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Abstract

In the present study, we used an unsupervised classification algorithm to reveal both consistency and degeneracy in neural network
connectivity during anger and anxiety. Degeneracy refers to the ability of different biological pathways to produce the same outcomes.
Previous research is suggestive of degeneracy in emotion, but little research has explicitly examined whether degenerate functional
connectivity patterns exist for emotion categories such as anger and anxiety. Twenty-four subjects underwent functional magnetic
resonance imaging (fMRI) while listening to unpleasant music and self-generating experiences of anger and anxiety. A data-driven
model building algorithmwith unsupervised classification (subgrouping Group Iterative Multiple Model Estimation) identified patterns
of connectivity among 11 intrinsic networks that were associated with anger vs anxiety. As predicted, degenerate functional connectiv-
ity patterns existed within these overarching consistent patterns. Degenerate patterns were not attributable to differences in emotional
experience or other individual-level factors. These findings are consistent with the constructionist account that emotions emerge from
flexible functional neuronal assemblies and that emotion categories such as anger and anxiety each describe populations of highly
variable instances.
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Affective neuroscience has long assumed that there are dedicated
neural circuits associated with specific emotion categories (e.g.
fear vs anger). Yet, growing research suggests that instances of
an emotion category such as fear do not derive from a singu-
lar anatomical network in either the human (Touroutoglou et al.,
2015; Wager et al., 2015; Huang et al., 2018) or non-human (Barrett
and Finlay, 2018; LeDoux and Daw, 2018) brain. Instead, it is likely
that multiple neural pathways can produce the same emotional
experience or behavior (Barrett, 2017). When multiple mecha-
nisms can achieve the same function, this is called ‘degeneracy’.
The present report examines for the first time whether there is
degeneracy in neural network patterns associated with emotions.

Degeneracy is a well-documented principle that makes com-
plex systems adaptive and robust to insult; it is frequently
observed in biological systems (Tononi et al., 1999; Sporns et al.,
2000; Whitacre and Bender, 2010; see also Edelman and Gally,
2001 for multiple examples). For instance, there is degeneracy
in the genetic code, where 64 codon triplets code for only 20
different amino acids (Shu, 2017). There is also degeneracy in

the immune system, where many different antigens produce the
same immune response by binding to the same T-cell (Edelman
and Gally, 2001; Eisen, 2001). Finally, degeneracy has been docu-
mented in functional brain activity. In rodents, different assem-
blies of neurons in the medial prefrontal cortex support the same
social behavior across time (Liang et al., 2018) and degenerate
assemblies of brain regions produce the same defensive behavior
across different contexts (Barrett and Finlay, 2018). In humans,
two distinct neural pathways are associated with reading familiar
words aloud (Seghier et al., 2008).

In emotion, degeneracy may occur because categories such
as ‘anger’ or ‘anxiety’ name variable populations of instances
that differ in their physiological, behavioral and cognitive fea-
tures depending on the situation they occur in (Barrett, 2017). For
instance, one instance of anxiety might involve increased heart
rate and freezing when looking down a deep ravine, whereas
another might involve increased heart rate and running quickly
through a dark alley (see Satpute and Lindquist, 2019). Each of
these instances would involve different sensations, behaviors and
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cognitions and hence different neural circuitry, despite involv-
ing similar subjective feelings of anxiety. This idea is consistent
with the theory of constructed emotion, which proposes that
emotions are variable populations of instances that arise from
functional connectivity between intrinsic networks that serve
domain-general psychological functions (Barrett and Satpute,
2013; Touroutoglou et al., 2015; Wager et al., 2015; Clark-Polner
et al., 2017).

To our knowledge, little work has explicitly examined degen-
erate neural network patterns associated with emotion cate-
gories in humans. However, growing evidence is suggestive of the
hypothesis that degenerate neural network patterns are associ-
ated with the same emotion category. First, neuroimaging evi-
dence suggests that the neural activation associated with an
emotion category such as anger varies significantly by context
(Wilson-Mendenhall et al., 2011) and across individuals (Azari
et al., 2020; Koide-Majima et al., 2020). Second, lesion evidence
in twins is consistent with the notion that the amygdala, long
thought to be part of an evolved fear network (Panksepp, 1998;
Adolphs, 2017), supports fearful behaviors for some individuals,
but not others. Monozygotic twins share genetics and patterns
of neural functional connectivity (Adhikari et al., 2018). Yet, fol-
lowing bilateral amygdala lesions due to Urbach–Wiethe disease,
one monozygotic twin shows impaired fear perception and star-
tle responses (Adolphs et al., 1994, 1995; Siebert et al., 2003; Bach
et al., 2015), and the other does not (Becker et al., 2012). The main-
tenance of fearful behaviors in one twin, but not in the other,
suggests that degenerate neural pathwaysmay exist for instances
of the emotion category fear. Collectively, these findings lead to
the hypothesis that multiple functional neural network patterns
can result in instances of the same emotion category in healthy
humans.

Consistency and degeneracy in functional
connectivity patterns
Affective neuroscience increasingly relies on a network-based
understanding of emotion (Lindquist and Barrett, 2012; Engen
et al., 2017; Pessoa, 2017). To date, this work has almost exclu-
sively sought a single average functional connectivity pattern for
each emotion category. It is often at least implicitly assumed that
this average pattern consistently represents all instances of that
emotion category (e.g. Lee and Hsieh, 2014; Saarimäki et al., 2022).
Individual differences, if they exist, may influence the strength
of connections within an average pattern, but it is not generally
assumed that there are degenerate patterns for the same emotion
category.

Our goal in the present study was to first reveal consistent pat-
terns in functional connectivity patterns associated with anger
and anxiety. Within these patterns, we also sought evidence
for degeneracy, if it exists. We used the well-validated continu-
ous music technique (CMT; Eich and Metcalfe, 1989; Eich et al.,
1994) to evoke anger and anxiety in the MRI scanner, follow-
ing evidence that music-induced emotions are associated with
broad-scale changes in neural networks (Wilkins et al., 2014; Liu
et al., in press). Across blocks, participants listened to unpleas-
ant and highly activating classical music while using imagery to
self-generate experiences of anger and anxiety. After each induc-
tion, participants rated the intensity of anger, anxiety, arousal
and unpleasantness they felt using a visual analogue scale (VAS).

We focused specifically on functional connectivity among11
functional intrinsic networks during anger and anxiety. These
networks are present at rest but also describe functional

connectivity patterns during a range of cognitive tasks (Smith
et al., 2009; Shirer et al., 2012), including emotions (Smith et al.,
2009; Lindquist and Barrett, 2012; Engen et al., 2017; Saviola
et al., 2020; Sorella et al., 2022). Indeed, prior studies (Saarimäki
et al., 2022) and meta-analytic work have observed that con-
nectivity patterns among regions within some of these networks
can differentiate emotions such as anger and fear (Wager et al.,
2015). Network-based approaches to emotion also predict that
connectivity between networks may underlie emotion (Lindquist
and Barrett, 2012; Barrett and Satpute, 2013; Pessoa, 2017).

We used regions of interest (ROIs) from Shirer et al.’s (2012) par-
cellation of functional connectivity networks to quantify 11 a pri-
ori networks. See Table 1 for a priori networks, the corresponding
names in the Shirer et al. parcellation and examples of associated
psychological functions. We specifically focused on the canonical
default mode network (Raichle et al., 2001; Greicius et al., 2003;
Raichle, 2015), salience network (Seeley et al., 2007), frontopari-
etal control network (Dosenbach et al., 2007; Fair et al., 2007) and
dorsal attention network (DAN) (Corbetta and Shulman, 2002; Fox
et al., 2006; Vossel et al., 2014), given their links to cognition and
emotion in the literature (e.g. Smith et al., 2009; Wager et al.,
2015; see Barrett and Satpute, 2013; Lindquist and Barrett, 2012).
We additionally included three networks from Shirer et al. (2012)
based on their involvement in emotional experiences. First, we
included the sensorimotor network because emotions are often
characterized by motor action or motor action planning (Hajcak
et al., 2007). Next, we involved the basal ganglia network because
emotions involve the computation of motivational salience and
enactment of motivated behavior (Arsalidou et al., 2013). Finally,
we included the language network because regions associated
with semantic knowledge and retrieval are frequently activated
during experiences of emotion (Brooks et al., 2017). We were lim-
ited in howmany networks we could select due to Group Iterative
Multiple Model Estimation (GIMME)’s processing limitations; we
thus did not include networks associated with primary sensory

Table 1. Networks of interest and examples of their associated
functions

A priori
network

Associated Shirer et al.
(2012) network(s) Associated functions

DMN vDMN; dDMN; PCUN Self-referential processing
(Raichle et al., 2001); abstract,
heteromodal, representations
of emotion concept knowledge
(Satpute and Lindquist, 2019)

FPC Left executive con-
trol network (lECN)a;
right executive control
network (rECN)a

Cognitive control (Dosenbach
et al., 2007)

SAL aSAL; pSAL Visceromotor control and repre-
sentation of the viscera (Craig,
2002; Kleckner et al., 2017)

DAN Visuospatial Voluntary direction of visual
attention (Corbetta and
Shulman, 2002; Fox et al., 2006;
Vossel et al., 2014)

BG Basal Ganglia Motivational salience (Arsalidou
et al., 2013)

SMN Sensorimotor Motor engagement and planning
(Hajcak et al., 2007)

Language
(Lang)

Language Access to semantic emotion
concepts (Brooks et al., 2017)

aNote that we refer to lECN and rECN as lFPC and rFPC from here out.
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processing such as the auditory, primary visual and higher visual
networks, although it would be interesting to examine these in
future research.

We reduced the ROIs to a single network variable using prin-
cipal component analysis (PCA) and submitted those variables
to a directed functional connectivity approach called the GIMME
(Gates and Molenaar, 2012). GIMME outperforms 38 alternative
functional connectivity approaches (Gates and Molenaar, 2012),
recovers true connections with very few false positives (Nestler
and Humberg, 2021) and is considered one of the best-performing
directed connectivity methods (Mumford and Ramsey, 2014). To
test hypotheses about consistency and degeneracy, we used the
data-driven model selection component of GIMME [subgrouping
GIMME (s-GIMME); Gates et al., 2017a]. This unsupervised clus-
tering approach allowed us to identify subgroups of data with
distinct functional connectivity patterns.

We first used s-GIMME on all anger and anxiety inductions
to examine whether it would reveal between-network connec-
tivity patterns corresponding to each emotion category. We did
not have a priori predictions about directed functional connec-
tivity between networks since no studies to our knowledge have
examined this question. Nonetheless, we predicted that wemight
replicate the involvement of specific networks in specific emo-
tion inductions based on prior literature. For instance, meta-
analytic evidence finds greater functional co-activation among
regions within the DAN and default mode network during anger
vs fear (Wager et al., 2015). In contrast, the meta-analytic evi-
dence shows greater functional co-activation within the basal
ganglia network and sensorimotor network during fear vs anger
(Wager et al., 2015). Still, other studies find that state anxiety
during a resting state scan correlates with connectivity within
the salience and default mode networks (Saviola et al., 2020).
Another study found that social anxiety disorder is associated
with connectivity between nuclei of the basal ganglia and regions
of the frontoparietal control and salience networks (Anteraper
et al., 2014).

Next, we used s-GIMME to examine whether there were degen-
erate patterns of functional connectivity within each emotion
category induction. Unsupervised approaches are uniquely poised
to identify degeneracy, if it exists, because they rely on data-
driven clustering and do not rely on researcher-defined categories
(Azari et al., 2020). Our major prediction was that our unsu-
pervised approach would reveal multiple degenerate patterns
for each anger and anxiety. However, we did not have a priori
hypotheses about specific functional connectivity patterns that
would constitute degenerate pathways for each emotion category
because no prior work has examined this question.

Method
Participants
Twenty-four (13 female) community members were recruited to
take part in a neuroimaging experiment on ‘music and the brain’.
We used this cover story on the basis of prior research showing
that participants who had familiarity with, or who especially liked
music selections, showed functional connectivity changes in net-
works associated with emotion while listening to music (Wilkins
et al., 2014). Participants were right-handed, healthy and had no
history of psychiatric illness. Themean age was 22.92 (s.d.=4.95),
and participants had on average 4.04 (s.d.=6.01) years of formal
or self-taught music training.

Procedure
Participants completed six 5min runs in a single fMRI session
(see Supplementary Material for scanning protocol and imag-
ing parameters). Relevant to this report, participants completed
three runs in which they underwent emotion inductions using
the CMT. See Supplementary Material for CMT instructions and
music selections. The CMT induces reliable and valid changes in
participants’ emotional experiences by asking them to listen to
instrumental music selections normed to induce a desired affec-
tive state (e.g. neutral, low arousal; unpleasant, high arousal).
Throughout, participants are asked to use the music to self-
generate instances of a specific mood or emotion. Participants
first engaged in a neutral music induction. Next, participants
completed either the anger induction or the anxiety induction; the
induction order and music selection were both counterbalanced
across participants. After each induction, participants rated the
extent to which they felt anger, anxiety, unpleasantness and arousal
on a scale from ‘not at all’ (1) to ‘very’ (10) using a VAS.

fMRI analysis
Preprocessing
Data were preprocessed using the CONN functional connectiv-
ity toolbox (Whitfield-Gabrieli and Nieto-Castanon, 2012), which
implements preprocessing steps from Statistical Parametric Map-
ping version 12. Functional data were realigned and unwarped,
slice-timing corrected, examined for excessive motion using
the Artifact Detection Tools toolbox (https://www.nitrc.
org/projects/artifact_detect/), co-registered to structural images,
normalized to 2mm isotropic voxels in Montreal Neurological
Institute space and spatially smoothed using an 8mm full width
at half maximum Gaussian kernel. We used spatial smooth-
ing following other recent network approaches in the literature
(Hwang et al., 2019; Lima Portugal et al., 2020; Finn and Bandettini,
2021), including those that have employed s-GIMME (Gates et al.,
2017a; McCormick et al., 2019b). Rather than using global signal
regression, whichmay potentially induce spurious negative corre-
lations among intrinsic networks (Murphy et al., 2009), functional
data were denoised using the CompCor toolbox (Behzadi et al.,
2007). CompCor is a component-based correction method which
regresses signals from five principal components of white matter
and cerebrospinal fluid, rather than the average signal from all
voxels in the brain.

Time-series extraction
We next used the CONN toolbox to extract time series from
ROIs within 11 intrinsic functional networks (Table 1). This pro-
duced a data file containing 150 denoised time points per condi-
tion for each participant for each ROI in the Shirer et al., (2012)
parcellation.

Network analyses
Network estimation
We used the PCA function from the ‘FactoMineR’ R package (Lê
et al., 2008) to reduce ROI time series across participants into
sets of uncorrelated principal components for each network, per
each condition. We used the first principal component to rep-
resent functional connectivity within each network of interest.
Data reduction techniques such as PCA (as well as independent
component analysis and partial least squares analysis, e.g. Addis
et al., 2004; Smith et al., 2009) are frequently used to produce a

https://www.nitrc.org/projects/artifact_detect/
https://www.nitrc.org/projects/artifact_detect/
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Table 2. Variance explained in descending order by the first prin-
cipal component for a priori networks in the anger and anxiety
inductions

Network Number of ROIs Variance explained

Anger induction
rFPC 6 53.13
PCUN 4 52.71
aSAL 7 46.55
lFPC 6 44.54
vDMN 10 40.35
Lang 7 38.15
SM 6 36.49
BG 5 35.94
dDMN 9 35.50
pSAL 12 26.20
DAN 11 25.12
Mean 7.5 39.51

Anxiety induction
rFPC 6 49.20
PCUN 4 48.96
aSAL 7 47.90
vDMN 10 42.58
lFPC 6 40.51
Lang 7 39.12
dDMN 9 37.24
BG 5 36.98
SM 6 36.22
DAN 11 27.09
pSAL 12 25.53
Mean 7.5 39.21

single estimate of a network among correlated ROIs. Doing so
was necessary as the block-Toeplitz design employed by GIMME
increases computation time non-linearly with the introduction
of each additional variable. Choice of data reduction does not
appear to bias GIMME results: GIMME performs similarly well in
true path recovery, regardless of whether PCA, scaling indicators,
sum scores, pseudo-Maximum Likelihood estimation or model-
implied instrumental variables with two-stage least squares are
used to reduce data (Gates et al., 2020).

Data reduction was advantageous because it allowed us to test
our hypotheses about between-network connectivity rather than
connectivity between ROIs within a single network (e.g. Gates
et al., 2014; McCormick and Telzer, 2018) or single ROIs span-
ning networks (e.g. Yang et al., 2015; Zelle et al., 2017; McCormick
et al., 2019a). PCA also ensured that only those ROIs common
variance during our emotion tasks contributed to network esti-
mates. This issue is particularly relevant since the Shirer et al.
(2012) parcellation chose ROIs based on their functional con-
nectivity during rest, autobiographical recall, mental math and
recalling song lyrics (Shirer et al. 2012) but did not include any
explicitly emotional tasks. We did not assess functional connec-

tivity patterns among subsequent principal components in our
analyses because we were not interested in examining connec-

tivity patterns among what could be considered ‘subnetworks’ of
our a priori networks. See Table 2 for the percentage of variance
explained by each first principal component and Supplementary

Tables S1–11 for individual ROI loadings. Visualizations of the first
and second component loadings are available on our OSF site:
https://osf.io/z3f7t/.

Fig. 1. Schematic of GIMME and s-GIMME algorithms. Adapted from
Gates et al. (2017a). The s-GIMME algorithm builds on the GIMME
algorithm, which uses individual-level networks to iteratively identify
optimal group-level paths. MIs refer to modification indices. S-GIMME
then uses community detection to identify subgroups of individuals
with similar paths. *Note that s-GIMME also identifies individual-level
paths, which we do not represent here.

Directed functional connectivity
We used the s-GIMME algorithm within the ‘GIMME’ R package
(Lane et al., 2021) to estimate directed functional connectivity
among the 11 networks of interest. See Figure 1 for a schematic
of the GIMME and s-GIMME algorithms.

The GIMME algorithm (Gates and Molenaar, 2012) arrives
at robust individual-specific and group-level models of directed
brain connectivity using unified structural equation models
(uSEMs; Kim et al., 2007) that represent connectivity paths
between variables that are both contemporaneous (represented
as solid arrows in Figures 3–5) and lagged (lag-1; represented as
dashed arrows in Figures 3–5; Beltz and Gates, 2017). We grant
equal interpretative weight to both contemporaneous and lagged
paths in the present report since we do not have a priori hypothe-
ses about lagged relationships. Moreover, the temporal resolution
of fMRI (seconds) is slower than the biological process it aims to
capture (milliseconds), so it is possible that some relationships
estimated to be contemporaneous are truly lagged (Lane et al.,
2019).

Building from GIMME results, s-GIMME (Lane et al., 2021) uses
the unsupervisedWalktrap community detection algorithm (Pons
and Latapy, 2005) to identifyN subgroups of individuals who share
paths (represented as colored arrows in Figures 3–5; see Gates
et al., 2017a for the validation of s-GIMME). S-GIMME also iden-
tifies paths that are unique for individuals, but we do not visu-
alize these herein for interpretive ease. Subgroups are defined by
(i) having similar connectivity paths within block-Toeplitz (lag-1
and lag-0) correlation matrices, as determined via the GIMME
uSEM algorithm and (ii) having paths with the same sign. We
operationalized an interpretable subgroup as one consisting of
≥4 individuals, since smaller subgroups might reflect noise or
ungeneralizable idiosyncrasies.

Consistency analyses
We first performed s-GIMME analyses on all runs across the
anger and anxiety inductions, with the goal of revealing data-
driven evidence for consistency in neural network connectivity

https://osf.io/z3f7t/
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patterns for the categories of anger and anxiety, respectively.
We used Student’s t-tests to examine whether participants’ self-
reported VAS ratings of anger and anxiety characterized these
subgroups. Note that because each participant contributed two
scans (anger and anxiety) to the combined analysis, comparisons
between subgroups are not fully independent. However, separate
VAS scores were collected following both emotion inductions, and
we examined whether VAS scores within each group differed.

Degeneracy analyses
We next performed s-GIMME analyses on each anger and anxi-
ety induction, with the goal of revealing data-driven evidence for
degeneracy in neural network connectivity patterns for anger and
anxiety, if it exists.

We compared all subgroups based on participants’ VAS rat-
ings of experience (anger, anxiety, unpleasantness arousal). We
used non-parametric Mann–Whitney U-tests (Mann andWhitney,
1947) due to the small sample sizes of subgroups in this anal-
ysis. Effect sizes for the U-test are reported using r, the rank
biserial correlation (Cureton, 1956). We used the Bonferroni cor-
rection to correct for multiple comparisons and report effect
sizes and bootstrapped 95% confidence intervals (CIs) where
applicable.

Ruling out alternative explanations
There could be alternate explanations for our unsupervised
groups. One possibility is that the unsupervised groups we
revealed in both the consistency and degeneracy analyses merely
reflected individual connectomes—stable patterns in functional
connectivity that are unique to individuals (Horien et al., 2019). To
rule this explanation out, we first computed the number of unique
participants that contributed to each subgroup in the consis-
tency analysis. Next, we computed whether the same individuals
tended to group together in the degeneracy analyses. We visu-
alized the latter information using an alluvial plot (produced by
the ggalluvial R package; Brunson and Read, 2020). Third, we per-
formed an internal validation on the neutral condition to examine
whether the same individuals tended to group together in neu-
tral and emotion conditions. Fourth, it was possible that factors
such as age, self-identified sex, music training or experimental
factors such as counterbalance order impacted subgroup forma-
tion. We report the latter two analyses in the Supplementary
Material.

Results
Consistency analyses
We assessed whether the unsupervised s-GIMME procedure
revealed network connectivity patterns that differentiated the
anger induction runs from the anxiety induction runs. S-GIMME
identified three major subgroups (Figure 2). We do not report on
two additional subgroups that contained one anger run each since
they did not meet our a priori criterion for subgroup size. As
predicted, one subgroup contained predominantly anger induc-
tions (Subgroup 1; n=22; 63.64% anger inductions). The other
contained predominantly anxiety inductions (Subgroup 3; n=11;
81.82% anxiety inductions). A third subgroup consisted of both
anger and anxiety inductions (Subgroup 2, n=13; 46.15% anger
inductions and 53.85% anxiety inductions; see Figure 3).

To assess whether s-GIMME was subgrouping individuals
based on their felt emotions, we next compared self-reported
emotion ratings of anger and anxiety within each subgroup.
In Subgroup 1, anger inductions were associated with more

Fig. 2. Connectivity patterns for unsupervised subgroup solution for all
scans from the anger and anxiety conditions. All arrows represent
subgroup-level paths there are no shared paths across these subgroups.
Solid arrows represent contemporaneous relationships, and dashed
arrows represent lagged
(X at time minus 1 (T-1) predicts Y at time (T)) relationships.
Autoregressive paths (X at T-1 predicts X at T) appear as dashed loops.
Subgroup 1 consisted predominantly of anger runs (63.6% anger runs);
Subgroup 2 was a mixed group (46.2% anger runs vs 53.9% anxiety runs)
and Subgroup 3 consisted predominantly of anxiety runs (81.8% anxiety
runs). See Figures S5–7 for matrices reflecting the counts of paths
visualized here.

intense reports of anger (M=4.90) than anxiety inductions
(M=1.79), t(19.64)=4.50, P< 0.001, d=1.77. In Subgroup 2, anxi-
ety inductions were associated with more intense reports of anx-
iety (M =4.44) than anger inductions (M =2.30), t(5.80)=−3.15,
P=0.02, d=1.36. Anger and anxiety inductions in Subgroup
2 did not differ in the intensity of either anger or anxiety
(P>0.1).
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Fig. 3. Composition of the unsupervised subgroup solution for all scans
from the anger and anxiety conditions. S-GIMME revealed consistent
brain patterns for anger (Subgroup 1) and anxiety (Subgroup 3), as well
as a mixed subgroup (Subgroup 2). Percentages reflect the number of
scans per emotion condition in each subgroup out of the total scans in
that subgroup.

Degeneracy analyses
Anger
We assessed whether the unsupervised s-GIMME procedure
revealed degenerate patterns within the anger induction.
s-GIMME revealed two major subgroups of individuals (N=10,
N=12; see Figure 4). A third subgroup consisted of two par-
ticipants and did not meet our a priori criterion for subgroup
size. Consistent with the degeneracy hypothesis, participants
did not differ in the self-reported intensity of anger, anxiety or
arousal (Table 3). Subgroup 1 reported instances of anger that
were significantly more unpleasant (M=4.91) than Subgroup 2
(M=2.81), but these findings did not survive the Bonferroni cor-
rection (Table 3).

Anxiety
We assessed whether the unsupervised s-GIMME procedure
revealed degenerate patterns within the anxiety induction. s-
GIMME revealed two major subgroups of individuals (N=12,
N=12; see Figure 5). Subgroup 2 showed marginally greater self-
reported anxiety (M=5.66) than Subgroup 1 (M=3.99), U=42.5,
P=0.094, r=0.34, 95% CI [0.02, 0.69], but sensitivity analysis sug-
gested that this effect was driven by an outlier. With that outlier
removed, there were no significant differences in anxiety between
groups’ self-reported anxiety, anger, arousal or unpleasantness
(Table 4).

Ruling out alternative explanations
We first assessed whether unsupervised patterns in the consis-
tency analyses were attributable to the stable connectivity pat-
terns of individuals. The first subgroup in the consistency analysis
consisted predominantly of anger inductions; of the 22 total runs
included, there were 18 unique participants. Both anger and
anxiety runs were included for 5 participants (27.8%), but 13 par-
ticipants (72%) contributed only an anger run. In contrast, the
third subgroup in the consistency analysis consisted predomi-
nantly of anxiety inductions; of the 11 total runs included, there
were 10 unique participants. Both anxiety and anger runs were
included for three participants (30%), but seven participants (70%)
contributed only an anxiety run. Finally, the second subgroup
consisted of a mix of both anger and anxiety runs. Of the 13

Fig. 4. Connectivity patterns for unsupervised subgroup solution for the
anger condition. All arrows represent subgroup-level paths with the
exception of the solid arrow from the precuneus network to left FPC
network path which was shared by both subgroups. Solid arrows
represent contemporaneous relationships and dashed arrows represent
lagged (X at T-1 predicts Y at T) relationships. Autoregressive paths (X at
T-1 predicts X at T) appear as dashed loops. See Supplementary Figures
S8–9 for matrices reflecting the counts of paths visualized here.

runs included, there were 9 unique participants. Four partici-
pants (44%) had both anger and anxiety runs included, and five
participants (56%) contributed only an anxiety run.

We next assessedwhether unsupervised patterns in the degen-
eracy analyses were attributable to the stable connectivity pat-
terns of individuals. See Figure 6 for a visualization of partic-
ipants’ contributions to different subgroups within anger and
anxiety inductions. Fifteen of the 24 participants (63%) appeared
in distinct subgroups across inductions. Specifically, six of the
participants in Anger Subgroup 1 were in Anxiety Subgroup 1,
whereas the other four were in Anxiety Subgroup 2. Similarly, six
of the participants in Anger Subgroup 2 were in Anxiety Subgroup
1, and the other six were in Anxiety Subgroup 2. A within-study
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Table 3. Comparisons of Anger Subgroups 1 and 2 using Mann–
Whitney U-tests

Measure Scale/subscale Results Effect size

VAS Anger U=81.5,
P=0.166

r=0.30, 95% CI
[0.02, 0.66]

Anxiety U=74.5,
P=0.356

r=0.20, 95% CI
[0.01, 0.60]

Arousal U=48.5,
P=0.468

r=0.16, 95% CI
[0.01, 0.57]

Unpleasantness U=96.5,
P=0.018a

r=0.51, 95% CI
[0.18, 0.77]

aThe P-value does not survive a Bonferroni correction of α=0.0125.

validation on the neutral condition furthermore suggests that s-
GIMME is not sorting based on individual connectivity patterns
(see Supplementary Material). Degenerate subgroups further-
more did not differ (P>0.1) based on age, self-identified sex, time
spent in formal music training or counterbalanced order of the
experiment (see Supplementary Materials).

Discussion
We used a directed functional connectivity approach alongside
a data-driven subgrouping procedure to reveal between-network
connectivity during anger and anxiety inductions. The GIMME
approach is among the best directed functional connectivity
approaches (Mumford and Ramsey, 2014), and its data-driven
subgrouping procedure (s-GIMME) was particularly advantageous
for addressing our hypotheses that both consistent and degener-
ate pathways exist for anger and anxiety.

Consistency in between-network patterns for
emotions
To assess whether s-GIMME revealed consistent patterns asso-
ciated with anger and anxiety, we first performed unsupervised
analysis on all runs from the anger and anxiety inductions. The
unsupervised approach suggested that there are functional con-
nectivity patterns that consistently describe instances of anger
vs anxiety. Subgroup 1 consisted of 63.64% anger inductions,
and participants in those inductions reported more intense anger
experiences than participants in anxiety inductions within that
subgroup. Subgroup 1 was characterized by connectivity between
subnetworks of salience (SAL) [from anterior SAL (aSAL) to pos-
terior SAL (pSAL)] and subnetworks of the default mode (DMN)
[from ventral DMN (vDMN) to dorsal DMN (dDMN)] as well as con-
nectivity frompSAL to dorsal attention (DAN) and fromprecuneus
(PCUN) to both left and right frontoparietal control (FPC). These
findings are consistent with meta-analytic evidence that anger
experiences routinely produce increased activation in regions of
lateral prefrontal cortex contributing to the FPC and insula con-
tributing to the aSAL (Lindquist et al., 2012; Sorella et al., 2021).
These findings are also consistent with meta-analytic connec-
tivity approaches showing that the DAN and DMN show greater
within-network connectivity in anger inductions than fear induc-
tions (Wager et al., 2015).

Subgroup 3 consisted of 81.82% anxiety inductions, and par-
ticipants in those inductions reported more intense anxiety expe-
riences than participants in anger scans within that subgroup.
Subgroup 3 was characterized by connectivity from dDMN to
PCUN, from Lang to dDMN and from basal ganglia (BG) to several
other networks, including sensorimotor (SMN), aSAL and right
FPC. These findings are consistent with meta-analytic evidence

Fig. 5. Connectivity patterns for unsupervised subgroup solution for the
anxiety condition. All arrows represent subgroup-level paths with the
exception of a Language network to the dDMN path, which was shared
by both subgroups. Solid arrows represent contemporaneous
relationships, and dashed arrows represent lagged (X at T-1 predicts Y
at T) relationships. Autoregressive paths (X at T-1 predicts X at T)
appear as dashed loops. See Supplementary Figures S10–11 for matrices
reflecting the counts of paths visualized here.

that both BG and SMN show greater within network connectiv-
ity in fear vs anger inductions (Wager et al., 2015). They are also
consistent with evidence that social anxiety disorder is associated
with increased connectivity between nuclei of the basal ganglia
and regionswithin aSAL and FPC (Anteraper et al., 2014). Subgroup
3’s greater connectivity between dDMN and PCUN is consistent
with evidence that state anxiety correlateswith greater functional
integration of precuneus with other DMN nodes at rest (Saviola
et al., 2020).

Finally, Subgroup 2 was a mix of anger and anxiety induc-
tions (46.15% vs 53.85%). One interpretation is that this sub-
group reflects inductions in which individuals were experiencing
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Table 4. Comparisons of Anxiety Subgroups 1 and 2 using Mann–
Whitney U-tests

Measure Scale/subscale Results Effect size

VAS Anger U=74.5,
P=0.908

r=0.02, 95% CI
[0.00, 0.48]

Anxiety U=42.5,
P=0.157

r=0.30, 95% CI
[0.02, 0.66]

Arousal U=61.5,
P=0.564

r=0.12, 95% CI
[0.01, 0.55]

Unpleasantness U=62.5,
P=0.603

r=0.11, 95% CI
[0.01, 0.51]

unpleasantness, but not a clear feeling of anger or anxiety. Con-
sistent with this interpretation, inductions in this subgroup were
associated with equivalent levels of self-reported anger and anx-
iety, regardless of which emotion induction participants were
assigned to. Subgroup 2 was similar to Subgroup 1 in terms of
connectivity between aspects of the SAL (from aSAL to pSAL),
between aspects of DMN (from vDMN to dDMN) and from the
precuneus to left and right FPC. It was relatively dissimilar to
Subgroup 3, which had BG to aSAL and SM connectivity and con-
nectivity from pSAL to aSAL. It is possible that in the absence of
clear functional connectivity patterns related to anger or anxiety,
the unsupervised procedure was picking up on stable individual
connectivity patterns. Indeed, although most scans belonged to
the anxiety condition (53.85%), 44% of participants contributed
both an anger and anxiety induction to this subgroup.

Degeneracy in between-network patterns for
emotions
To assess whether s-GIMME revealed degenerate patterns asso-
ciated with anger and anxiety, we next performed an unsu-
pervised analysis on all runs from within the anger induc-
tion and from within the anxiety induction. The unsupervised
approach revealed evidence for neural degeneracy: we observed
distinct functional connectivity patterns within each emotion

Fig. 6. Participant assignment to degenerate patterns for anger and
anxiety. The height of the ribbons represents the magnitude of
participants flowing from one subgroup to the next.

category. For instance, two subgroups of functional connectiv-
ity patterns characterized the anger induction. Participants in
both subgroups experienced the same degree of anger, despite
hints that Anger Subgroup 1 may have experienced instances
of anger as more unpleasant (Table 3). On the one hand, this
finding may seem at odds with the notion of degeneracy, but
there is evidence that instances of the same emotion cate-
gory (e.g. anger) vary in features such as valence or arousal
(Kuppens et al., 2013, 2017; Wilson-Mendenhall et al., 2014). Since
within-salience connectivity correlates with the intensity of neg-
ative effect (Seeley et al., 2007; Touroutoglou et al., 2012), these
valence-based differences may explain the connectivity between
aSAL and pSAL in Anger Subgroup 1 and lack thereof in Anger
Subgroup 2. Anger Subgroups 1 and 2 were furthermore differ-
entiated by connectivity between aspects of the salience network
and DAN. Anger Subgroup 1 had directed connectivity between
aSAL and DAN, whereas Anger Subgroup 2 had directed con-
nectivity between pSAL and DAN. Insofar as pSAL represents
visceral sensations (Craig, 2002, 2009), these findings may sug-
gest a route by which visceral sensations can drive attentional
in anger.

Two subgroups of functional connectivity patterns also char-
acterized the anxiety induction, with participants experiencing
similar degrees of anxiety across both. Anxiety subgroups dif-
fered primarily in their involvement of aSAL and PCUN vs pSAL
and Lang. Of interest, Anxiety Subgroup 2 showed no connectiv-
ity between sub-networks of the DMN (vDMN, dDMN and PCUN),
a pattern that also characterizes high trait anxiety (Modi et al.,
2015; Imperatori et al., 2019).

Ruling out alternate explanations
We conducted multiple analyses to rule out alternate explana-
tions of our findings. One alternate explanation may be that we
have revealed not degeneracy, but stable individual-level con-
nectivity patterns. Yet, individuals were not consistently sorted
into the same subgroups across analyses, and individual-level
factors (e.g. age, self-identified sex and music training) did not
predict subgroup composition. Moreover, experimental factors
such as experiment counterbalance order did not describe our
subgroups.

Of course, we did not rule out all alternate explanations for
our findings. For instance, we cannot rule out that our findings
reveal stable ‘subtypes’ of anger and anxiety that will be repli-
cated again and again across instances and people (Scarantino,
2009; Silva et al., 2013; Adolphs, 2017). This possibility would be at
odds with the notion of degeneracy, which would predict differ-
ent patterns for the same emotion category, even within people
over time.

Limitations
There are several limitations to the present research. First, we
were limited by a relatively small sample size. However, our
analytic approach relies on the uSEM framework, in which time
points—rather than participants—serve as sampling units. In the
present study, each participant has 150 time points per run and
s-GIMME recovers reliable subgroups with as few as 60 time-
points (Lane et al., 2019) and in samples of comparable size
(Gates et al., 2017b). Ideally, these preliminary findings would be
replicated and extended in large neuroimaging data sets in the
future. One possibility would be to employ existing, large, open-
access data sets such as the Human Connectome Project (Glasser
et al., 2016). Yet, many such data sets tend to focus on facial
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expression-viewing, which likely taps different processes than
emotional experience (see Lindquist et al., 2012).

The highly idiographic music and imagery-based induction
emotion induction we used had advantages for robustly inducing
emotion but also had limitations. Our induction required partic-
ipants to self-generate actual or prospective scenarios that they
find most personally relevant. This may have produced more het-
erogeneity in the data than more standardized inductions (e.g.
viewing pictures or movies). It is also possible that it produced
brain activation that was ancillary to the emotion itself. Indeed,
we cannot rule out that some of the patterns we observed, espe-
cially those implicating networks involved in attention such as
the DAN and FPC, are related to the task and not emotional expe-
riences per se. Nonetheless, both DAN and FPC are frequently
implicated in emotion across tasks in the literature (Lindquist
et al., 2012; Wager et al., 2015), suggesting that they may in fact
be integral to emotional experiences. Moreover, participants were
not routinely grouped into the same subgroup, suggesting that
individual differences in task strategy were unlikely to alone drive
effects.

Future directions and conclusion
Recent methodological advances in neuroscience have enabled
researchers to study emotions as dynamic, contextualized expe-
riences. This approach is more consistent with the emerging
scientific picture of the nature of emotion. This work contributes
to this movement by showing that there is some consistency
in the patterns of neural connectivity associated with specific
emotional experiences. Nonetheless, meaningful degeneracy also
underlies these average patterns. Future research must not only
replicate evidence for degeneracy but must also speak to its
function. Degeneracy is thought to be adaptive in biological sys-
tems, and so a next step would be to examine how degeneracy is
related to emotional function and dysfunction. Variation in func-
tional connectivity produces adaptive network function (Ghosh
et al., 2008; Deco et al., 2009; McDonnell and Ward, 2011) and
is related to cognitive flexibility (Cohen, 2018). An interesting
future direction would thus be to investigate degeneracy within
individuals across instances of an emotion to examine whether
within-person degeneracy is associated with wellness vs psy-
chopathology. We look forward to future research examining the
variable pathways to emotional experiences.
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