn2+ than MMPs. However, simi-
larly high concentrations of LTF were needed for 
effective inhibition of MMP-2 (Newsome et al. 2007), 
suggesting that alternative mechanisms, such as the 
altered affinity or shared ligand mechanism, may be 
employed in this interaction. Thus, the high concen-
trations of protein needed to inhibit MMPs either 
reflects the high affinity of MMPs for  Zn2+ ions, or 
their relative inaccessibility. Regardless of the reason, 
further evidence of the physiological significance of 
this interaction through the finding that overexpres-
sion of S100A8 and S100A9 in a carcinoma cell line 
reduced both the expression and enzymatic activity 
of MMP-2 (Silva et al. 2014) indicates that this event 
likely does occur.

Although there are no examples of direct  Zn2+ 
chelation reactions between CALP and host regula-
tory  Zn2+ ions, it is expected that such interactions 
would likely exist due to the higher  Zn2+ affinity of 
CALP relative to the more loosely bound regulatory 
 Zn2+ ions. There are data that highly suggest such 
interactions. One example is the observation that 
disruption of intracellular CALP in cultures of head 
and neck squamous cell carcinomas (HNSCC cells) 
caused a concomitant reduction in caspase-3 and 7 
mediated EGFR cleavage, explaining why patients 
with tumors expressing higher levels of CALP had 
better clinical outcomes (Argyris et al. 2019).

Due to its role in nutritional immunity through its 
ability to sequester  Zn2+, CALP has become a target 
for zinc piracy by certain bacterial species much as 
LTF has. The TdfH protein of Neisseria gonorrhoeae 
binds to and extracts a zinc ion from human calpro-
tectin (Kammerman et al. 2020; Stork et al. 2013) or 
the closely related psoriasin/S100A7 (Maurakis et al. 
2019). Likewise, Salmonella typhimurium employs a 
similar strategy, using the zinc transporter ZnuABC 
to sequester  Zn2+ away from CALP (Liu et al. 2012).

Other S100 family proteins have been shown to 
regulate  Zn2+-dependent enzymes as well. S100A12, 
also known as calgranulin-C and EN-RAGE, is an 
inflammation-associated zinc and calcium-binding 
protein that comprises around 5% of the total pro-
tein in neutrophils (Guignard et al. 1996) and can be 
found in both extracellular and intracellular forms 
(Donato et  al. 2013). Links between S100A12 and 
many pathologies, including some gastrointestinal 
disorders and type II diabetes, have been established 
(Foell et al. 2003; Kosaki et al. 2004). Like the closely 

related S100A8 and S100A9 proteins, S100A12 also 
inhibits MMP-2, MMP-3, and MMP-9 with sub-
micromolar inhibition constants, making it an even 
more likely regulatory factor for these enzymes than 
CALP, LTF, or CP. Reintroduction of zinc reversed 
this inhibition, emphasizing that zinc chelation by 
S100A12 was the most likely mechanism. These 
interactions were implicated in the development of 
atherosclerotic lesions through co-localization in 
foam cells (Goyette et al. 2009), suggesting that these 
interactions may contribute to the pathophysiology of 
heart disease.

An interaction between calcyclin, also known 
as S100A6, with melusin, a cytoplasmic chaper-
one protein with a  Zn2+-dependent protein–protein 
interaction domain, has also been reported (Tsoporis 
et  al. 2017). Although there is no direct experimen-
tal evidence of  Zn2+ ion transfer between calcyclin 
and melusin, it is likely considering other experi-
mental evidence. Similar interactions between melu-
sin and S100A1 and S100A4 proteins have also been 
observed through co-immunoprecipitation experi-
ments (Filipek et al. 2008), further supporting a role 
for S100 proteins in the regulation of  Zn2+-dependent 
enzymes.

Regulation of enzymes involved in carbohydrate 
metabolism by parathymosin

Thymosins are a family of small zinc-binding pro-
teins originally isolated from bovine thymus, but are 
also found in most other tissues. The most prominent 
members of the family are prothymosin-α (PTMA) 
and parathymosin (PTMS), which are encoded by 
separate 5-exon genes. Like MTs, thymosins are 
intrinsically disordered proteins that adopt a distinct 
tertiary structure when bound to zinc (Hannappel and 
Huff 2003). PTMS was identified as an inhibitor of 
phosphofructokinase (PFK) in the presence of  Zn2+, 
but not in its absence (Trompeter et  al. 1989), sug-
gesting the possibility that this protein might transfer 
inhibitory zinc ions to PFK. While there are multiple 
reports of  Zn2+ ions inhibiting PFK with  IC50 values 
around 1  μM (Brand and Soling 1986; Ikeda et  al. 
1980), there have been no direct reports of inhibitory 
zinc ions in crystal structures of PFK, nor have there 
been reports of the direct transfer of zinc ions from 
PTMS to PFK.
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PTMS was also able to bind other enzymes 
involved in carbohydrate metabolism, including 
fructose-1,6-bisphosphatase, aldolase, and glycer-
aldehyde-3-phosphate dehydrogenase (GAPDH), 
among others (Brand and Heinickel 1991). Some of 
these enzymes, such as GAPDH, also interact with T 
(Maret et al. 1999). The high concentrations of  Zn2+ 
necessary to show inhibition in these cases, however, 
is well above the free zinc concentration in the intra-
cellular compartment, making its physiological rel-
evance questionable. Given their similarity to MTs, 
however, the possibility remains that PTMS and other 
thymosins may possess similar regulatory activities, 
perhaps through direct transfer of the ion to PFK 
via the altered affinities or shared ligand mechanism 
(Fig. 4). PTMS is found both in the intracellular and 
extracellular compartments. However, it also contains 
a nuclear localization signal and has been experimen-
tally identified within the nucleus (Yu et  al. 2020), 
suggesting that it could potentially regulate other 
zinc-dependent enzymes there, such as zinc finger 
proteins.

Mechanisms of metal ion transfer 
between  Zn2+‑dependent proteins and metal 
carrier proteins

Until recently, there have been few attempts to exam-
ine the mechanisms behind metal transfer reactions 
between proteins, but a number of clever experiments 
have suggested three models to explain the phenome-
non. The mechanism with the most experimental evi-
dence is the equilibrium transfer mechanism (Fig. 4A), 
in which the bound  Zn2+ ion dissociates from the donor 
protein, enters the free  Zn2+ pool, and is then bound by 
the acceptor protein. In this mechanism, the movement 
of the ion appears to be dependent upon the affinities 
of the proteins for it. In such a mechanism, however, 
the acceptor protein would likely compete with other 
metal-binding proteins in the immediate vicinity for the 
ion. This process, called zinc buffering, not only serves 
to keep the concentration of free  Zn2+ ions very low, 
but also may be important for ensuring that metal ions 
are only transferred to certain acceptor proteins in order 
to prevent them from inappropriately binding to other 
regulatory sites. This also brings into question the phys-
iological relevance of some of these reactions. In these 

cases, in vivo experiments utilizing 65Zn or other trac-
ers may be helpful in answering these questions.

In some instances, the regulation of zinc-dependent 
and zinc-regulated enzymes is much more complex. 
In fact, there are a few examples in which  Zn2+ ions 
are transferred from a higher affinity donor to a lower 
affinity acceptor. Furthermore, structural analyses of 
many metal-binding sites in proteins indicate that most 
of them have limited solvent exposure and/or occur at 
or near hinge sites in proteins (Dutta and Bahar 2010). 
This indicates that many enzymes may require confor-
mational changes or protein–protein interactions that 
increase or decrease metal affinity in order to bind or 
release  Zn2+ ions. There are two additional mechanisms 
that could explain this behavior, both of which have 
supporting experimental evidence. One possibility is 
the altered affinities mechanism (Fig. 4c) in which the 
donor and acceptor proteins bind and undergo confor-
mational changes that alter the affinity of one or both 
proteins for the metal ion, as suggested by studies of 
the bacterial AztC and D proteins (Neupane et al. 2019) 
and other instances in which  Zn2+ ions are transferred 
from a higher affinity donor to a lower affinity accep-
tor. Another plausible explanation is the shared ligand 
mechanism (Fig.  4b), where the metal is transferred 
from donor to acceptor through a 2-step process in 
which the two proteins bind each other and undergo 
conformational changes that directly expose the metal 
ion to one or more of the ligands of the metal binding 
site on the acceptor protein. This interaction forms an 
intermediate in which the two proteins are bridged by 
the shared metal ion, followed by dissociation of the 
proteins with the metal fully bound to the acceptor 
protein. This hypothesis is supported by experimental 
evidence demonstrating interprotein contact between 
MT2 and the apo form of a zinc finger peptide in which 
a  Zn2+ ion is bound to metal-coordinating residues dis-
tributed between the two interacting proteins (Hath-
out et  al. 2001). This mechanism was also proposed 
to explain interactions between some bacterial metal 
chaperones and their corresponding acceptor proteins 
(Chacon et al. 2018; Neupane et al. 2019).

Metal carrier proteins as regulatory factors 
for  Zn2+‑dependent proteins and enzymes

Free  Zn2+ is maintained at very low levels in the 
body through a combination of zinc muffling and the 
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use of metal carrier proteins to distribute  Zn2+ ions. 
This low concentration makes it theoretically difficult 
for proteins with low  Zn2+ affinities to obtain these 
ions. It has been estimated that about 1/3 of metal-
loproteins are metalated by so-called metal chaper-
ones, while the rest draw these ions from intracel-
lular metal pools (Foster et  al. 2014). As would be 
expected, enzymes with catalytic zinc ions tend to 
have the highest affinities for them, with  Kd values 
of  10–11  M or lower (Maret 2004), well below the 
free  Zn2+ concentration. Thus, these proteins would 
be expected to be fully metalated at physiological 
 Zn2+ concentrations and would likely obtain these 
ions from the intracellular free  Zn2+ pool. However, 
there appear to be few examples of proteins that can 
directly draw  Zn2+ ions from the intracellular pool of 
free metals, suggesting that a larger share of metal-
loproteins may obtain these metals from other pro-
teins. A few enzymes, such as angiotensin-converting 
enzyme (ACE) and carboxypeptidase A, have lower 
affinities for  Zn2+; their  Kd values are in the range of 
the free intracellular  Zn2+ concentration (Table 1) and 
they might not be fully saturated at physiological zinc 
concentrations. Thus, these enzymes likely have some 
other means of obtaining these ions from another pro-
tein, such as a zinc chaperone or metal carrier protein. 
There are multiple examples of metallothioneins act-
ing as zinc chaperones, usually through the equilib-
rium transfer mechanism from one of the lower affin-
ity binding sites. Thus, it is likely that other metal 
carrier proteins with lower  Zn2+ affinities may have 
the ability to act in a similar capacity.

Additional evidence that metal carrier proteins 
may be important regulators of zinc-dependent pro-
teins comes from their interactions with proteins 
containing structural or regulatory  Zn2+ ions. The 
 Kd values of these proteins for these types of  Zn2+ 
ions are often well above the free  Zn2+ concentra-
tion (Tables  2 and 3), making it unlikely that they 
would be able to compete for these ions from the 
free intracellular zinc pool. Likewise, the affinity of 
proteins for these types of zinc ions is well below 
that of most metal carrier proteins. Thus, many of 
these proteins must obtain the metal through some 
type of zinc chaperone, and there is now consider-
able evidence that suggests that various metal car-
rier proteins may perform this role. In these cases, 
the mechanism would most likely follow the shared 
ligand (Fig.  4b) or altered affinity mechanism 

(Fig.  4c), although chemical changes that alter the 
affinities of these proteins for zinc cannot be fully 
ruled out.

Most of the characterized interactions between 
metal carrier proteins and  Zn2+-dependent pro-
teins have entailed the transfer of  Zn2+ ions from 
a  Zn2+-dependent donor protein to a metal carrier 
protein. This usually involves the chelation of  Zn2+ 
ions from proteins with regulatory or structural 
zinc ions. Although many of these examples indi-
cated that equilibrium transfer is the most likely 
mechanism, other mechanisms are plausible. There 
is experimental evidence demonstrating that the 
removal of catalytic  Zn2+ ions by metal carrier pro-
teins with lower affinities does occur under some 
circumstances. These transfers probably involve 
protein–protein interactions, as suggested by the 
shared ligand and altered affinities mechanisms 
(Fig.  4). While this may also represent a method 
of zinc buffering, it is also highly likely that these 
mechanisms may represent a means of regulating 
metal-dependent enzymes.

In some cases, changes in the immediate chemi-
cal environment may cause metalation or demetala-
tion of proteins containing structural or regulatory 
 Zn2+ ions. For example, during  Zn2+ signaling,  Zn2+ 
is released into the cytoplasm from internal stores 
and/or from interstitial fluid, rising to a concentra-
tion of  10–9  M or higher. This could cause metala-
tion of some proteins containing structural or regula-
tory  Zn2+ ions, although the affinities of proteins for 
these types of ions appear to be low enough that these 
proteins would not likely be metalated from the free 
 Zn2+ pool in this manner. Likewise, oxidative stress 
may cause the release of extra  Zn2+ ions from redox-
sensitive metal-binding proteins, causing a rise in free 
 Zn2+ concentrations in the cell (Turan et  al. 1997). 
This could potentially affect proteins with cysteine-
containing  Zn2+-binding sites, such as MTs, causing 
the release of  Zn2+ ions and making them available 
to other metal-dependent proteins and enzymes. This 
would particularly affect enzymes with lower  Zn2+ 
affinities that are mostly unsaturated or partially 
saturated at physiological zinc concentrations. With 
ample experimental evidence that demonstrates metal 
transport proteins are capable of both donating or 
accepting  Zn2+ ions to and from other proteins, it is a 
reasonable assumption that these proteins also play a 
major role in regulating them.
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Biological significance and future directions

Zn2+ is an essential cofactor for many proteins and 
enzymes, where it is involved in processes that 
range from participation in catalysis to structural 
stabilization to enzyme regulation. Although nearly 
1/3 of proteins bind  Zn2+, little is known about the 
metalation and demetalation of  Zn2+-dependent 
proteins and how these processes affect physiol-
ogy. There are now many examples of metal carrier 
proteins that can regulate  Zn2+-dependent enzymes 
by supplying or extracting metal ions from them. 
These interactions can affect many biological pro-
cesses; thus, disturbances in these systems may be 
a part of the pathophysiology of many chronic dis-
eases. For example, chelation of  Zn2+ can impair 
the recruitment of neutrophils and inhibit their abil-
ity to degranulate, generate reactive oxygen species, 
or produce certain cytokines (Hasan et  al. 2016). 
Zinc chelation also inhibits the phagocytic activity 
of macrophages (Gao et al. 2018). Thus, metal car-
rier proteins have the potential to regulate the activ-
ities of neutrophils and macrophages by regulating 
zinc availability as well as by altering the behavior 
of many  Zn2+-dependent proteins that govern these 
behaviors. Neutrophil extracellular traps (NETs) 
bind MMP-9 and MMP-25, which can activate 
pro-MMP-2 and cause endothelial damage in some 
autoimmune conditions, such as systemic lupus 
erythematosus (Carmona-Rivera et  al. 2015). The 
inhibition of MMP-2 and other MMPs by LTF, CP, 
and CALP thus has the potential to moderate both 
NET formation and MMP-2 activity. The release 
of CALP and LTF during NET formation may be a 
means of regulating these enzymes to mitigate tis-
sue damage.

Excess  Zn2+ can also impair the immune system 
and allow pathogens to evade both innate and adap-
tive responses (Rink and Kirchner 2000). It is thus 
feasible that the undesirable effects of excessively 
low or high  Zn2+ concentrations may be mitigated 
through the use of metal carrier proteins to provide 
proper regulation of  Zn2+-dependent proteins, or that 
chelation of excess  Zn2+ by metal carrier proteins 
could be employed to treat autoimmune diseases such 
as rheumatoid arthritis by inhibiting the function of 
lymphocytes (Skrajnowska and Bobrowska-Korczak 
2019). Deficiencies in metal carrier proteins in the 
presence of excessive amounts of  Zn2+ can increase 

susceptibility to some pathogens, such as Clostridium 
difficile (Zackular et al. 2016).

Metal carrier proteins and the  Zn2+-dependent 
enzymes that they regulate have also been impli-
cated in immune responses to infectious agents. 
For example, elevated levels of LTF, S100A9, and 
MMP-9 have been highly correlated with mortality in 
COVID-19 patients (Abers et al. 2021). It is probable 
that the elevated levels of one or more of these metal 
carrier proteins may be responsible for dysfunctional 
regulation of enzymes needed for proper immune 
responses, or that the presence of metal carrier pro-
teins are misdirecting the immune response in a way 
that hampers its ability to contain the virus and to 
properly regulate cytokine expression.

Many pathological conditions involve the activa-
tion of the NF-κB and p38/MAPK signaling path-
ways. Although both pathways are highly activated 
by  Zn2+, and although there have not yet been any 
direct observations of the involvement of metal car-
rier proteins in regulating these pathways, there are 
numerous studies that suggest it. For example, both 
pathways contribute to the secretion of cytokines and 
promotion of inflammation in atopic dermatitis, and 
a study indicated that administration of both S100A8 
and S100A9 (CALP) in keratinocytes upregulates 
these pathways as well (Kim et  al. 2019). Likewise, 
the inhibitory effect of  Zn2+ on NF-κB activation can 
be lessened by increasing MT expression, potentially 
acting as an important check on these pathways (Kim 
et al. 2003).

Regardless of mechanism, the interaction of metal 
carrier proteins with  Zn2+-dependent enzymes consti-
tutes a novel means of protein regulation that is open 
for discovery. While the idea of regulating  Zn2+ levels 
under nutritional deficiencies by accelerating protein 
degradation via autophagy (Ding and Zhong 2017) 
is not new, the mechanisms behind the distribution 
of the newly-liberated ions have not been fully dis-
sected. Thus, is it possible that metal carrier proteins 
may play a role in this mechanism by reclaiming  Zn2+ 
ions prior to or during protein degradation. In addi-
tion, the role of metal carrier proteins in reclaiming 
and redistributing  Zn2+ ions under certain conditions, 
such as during oxidative stress, increased tempera-
ture, and inflammation, remains to be characterized. 
These findings also raise the possibility of targeting 
these mechanisms in the development of therapeutics 
for many pathophysiological conditions. Since  Zn2+ 
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is so critical to many physiological processes, distur-
bances in its availability have the potential to contrib-
ute to the pathophysiology of many chronic diseases. 
A firmer understanding of the role of metal carrier 
proteins in the bioavailability of  Zn2+ and in the regu-
lation of  Zn2+-dependent proteins has the potential to 
improve the understanding of disease processes and 
assist in the development of appropriate therapeutics.
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