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Abstract: Background and objectives: Little is known about outcome improvements and disparities
in cardiac arrest and active cancer. We performed the first known AI and propensity score (PS)-
augmented clinical, cost-effectiveness, and computational ethical analysis of cardio-oncology cardiac
arrests including left heart catheterization (LHC)-related mortality reduction and related disparities.
Materials and methods: A nationally representative cohort analysis was performed for mortality and
cost by active cancer using the largest United States all-payer inpatient dataset, the National Inpatient
Sample, from 2016 to 2018, using deep learning and machine learning augmented propensity score-
adjusted (ML-PS) multivariable regression which informed cost-effectiveness and ethical analyses.
The Cardiac Arrest Cardio-Oncology Score (CACOS) was then created for the above population and
validated. The results informed the computational ethical analysis to determine ethical and related
policy recommendations. Results: Of the 101,521,656 hospitalizations, 6,656,883 (6.56%) suffered
cardiac arrest of whom 61,300 (0.92%) had active cancer. Patients with versus without active cancer
were significantly less likely to receive an inpatient LHC (7.42% versus 20.79%, p < 0.001). In ML-PS
regression in active cancer, post-arrest LHC significantly reduced mortality (OR 0.18, 95%CI 0.14–0.24,
p < 0.001) which PS matching confirmed by up to 42.87% (95%CI 35.56–50.18, p < 0.001). The CACOS
model included the predictors of no inpatient LHC, PEA initial rhythm, metastatic malignancy, and
high-risk malignancy (leukemia, pancreas, liver, biliary, and lung). Cost-benefit analysis indicated
292 racial minorities and $2.16 billion could be saved annually by reducing racial disparities in LHC.
Ethical analysis indicated the convergent consensus across diverse belief systems that such disparities
should be eliminated to optimize just and equitable outcomes. Conclusions: This AI-guided empirical
and ethical analysis provides a novel demonstration of LHC mortality reductions in cardio-oncology
cardiac arrest and related disparities, along with an innovative predictive model that can be integrated
within the digital ecosystem of modern healthcare systems to improve equitable clinical and public
health outcomes.
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1. Introduction

Cardiac arrest (or the sudden loss of cardiac function resulting in complete cessation of
blood flow throughout the body) accounts for up to 11.1 million or 20% of global deaths,
including half of the deaths from cardiovascular disease (the top medical cause of mortal-
ity) [1–3]. It carries a 92.3% 1-year mortality rate (nearly unchanged for the last 22 years)
and includes limited to no robust data for most middle to low-income nations particularly
in Africa, South America, central and south Asia, and the Middle East [1–3]. Every minute
the post-arrest heart fails to pump blood to the brain, 1.9 million neurons die [4–6]. This
translates into the optimal cut-off time for cardiopulmonary resuscitation (CPR) being ap-
proximately 20 min for 90% of patients, after which the likelihood of favorable neurological
outcome significantly falls. Recent research suggests this cut-off time is as early as 12 min,
meaning the vast majority of patients die before arriving at the hospital, and even then
survival remains low despite aggressive interventions [4–6]. The high inpatient and rehabili-
tation direct costs per person for cardiac arrest is $102,017 with a total cost of cardiac arrests
in the United States (US) alone exceeding $33 billion annually [7,8]. Post-arrest inpatient
care is often resource-intensive, both in acute care initially upon admission followed by an
often-extended course of rehabilitation and outpatient follow-up care (with both settings
and intensity of resources being more difficult to access in lower-income communities,
healthcare systems, and nations) [7,8].

The vast majority of cardiac arrests occur out of hospital, disproportionately impact
socially disadvantaged groups (including racial minority, lower income, and underin-
sured to no insurance sub-groups), and often result from the culmination of chronically
sub-optimally controlled medical conditions (including in socially disadvantaged groups
having higher barriers to healthcare system access and related prevention, diagnosis, and
treatment of conditions), and remain plagued by persistent health disparities (of incidence,
treatment, and survival) [9,10]. When too many conditions build up over too many years,
the end result is that the patient’s heart can simply give up. When there are too many
potential failures in the equitable distribution of optimal healthcare system performance
for patients (regardless of their socially disadvantaged or advantaged groups alignment),
too many people’s hearts may fail. As such, cardiac arrest may represent one of the most
clinically sensitive and unified markers of healthcare system performance and disparity.
Health disparities (or inequalities) refer to the differences in health outcomes for socially
disadvantaged groups (specified above) following systematic disadvantages and even
discrimination [11]. They contribute to worse health and health risks than other social
groups (whose greater social advantage or relative position in latent social hierarchies
typically confers greater resiliency (to social and personal shocks_ and social mobility
and influence to pursue one’s ends (through greater prestige, power, and/or wealth)).
Health equity is increased when such disparities are decreased. Cardiac arrest, therefore,
may be a high yield target for improved health policy and system performance yielding
outsized clinical, financial, and societal net benefits for those socially disadvantaged groups
who stand to gain more from such benefits. The need to sufficiently address this target is
accentuated particularly among patients with cancer. Given how it represents the second
leading medical cause of death, the co-prevalence of cardiovascular disease and cancer
(or cardio-oncology) is only expected to grow (with a globally aging population and thus
the related co-prevalence of cardiac arrest). Minimal studies within cardiac arrest research
have particularly addressed cancer, and significant baseline and outcome differences in
arrest appear to occur in patients with concurrent cancer [12,13].

Yet equitably and effectively improving cardio-oncology cardiac arrest incidence and
outcomes are challenged by notable limitations in the existing research literature (including
a limited number of studies in the last two decades or robust methodologies). Such studies
on cardiac arrest and cancer have relied on small samples from a small number of sites,
failed to investigate interventions that may improve outcomes (and by extension none
utilized causal inference analysis of such interventions), had little to no granular assessment
by primary malignancy (of anatomic origin), and none featured any substantive disparity
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analysis, developed any clinical prediction tool to risk stratify patients, deployed cost-
effectiveness analysis to identify optimal interventions, or utilized any form of artificial
intelligence (AI) including machine learning (ML) or deep learning (DL) [14–19]. The
widespread absence of risk prediction models and of AI in cardio-oncology cardiac arrest
is a particularly stark challenge given the lack of sustained and substantive progress in
equitable and effective cardiac arrest prevention and treatment (that historically have
relied on providers’ clinical judgement and traditional statistics). Implantable cardioverter
devices (ICDs) can reliably prevent ventricular arrhythmia-related cardiac arrest for patients
meeting the current clinical criteria for ICDs (left ventricular ejection fraction < 30%), though
this only covers 20% of all cardiac arrest cases [20]. Thus, at least 81 clinical predictive
models (though not specific for cancer) have been developed to provide more precise
risk stratification for prevention [21], yet the sole reliance of such models on traditional
statistics limits their accuracy, precision, real-time adaptability, and clinical utility (as they
typically identify subgroup risk at finite time points that typically exclude rarer prediction
outliers while also failing to adapt with new data) [22–24]. A 2022 Nature study, therefore,
utilized an integration of DL neural networks to accurately predict individual-specific
survival curves up to 10 years out using only raw images from contrast-enhanced cardiac
magnetic resonance (outperforming traditional survival models and clinical variables) [25].
Such technical effectiveness of AI-based approaches holds a significant (and plausible)
potential to efficiently and equitably improve cardiac arrest outcomes (such a model can
be integrated with diverse healthcare systems’ EHRs to provide real-time clinical decision
support tools, particularly for systems with less material and specialty resources to better
identify higher risk patients who need more aggressive prevention).

This study, therefore, sought to provide the first comprehensive (with integrated
clinical, cost, and ethical) analysis of cardio-oncology cardiac arrests to optimize clinical
effectiveness, cost efficiency, and health equity (for an optimal sustainable net benefit of
patients and populations within the context of modern healthcare systems). It is thus the
first known study encompassing the following: (a) production of a cardiac arrest mortality
prediction score among patients with active cancer; (b) two separate validations in two
separate populations of that score; (c) propensity score analysis of interventions reduc-
ing mortality in cardio-oncology cardiac arrest; (d) multi-center nationally representative
epidemiologic analysis of patients with cardio-oncology and cardiac arrest identifying
mortality risk and protective factors; (e) accomplishing the above based on primary ma-
lignancy both solid and non-solid in addition to active versus prior and metastatic versus
non-metastatic malignancy; (e) the most recent available nationally representative data in-
cluding up to 2018; (f) race, income, and insurance disparity analysis of cardio-oncological
cardiac arrest prevalence, procedures, and outcomes; (g) longitudinal analysis of cardiac
arrest with active cancer by procedural interventions; (h) regional analysis of the above;
and (i) computational ethical analysis of the above. Additionally, this study is the largest
known to date for patients with active cancer and cardiac arrest.

2. Materials and Methods
2.1. Data Source

The data source for this study is the largest publicly available U.S. all-payer inpatient
healthcare administrative dataset, the National Inpatient Sample (NIS), sponsored by the
Agency for Healthcare Research and Quality (AHRQ) within the US Department of Health
and Human Services (DHHS) [26]. From 2016 onward, the NIS adopted the International
Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM). The dataset
includes demographic, comorbidity, procedural, complication, mortality, length of stay,
total cost, and hospital characteristics for each hospitalization. The 2016, 2017, and 2018
NIS datasets were selected for this study as they are among the latest available datasets
and the first to use ICD-10 coding and so better reflect current clinical trends in diagnoses,
treatments, and outcomes compared to prior years. The selection of an inpatient dataset
more generally was chosen given the global shortage of reliable data on out-of-hospital
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cardiac arrest and longitudinal follow-up. Thus, this study sought to help provide an
initial comprehensive description of the current knowledge of cardio-oncology cardiac
arrest using the more reliable inpatient data collection through EHR-based ICD10 coding.
Study inclusion criteria included all NIS hospitalizations for adults aged 18 years or older
during the above index time periods. Per the US DHHS and National Bureau of Economic
Research, no review by an Institutional Review Board (IRB) is required for the NIS under
the HIPPA Privacy Rule since the NIS is a limited data set (in which 16 direct identified
specified by the privacy Rule have been removed) [27,28]. This study used de-identified
data and was conducted according to the ethical principles in the Declaration of Helsinki.

2.2. Study Design

To conduct a more comprehensive analysis more broadly and practically applicable
within current healthcare systems, the primary analysis consisted of AI-driven Compu-
tational Ethics and policy analysis (AiCE) according to its first empirical (clinical then
economic) step then the second ethical-policy step [29,30]. This ethically aligned co-design
of trustworthy AI methodology [31] features the patient-focused transparent integration
of scientific and ethical methodologies to generate reliable, robust, and equitable results.
The ultimate strategic aim is to therefore optimize value-based healthcare at the global
population and individual levels, created through the end-to-end collaboration of clinicians,
data scientists, healthcare system leaders, policy-makers, and community members [29].

The first empirical step featured a nationally representative retrospective longitudinal
multicenter cohort analysis of inpatient mortality and total cost among all hospitalized
adults. It additionally included a nested sub-group analysis among patients with cardiac
arrest, according to the presence or absence of active cancer and the presence or absence
of left heart catheterization (LHC) using Machine Learning-augmented Propensity Score
adjusted multivariable regression (ML-PSr) and DL artificial neural network. These anal-
yses informed the creation and validation of the novel Cardiac Arrest Cardio-Oncology
Score (CACOS), the first known clinical predictive model of inpatient mortality following
a sustained return of spontaneous circulation (ROSC) after cardiac arrest in active cancer
(and by extension the first to be AI-augmented). A cost-effectiveness and benefit analysis
was then conducted using the above clinical results. This empirical step was followed by
the final ethical-policy step in which the above AI-augmented empirical results informed a
pluralistic-based global bioethical analysis to optimize equitable care for the above patient
populations. This integrated analytic approach of AiCE was additionally chosen given the
less substantive and sustainable impact that prior studies (focusing on clinical, economic,
or ethical dimensions separately) have on improving healthcare policy and healthcare
systems. Despite the 2001 US Institute of Medicine’s Crossing the Quality Chasm and 2002
Unequal Treatment advocating that healthcare systems deliver quality healthcare (that is
safe, efficient, effective, timely, patient-centered, and equitable) with 20 years of progress on
the first five aims, healthcare equity notably trails the others [32]. This helps underline the
importance of such methodological innovations as AiCE as an innovative AI-accelerated
end-to-end translational research methodology with a value-healthcare orientation.

2.3. Descriptive and Bivariable Statistical Analysis

Descriptive statistics were performed for the full sample to define the prevalence of
cardiac arrest among all adult hospitalizations. Sub-group analysis was then performed
among patients with cardiac arrest featuring bivariable analysis by active cancer (yes/no)
across the full 2016–2018 duration and within each year separately (2016, 2017, and 2018).
For continuous variables, independent sample t-tests were performed to compare means,
and Wilcoxon rank sum tests were performed for medians. For categorical variables,
Pearson Chi-square tests or Fisher exact tests were performed to compare proportions
as applicable.

Demographics included age, sex, race, income, insurance, urban density, and region.
Comorbidities were selected for analysis (and identified in the dataset by their ICD-10
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codes) based on their clinical and/or statistical significance identified in prior published
studies and current clinical practice. They included cancer status (active, prior, metastatic,
and prior chemotherapy, radiation, and immunotherapy), hypertension, coronary artery
disease, atrial fibrillation, congestive heart failure, cirrhosis, and chronic kidney disease.
Inpatient interventions included left heart catheterization (LHC) and percutaneous coronary
intervention (PCI). The 26 primary malignancies investigated included brain and nervous
system, head or neck, thyroid, breast, lung, esophagus, stomach, pancreas, liver or bile
system, rectum or anus, colon, peritoneum, bone or connective tissue system, hematological
malignancies (including Hodgkin lymphoma, non-Hodgkin lymphoma, leukemia, and
multiple myeloma), melanoma, non-melanoma skin, uterus, cervix, ovarian, prostate, testes,
bladder, and renal.

2.4. Regression Statistical Analysis, Machine Learning Analysis, and Model
Optimization Overview

The primary outcome was inpatient mortality (yes/no), and the secondary outcomes
were the length of stay (LOS) in days and total cost (in U.S. dollars [$]).

To maximize the likelihood of internally and externally valid and replicable results, a
regression model performance was optimized according to the following sequential process.
First, variables that were clinically or statistically significant were identified in the existing
literature, clinical practice, and bivariable analysis to be considered in the final regression
models. Second, those variables were included in the forward and backward stepwise
regression to augment decision-making on the variables ultimately included in the final
regression models. Third, the regression results were compared to those generated by
backward propagation neural network ML to ensure comparability by root mean squared
error and accuracy. Fourth, the regression model performance was additionally assessed
with a correlation matrix, the area under the curve, Hosmer–Lemeshow goodness-of-fit
test, Akaike and Schwarz Bayesian information criterion, variance inflation factor, and
tolerance, multicollinearity, and specification error. Fifth, the models were iteratively run
to fine-tune models until the above process confirmed optimal performance with the final
models and included variables.

2.5. Machine Learning-Augmented Propensity Score Adjusted Multivariable Regression

Regression analysis featured the particular technique of ML-PSr [33–35], performed
on the above NIS dataset for the reasons listed above. The propensity score for the like-
lihood of undergoing inpatient LHC (the treatment) was first created (utilizing the same
above variables used in the final regression model given the double propensity score ad-
justment method), a balance was confirmed among blocks, and then the propensity score
was included in the final regression models as an adjusted variable [36,37]. This causal
inference approach of propensity score adjustment was selected because it is a widely
accepted methodology to reduce (but cannot eliminate) selection bias and the effect of
confounding variables in non-randomized observational studies. Competing causal infer-
ence approaches including fixed, random, and mixed effects were not appropriate (though
these methods have the added advantage of reducing unobserved variable bias) because
the NIS, by design, lacked adequate repeated hospitalizations from the same subjects. A
propensity score adjustment was used, rather than a simple covariate adjustment (without
the propensity score), to enable a more complex propensity score model (i.e., able to test
interactions and higher order terms to produce the best-estimated probability of treatment
assignment) without risking over-parameterizing, while still permitting diagnostic analysis
of the final models to be done to confirm superior performance over a simple covariate
adjustment without the propensity score. Finally, the propensity score adjustment rather
than competing propensity score techniques was used because of its superior performance
in the appropriate context (confirmed by current statistical theory and adequate diagnostic
quantitative testing of the final models in cardiovascular studies) [36,37], and because its
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inclusion in the final regression models had sufficient performance confirmation by the
above the specified optimization process.

The above analysis was augmented by ML to confirm adequately robust estimates
by amplifying the assumptions 1000-fold for each algorithm, re-running the model using
the below algorithms, and collapsing the results into stable mean results to confirm the
above traditional statistical analysis. A total of 43 supervised learning algorithms were
utilized with 10-fold cross-validations selected based upon the data type to determine the
top performing. Performances among algorithms were assessed based on higher accuracy,
lower root relative squared error (RRSE) with model acceptability set at 100% (for compari-
son among ML algorithms), and lower root mean squared error (RMSE, for comparison
to traditional statistical results). The following algorithms were tested: Bayes Net, naïve
Bayes, naïve Bayes multinomial text, and naïve Bayes updateable, logistic, multilayer
perceptron, stochastic gradient descent, stochastic gradient descent text, simple logistic,
sequential minimal optimization, voted perceptron, instance-bases learning with parameter
K-start, locally weighted learning, adaptive boosting (AdaBoostM1), attribute selected clas-
sifier, bagging, classification via regression, cross-validation parameter selection, iterative
classifier optimizer, logit boost, multiclass classifier, multiclass classifier updateable, multi-
scheme, random committee, randomizable filtered classifier, random sub-space, stacking,
vote, weighted instances handler wrapper, input mapped classifier, decision table, repeated
incremental pruning to produce error reduction (RIPPER), one rule, part rule, zero rule,
decision stump, Hoeffding tree, J48, logistic model tree, random forest, random tree, and
reduced error pruning tree.

The utility of this above hybrid analytic approach (including the rationale for algo-
rithm selection), which integrates the traditional statistical method of frequentist-based
multivariable regression (supported by propensity score-based causal inference analysis)
and supervised learning-based ML, has been previously demonstrated [38–43]. Causal in-
ference results which are more familiar to medical science audiences can be confirmed and
replicated automatically through ML, which has the added advantage of being integrated
with EHRs (and thus may accelerate real-time results to guide clinical and organization
decisions on larger high-dimensional datasets as they already increasingly do for other
economic sectors outside of medicine) while producing more rapid and accurate results
compared to traditional statistics in carefully defined contexts.

2.6. Propensity Score Matching

Propensity score matching (PSM) was conducted to estimate the average treatment
effect (ATE) for LHC using the same variables identified in the final above model for ML-
PSr for mortality. This was done to compare results to the post-regression marginal effect
(given the familiarity, popularity, and ease of interpretation of this technique for clinical
audiences and to allow more robust analysis across diverse techniques of the possible
association between mortality and LHC among post-arrest patients with active cancer).

2.7. Health Equity Analysis

Health equity analysis was conducted to assess the divergence between observed
values (for cardiac arrest prevalence, treatment, and outcomes) from predicted values
(based on population distribution described by the latest 2021 US census data).

2.8. Deep Learning

DL analysis was conducted with neural network backpropagation in which the net-
work nodes were set at sigmoid, and iterative model optimization was conducted to
determine the appropriate number of hidden layers and nodes [44]. DL was deployed for
the primary outcome of mortality with the same variables selected for the above statistical
model of ML-PSr of mortality by LHC. The model configurations included a learning rate of
0.3, a momentum rate of 0.2, 500 epochs, an 80% split of the original dataset for the training
sub-set, 20% for the validation sub-set, and a threshold of 20 for consecutive errors. Given
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the NIS dataset advantages listed above, no comparable available datasets were deemed
sufficient to allow a model comparison, so untested datasets are forthcoming (including
the forthcoming 2019 and 2020 datasets).

2.9. CACOS Predictive Model Creation, Validation, and Calibration

An AI-augmented clinical predictive model of inpatient mortality among post-arrest
patients with active cancer was then constructed and validated. To optimize early clinical
utility, sensitivity was prioritized (over specificity) using only ICD10 codes that could be
extracted from EHRs on hospital admission to improve clinical support decision tools
through more rapid risk stratification. This was meant to allow more precise identification
of patients likely to ultimately survive and thus benefit from initial aggressive treatments
(particularly given the prevalent social disparities in arrest treatment as noted by Rivera,
2018). Accordingly, for the model, the 2016 NIS sample was divided in a 1:1 ratio into a
derivation sub-sample and a verification sub-sample. Bivariable analysis, forward and
backward stepwise logistic regression, and ML-PS regression with ML-augmented model
performance optimization (along with the above model diagnostic tests) were performed.
These techniques were utilized to identify variables independently and significantly as-
sociated with inpatient mortality after sustained ROSC in active cancer in the derivation
sub-sample to generate variable candidates for the final CACOS model. Once peak per-
formance was confirmed, the nearest whole number was assigned to the independent
variables from the final regression model to create the ultimate version of CACOS.

This predictive model was then assessed in both the derivation and verification sub-
samples before being validated twice in two separate samples (both the 2017 and 2018 NIS
datasets). According to the AHQR, the vast majority of hospitalizations are from unique
individuals (rather than readmissions), though it is not possible due to the de-identified
nature of the data to track longitudinally at the individual patient level [45]. Therefore, the
three separate NIS samples from 2016, 2017, and 2018 were considered independent and
external to each other overall for the purposes of model generation and validation.

Calibration plots were created for CACOS in the 2016 NIS derivation and verification
sub-samples with the 45-degree dotted line representing perfect calibration (with equal
predicted and observed probabilities), each dot representing sequential tenths of the sam-
ple, and the blue line representing the smooth Locally Weighted Scatterplot Smoothing
(LOWESS) line [46]. Given the Hosmer–Lemeshow test’s strong sample size dependency
and function simply as an overall calibration measure (without clear superiority to the
calibration plot), it was not used as an additional measure of calibration [47].

2.10. Cost-Effectiveness and Cost Benefit Analysis

Cost-effectiveness analysis (CEA) was conducted according to the commonly accepted
methodology described by the US Centers for Disease Control and Prevention (CDC):
the net cost of the intervention (implementation cost minus the averted cost) divided by
the change in health outcomes [48]. The model inputs include the following. LHC was
the intervention and implementation costs independently attributed to inpatient LHC
according to ML-PS multivariable regression among patients with cardiac arrest and active
cancer ($11,643.48). The averted cost was set by the most recently available statistical value
of human life as described by the US federal government ($7.4 million) [49]. The change in
health outcome was the PSM ATE mortality reduction with LHC.

Cost benefit analysis (CBA) was also performed according to the commonly accepted
methodology as described by the CDC: cost minus benefit, or the above implementation
costs (LHC cost multiplied by the number of patients with cardiac arrest and active cancer
who received LHC) minus the statistical value of human lives saved, multiplied by the
number of patients who received LHC [50].
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2.11. Ethical and Policy Analysis

The second or ethical-policy step within AiCE was then conducted by integrating the
above quantitative analyses with ethical analysis using the pluralistic global bioethical
framework of the Personalist Social Contract (PSC) [51–54]. The PSC is a novel integration
of modern ethics (principally utilitarianism-informed Rawlsian social contract of political
liberalism, bounded by Kantian deontology and informed by feminist, Marxist, decon-
structionist, and ecological ethics) and classical ethics (principally Thomistic-Aristotelian
virtue ethics, articulated by William Carlo’s esse/essence revision of Norris Clarke’s Strong
Thomistic Personalism, a derivative formulation of Thomism as a development of classical
Aristotelianism) [55–61].

The PSC was chosen as the primary ethical framework for its (a) practical, (b) political,
and (c) philosophical advantages over competing frameworks. (a) Practically, it is histor-
ically articulated in (and makes philosophically intelligible) the world’s most dominant
and cited ethical system (of human dignity-based rights and duties) as expressed paradig-
matically by the UN’s 1948 United Nations Declaration of Human Rights (UDHR) and
derivative system of modern international law and related international ethical conventions.
(b) Politically, it substantively accounts for and can facilitate the convergence of the world’s
nations (including through the UN explicitly grounded in the UDHR) and belief systems
(including the above) on shared ethical conclusions as historically demonstrated since
the modern world (united at the end of World War II to prevent future such catastrophic
world wars). (c) Philosophically, it avoids the foundational metaphysical weaknesses (and
resultant logical self-contradictions and struggles for deriving ethical conclusions within
modern ethics) through the classic Aristotelian-derived Thomism and its Thomistic Per-
sonalist formulation. Yet it is made more intelligible in modern terms (emphasizing the
centrality of each individual as a person subjectively experiencing an objective reality).
It additionally produces the conclusions that modern ethics otherwise largely attempts
but may struggle logically to reach and defend (including the protection of pluralism and
multiculturalism which modern ethics (according to diverse critics including among its
own champions) largely truncates or excludes).

The above references detail the extended, detailed, and more comprehensive defense
of PSC compared to competing frameworks (especially the extended textbooks with Mon-
lezun 2020 and Monlezun 2022). Furthermore, it is beyond the conceptual scope and
space constraints of this work to decisively argue whether PSC is ultimately superior as a
framework compared to others (the below description thus is only meant to demonstrate
why the PSC is a suitable and sufficient framework for the specific task). Additionally,
further definition and defense for the PSC were considered superfluous for this manuscript
and irrelevant for the vast majority of readers given the largely uncontroversial and gen-
erally accepted ethical principles (including human rights) and the conclusions logically
following from them. However, even the clinical and economic analyses in AiCE, if con-
sidered independent of the ethical dimension, are considered by this work to be sufficient
reasoning to support collective action across diverse belief systems, healthcare systems,
and states to improve the clinical challenge addressed in this work. Thus, the particular
ethical framework diverse readers invoke explicitly or implicitly to reach this conclusion is
beyond the scope of this paper. Its primary ethical framework is at least compatible with
the vast majority of readers’ diverse ethical frameworks (a generally accepted claim) and
at most is more compellingly argued using the paper’s PSC framework (a less generally
accepted claim that still does not need to be proven in the brief confines of this work for the
end of the conclusion to still hold, regardless of the particular means that diverse readers
may take to arrive at it).

The core structural features of its framework are briefly described as follows. Meta-
physically, it incorporates a Carlo-refined Clark-style Strong Thomistic Personalism that
recognizes the person in her/his objective and subjective dimensions as a being who is
most complete, happy, and flourishing in a gift-of-self specifically to other persons in love
(the fullness of person-directed justice), and to other beings more generally in responsible
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care for the larger non-person ecosystem. As such, it entails an extended defense of a
metaphysics of multiculturalism that explicitly cites the world’s diverse belief systems
(including in their canonical texts as applicable) and elaborates the substantive converging
(not simply Rawlsian-like overlapping) consensus as the metaphysical (not simply political)
identity of the person individually and thus the criteria for justice and its subsequent peace
communally in the community of persons globally. This consensus is a three-dimensional
conception of human dignity that is logically derivative from the metaphysical identity of
the human person grounded in the good as initially described classically by the physician-
philosopher Aristotle. In the three metaphysical and thus personal dimensions of existential
origin, moral order, and goodness orientation, the person can be understood (commonly
across belief systems and through sufficiently respectful and careful exploration of those be-
lief systems) to have intrinsic and non-finite (or arbitrarily limited) value. Justice, therefore,
is giving to each their due, and to persons what is the only proper response to the unique
individual human in front of us—the gift of self to the other self, proportional to the type
of relationship between the person and the concrete context of that relationship. Logically
and experientially derivative from this metaphysical foundation is the PSC’s theoretical
principles (definition of and thus respect for individual dignity and communal culture (the
latter being the collective and relational search for the ultimate good or goodness itself
as the most fundamental, human, and personal of all endeavors and acts)). Its practical
principles include solidarity and subsidiarity. Its primary ethical principle is the Wojtylan
Personalist Norm (as a modification of Kant’s second categorical imperative, elevating the
constructivist and minimalist Enlightenment ethical principle to the personal dimension,
by arguing for love as the essence of a full conception of ethics, based on justice or what
is due to persons from other persons, since the “person is a good towards which the only
proper and adequate attitude is love”). These principles are relationally ordered in the
pluralistic framework emerging from the above Thomistic Personalist metaphysical foun-
dation by incorporating the unique perspectives in their own words of the world’s diverse
belief systems (including Buddhism, Christianity, Confucianism, Daoism, Hinduism, Islam,
Judaism, and non-religiously affiliated secularism (with particular attention paid to the
nuances and subtleties among and between these religious frameworks including atheism
and agnosticism)) [62–69].

In summary, the PSC argues that the world’s diverse belief systems converge existen-
tially and substantively as well as metaphysically and ethically in the shared conviction of
the intrinsic and inviolable dignity of every human person. This dignity is derivative from
her/his biological identity as a human being (regardless of any artificially or arbitrarily
identified traits such as sex, nationality, or belief system). As such, the person is a depen-
dent rational animal from the earliest to the final moment of existence, linked in societal
inter-dependencies requiring and fostering virtuous and thus just treatment to all members
of the human community to survive and thrive. The community in turn is required for
the full flourishing of the human person who finds her/his fulfillment (union with good
itself) in the duty of justice contributing to the common good of the community, which
in turn safeguards the individual good of the person (completed metaphysically in the
highest form of justice, which is love, the commitment of the will to the objective good
of the other person as other). The PSC defines and defends such convergence, which is
individually echoed and anchored in the above diverse belief systems’ principles (with
Buddhism’s sila, Christianity’s doctrine of Jesus’ incarnation and redemptive passion and
resurrection, Confucianism’s jen and yi, Hinduism’s dharma, Islam and Judaism’s (along
with Christianity’s) doctrine of humanity made in the image and likeness of God and
destined for unity with God through a just life of love, and secularism’s Rawlsian-like
political and pluralistic ‘justice’ as fairness).

2.12. Quality Control, Result Reporting, and Analytic Software

An academic physician-data scientist, biostatistician, and ethicist (DJM) confirmed that
the final analytic models were sufficiently supported by the existing literature and related
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theories. Mean values are reported with standard deviation (SDs). Fully adjusted regression
results were reported with 95% confidence intervals (CIs) with statistical significance set at
a 2-tailed p-value of <0.05. Statistical analysis was performed with STATA 17.0 MP edition
(STATACorp, College Station, TX, USA), and ML and DL analyses were performed with
Java 9 (Oracle, Redwood Chores, CA, USA).

3. Results
3.1. Sample Descriptive Statistics and Bivariable Analysis by Cardiac Arrest

Of the 101,521,656 hospitalizations from 2016 to 2018 across 4550 hospitals nationally,
6,656,883 (6.56%) suffered cardiac arrest with a 56.10% mortality, LOS of 8.58 days (SD 14.14),
mean cost of $159,768.40 (SD 270,321.90), and of whom 61,300 (0.92%) had active cancer
(Table 1). Among patients with cardiac arrest, the prevalence of active cancer remained
mostly stable from 2016 (19,280 (0.92%)) to 2017 (20,370 (0.90%)) to 2018 (21,650 (0.96%)).
Across all years, on average, the presence versus absence of active cancer was significantly
more likely in patients with cardiac arrest (0.92% versus 0.74%) and metastatic malignancy
(1.04% versus 0.74%) (all p < 0.001). Patients with versus without active cancer were
significantly less likely to receive an inpatient LHC (7.42% versus 20.79%) and more likely
to die inpatient at mostly stable levels across all three years, though there was a stepwise
increase in LHC among patients with cancer up to 7.74% by 2018 and decrease in mortality
to 72.46% by 2018 (all p < 0.001) (Figure 1).
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Figure 1. Longitudinal analysis of inpatient mortality and left heart catheterization (LHC) in cardiac
arrest by active cancer (N = 6,656,883).
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Table 1. Descriptive and bivariable analysis by active cancer in cardiac arrest by year (N = 6,656,883).

Variables, % 2016–2018 2016 2017 2018

Sample No-
Cancer Cancer p-Value Sample No-

Cancer Cancer p-Value Sample No-
Cancer Cancer p-Value Sample No-

Cancer Cancer p-Value

6,656,883 6,595,583 61,300 2,145,699 2,126,419 19,280 2,253,189 2,232,819 20,370 2,257,995 2,236,345 21,650
Demographics

Age, mean
(SD)

63.66
(16.99)

64.41
(17.26)

67.48
(13.22) <0.001 65.33

(15.80)
65.14

(16.02)
67.55

(12.90) <0.001 61.19
(17.68)

63.91
(17.98)

67.43
(13.19) <0.001 64.45

(17.50)
64.18

(17.78)
67.46

(13.57) <0.001

Female 41.08 41.10 40.81 0.311 41.36 41.49 39.91 0.056 41.02 41.04 40.72 0.689 40.86 40.77 41.80 0.188
Race <0.001 <0.001 <0.001 <0.001

White 65.32 65.49 63.45 66.29 66.57 63.17 65.25 65.27 64.95 64.43 64.63 62.24
Black 18.75 18.60 20.44 18.60 18.39 20.94 18.85 18.82 19.18 18.81 18.59 21.20

Hispanic 9.33 9.37 8.96 8.66 8.67 8.56 9.34 9.39 8.80 10.00 10.04 9.52
Asian 2.84 2.78 3.57 2.84 2.79 3.43 2.79 2.69 3.89 2.90 2.86 3.38
Native

American 0.62 0.62 0.51 0.58 0.58 0.51 0.65 0.66 0.46 0.62 0.62 0.57

Income 0.002 0.005 0.001 0.001
1st (lowest) 33.45 33.61 31.61 33.92 34.06 32.34 33.85 34.05 31.52 32.58 32.72 30.97

2nd 26.34 26.38 25.89 25.36 25.41 24.72 26.54 26.54 26.53 27.13 27.19 26.42
3rd 22.56 22.54 22.83 22.86 22.84 23.11 22.29 22.25 22.76 22.53 22.52 22.63

4th (highest) 17.65 17.47 19.66 17.87 17.69 19.83 17.32 17.16 19.19 17.77 17.57 19.97
Insurance <0.001 0.001 <0.001 <0.001

Commercial 19.65 19.45 21.84 19.91 19.70 22.20 19.70 19.53 21.71 19.34 19.13 21.62
Medicare 59.59 59.42 61.46 60.05 59.96 61.02 59.15 58.94 61.54 59.56 59.35 61.83
Medicaid 13.60 13.81 11.16 12.98 13.15 11.14 13.93 14.17 11.09 13.88 14.11 11.25

VA 2.93 2.93 3.00 2.94 2.93 3.02 2.98 2.97 3.17 2.88 2.89 2.80
None 4.24 4.39 2.54 4.12 4.26 2.63 4.25 4.39 2.48 4.34 4.51 2.50
Urban 0.021 0.060 0.004 <0.001
≥1 million

central 30.69 30.53 32.58 30.16 30.11 30.78 30.63 30.43 33.00 31.28 31.04 33.95

≥1 million
fringe 22.76 22.69 23.63 22.81 22.67 24.37 22.91 22.91 22.95 22.57 22.48 23.58

250,000–
999,999 21.21 21.33 19.81 21.34 21.47 19.86 21.24 21.29 20.64 21.05 21.24 18.94

50,000–
249,999 9.17 9.25 8.30 9.17 9.22 8.65 9.15 9.26 7.86 9.20 9.28 8.38

Micro 9.34 9.36 9.12 9.47 9.48 9.36 9.24 9.26 9.01 9.30 9.33 8.98
<Micro 6.82 6.84 6.57 7.05 7.06 6.98 6.82 6.84 6.55 6.59 6.63 6.17
Region 0.002 <0.001 0.005 <0.001

New England 3.71 3.70 3.84 3.76 3.74 4.02 3.70 3.69 3.83 3.67 3.67 3.67
Mid Atlantic 11.85 11.70 13.60 12.14 11.98 13.90 11.83 11.67 13.75 11.58 11.44 13.16
East North

Central 15.59 15.31 14.46 15.55 15.66 14.29 15.47 15.54 14.63 15.74 14.73
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Table 1. Cont.

Variables, % 2016–2018 2016 2017 2018

Sample No-
Cancer Cancer p-Value Sample No-

Cancer Cancer p-Value Sample No-
Cancer Cancer p-Value Sample No-

Cancer Cancer p-Value

West North
Central 5.93 5.96 5.66 5.70 5.74 5.26 6.01 6.00 6.14 6.08 6.13 5.59

South Atlantic 22.66 22.63 23.02 22.63 22.58 23.18 22.82 22.79 23.15 22.54 22.52 22.73
East South

Central 7.69 7.75 7.04 7.82 7.93 6.56 7.69 7.74 7.09 7.56 7.57 7.46

West South
Central 12.68 12.71 12.25 12.63 12.60 12.97 12.63 12.66 12.27 12.77 12.88 11.52

Mountain 6.09 6.14 5.53 6.13 6.18 5.55 6.11 6.17 5.47 6.02 6.06 5.57
Pacific 13.83 13.77 14.50 13.64 13.59 14.26 13.73 13.74 13.67 14.12 13.99 15.57

Past medical
history
Cancer
Active 0.75 0.74 0.92 <0.001 0.79 0.78 0.90 <0.001 0.73 0.72 0.90 <0.001 0.74 0.73 0.96 <0.001
Prior 2.94 3.15 0.48 <0.001 0.79 0.80 0.71 <0.001 7.30 7.92 0.00 <0.001 0.74 0.74 0.73 0.230

Metastatic 0.75 0.74 1.04 <0.001 0.79 0.78 1.00 <0.001 0.73 0.72 1.03 <0.001 0.74 0.73 1.10 <0.001
HTN 59.21 59.53 52.21 <0.001 67.80 68.37 61.28 <0.001 55.19 55.37 53.14 0.006 54.63 54.84 42.22 0.001
CAD 39.02 40.19 25.55 <0.001 40.21 41.41 26.53 <0.001 38.41 39.56 24.79 <0.001 38.43 39.60 25.33 <0.001
Afib 29.54 29.81 26.47 <0.0001 29.35 29.65 25.96 <0.001 29.18 29.48 25.63 <0.001 30.08 30.29 27.81 0.001
CHF 19.37 19.95 12.84 <0.0001 28.49 29.44 17.63 <0.001 13.92 14.26 9.94 <0.001 15.71 16.14 10.95 <0.001

Cirrhosis 3.44 3.36 4.35 0.001 3.31 3.22 4.33 <0.001 3.48 3.41 4.30 0.003 3.52 3.44 4.41 0.001
CKD 3–5 22.69 23.22 16.61 <0.0001 22.29 22.87 15.72 <0.001 22.65 23.19 16.18 <0.001 23.13 23.59 17.94 <0.001
Prior MI 9.37 9.63 6.40 <0.0001 9.75 10.06 6.28 <0.001 9.06 9.31 6.19 <0.001 9.30 9.53 6.72 <0.001

Prior
treatment

Chemotherapy - - 8.78 - - - 8.74 - - - 8.76 - - - 8.85 -
Radiation - - 5.12 - - - 4.59 - - - 5.33 - - - 5.43 -

Immunotherapy - - 0.03 - - - 0.03 - - - 0.05 - - - 0.00 -
Inpatient

intervention
LHC 19.72 20.79 7.42 <0.001 19.97 21.09 7.21 <0.001 19.42 20.45 7.31 <0.001 19.76 20.84 7.74 <0.001
PCI 13.35 14.14 4.36 <0.001 20.57 21.73 7.37 <0.001 9.69 10.29 2.58 <0.001 9.79 10.39 3.12 <0.001

Outcomes
Mortality 56.10 54.58 73.47 <0.001 56.51 54.91 74.71 <0.001 56.71 55.31 73.25 <0.001 55.09 53.53 72.46 <0.001

LOS, mean
days (SD)

8.58
(14.14)

8.56
(14.13)

8.79
(13.85) 0.409 8.45

(13.33)
8.42

(13.35)
8.78

(13.08) 0.116 8.66
(14.57)

8.64
(14.50)

8.92
(15.35) 0.238 8.63

(14.51)
8.63

(14.63)
8.67

(13.12) 0.872

Cost, mean ($) 159,768.40
(270,321.90)

161,014.23
(271,884.73)

145,542.57
(251,257.27) 0.001 145,808.80

(225,198.40)
147,010.80
(227,305.90)

132,107.00
(199,122.70) <0.001 163,057.90

(286,292.00)
164,198.10
(287,488.80)

149,624.20
(271,479.80) 0.002 170,438.50

(299,475.30)
171,833.80
(300,859.50)

154,896.50
(283,169.30) <0.001

SD, standard deviation; VA, Veterans’ Affairs; Mid, Middle; HTN, hypertension; CHF, congestive heart failure; afib, atrial fibrillation; COPD, chronic obstructive pulmonary disease;
CKD 3–5, chronic kidney disease stages 3–5; MI, myocardial infarction; CVA, cerebrovascular accident; LHC, left heart catheterization; PCI, percutaneous coronary intervention; LOS,
length of stay; $, United States dollars.
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Among patients with cardiac arrest, those with versus without active cancer were
significantly more likely to be African American (20.44 versus 18.60) and less likely to be in
the lowest income quartile (31.61% versus 33.61%), have Medicaid (11.16% versus 13.81%),
be uninsured (2.54% versus 4.39%), and live in a central metro region of ≤1 million people
(67.43% versus 69.47%) (all p < 0.001). The regions with the highest prevalence of active
cancer among patients with cardiac arrest included the South Atlantic (23.02%), Pacific
(14.50%), East North Central (14.46%), Mid Atlantic (13.60%), and West South Central
(12.25%) (p = 0.002).

In bivariable analysis among patients with cardiac arrest, patients with versus without
active cancer were significantly less likely to receive an inpatient LHC (8.56% versus 20.43%,
p < 0.001) and more likely to die inpatient (74.21% versus 54.91%, p < 0.001), which was
comparable when matched by age and NIS-calculated mortality risk by DRG (72.31%
versus 59.66%, p < 0.001).

3.2. Cardiac Catheterization and Mortality Disparities

According to the latest available U.S. census data (only reported up to one decimal
point), the population distribution is non-Hispanic Caucasian (60.1%), Hispanic (18.5%),
African American (13.4%), Asian (5.9%), Native American (1.3%), and other (0.8%) [70].
Within the 2016 NIS among patients with active cancer, the racial distribution of cardiac
arrest included non-Hispanic Caucasian (63.2%), Hispanic (8.56%), African American
(20.94%), Asian (3.43%), Native American (0.51%), and other (3.4%), leaving disparities
by race in cardiac arrest prevalence versus population distribution among non-Hispanic
Caucasians (+3.1%), Hispanics (−9.9%), African Americans (+7.5%), Asian (−2.5%), Native
Americans (−0.8%), and others (+2.6%).

Within the 2016 NIS among patients with active cancer, the racial distribution of
LHC following cardiac arrest included non-Hispanic Caucasian (78.9%), Hispanic (2.7%),
African American (12.6%), Asian (1.9%), Native American (0.8%), and other (3.1%), leaving
disparities in LHC prevalence by race versus population distribution among non-Hispanic
Caucasians (+18.8%), Hispanics (−15.8%), African Americans (−0.8%), Asians (−4.0%),
Native Americans (−0.5%), and others (+2.3%).

Within the 2016 NIS among patients with active cancer, the racial distribution of
mortality following cardiac arrest included non-Hispanic Caucasian (61.0%), Hispanic
(9.3%), African American (21.8%), Asian (3.75%), Native American (0.5%), and other (3.6%),
leaving disparities in mortality by race versus population distribution among non-Hispanic
Caucasians (+0.9%), Hispanics (−9.2%), African Americans (+7.8%), Asians (−2.1%), Native
Americans (−0.8%), and others (+2.8%).

LHC disparities (age and risk matched) in cancer versus non-cancer were more pro-
nounced for males (8.88% versus 20.90%, p < 0.001) than females (2.99% versus 14.35%,
p = 0.009), Caucasians (10.01% versus 22.16%, p < 0.001) than non-Caucasians (4.90% versus
15.36%, p < 0.001), highest income quartiles (9.62% versus 21.55%, p < 0.001) than the lowest
(6.27% versus 17.52%, p < 0.001), and urban metros of at least 1 million residents (7.29%
versus 20.28%, p < 0.001) than fewer (10.10% versus 20.58%, p < 0.0001).

Matched by age and risk, mortality disparities for patients with versus without active
cancer were more pronounced for females (79.10% versus 63.45%, p = 0.010) than males
(71.98% versus 59.35%, p < 0.001, non-Caucasians (77.20% versus 62.29%, p < 0.001) than
Caucasians (70.40% versus 58.08%, p < 0.001) than, highest income quartiles (71.80% versus
58.83%, p < 0.001) than the lowest (73.80% versus 61.51%, p < 0.001), and urban metros of
at least 1 million residents (72.88% versus 60.24%, p < 0.001) than fewer (71.55% versus
58.99%, p < 0.0001).

3.3. Propensity Score Adjusted Multivariable Regression of Mortality by Cardiac Catheterization

In ML-PS multivariable regression among patients with cardiac arrest and active cancer
from 2016 to 2018, adjustment was performed for age, sex, cancer (leukemia, pancreas, liver,
biliary, and lung), metastasis, pulseless electrical activity (PEA), ST-segment myocardial
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infarction (STEMI), mortality risk (as calculated by the NIS using DRGs), and the likelihood
of receiving LHC. LHC significantly reduced mortality (OR 0.18, 95%CI 0.14–0.24, p < 0.001).
The marginal effect for LHC was −38.71% (95%CI −45.47–−31.95; p < 0.001). Subgroup
analysis within each of the 26 primary malignancies indicated that the only malignancies
that were significantly associated with independently increased mortality were leukemia,
pancreas, liver, biliary, and lung (below referred to as “high-risk malignancy”).

3.4. Mortality by LHC in Propensity Score Matching

In propensity score matching with the same above adjustment variables, LHC signifi-
cantly and independently reduced mortality by 42.87% (95%CI 35.56–50.18, p < 0.001).

3.5. Creation of the Clinical Predictive Model of Cardiac Arrest in Active Cancer: CACOS

Baseline traits of the derivation and verification cohorts were not significantly dif-
ferent. CACOS included the following predictors: no inpatient LHC (OR 4.74, 95%CI
3.15–7.13), PEA initial rhythm (OR 2.32, 95%CI 1.78–3.02), metastatic malignancy (OR 1.80,
95%CI 1.41–2.30), and high-risk malignancy (OR 1.60, 95%CI 1.27–2.02) (all p < 0.001).
The model developed among patients with active cancer generated a receiver operating
curve (ROC) area under the curve (AUC), sensitivity, specificity, and correctly classified
of 0.685, 97.51%, 17.75%, and 78.22% for the derivative and 0.668, 97.92%, 19.96%, and
76.63% for the verification sub-datasets. In a univariate regression, each increasing CACOS
point was associated with a significant increase in mortality compared to a score of zero
in a progressive stepwise linear fashion: one point (OR 2.61, 95%CI 1.55–4.39), two points
(OR 6.75, 95%CI 4.14–11.01), three points (OR 14.00, 95%CI 8.56–22.90), and four points
(OR 18.47, 95%CI 10.78–31.63) (all p < 0.001) (Figure 2).
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3.6. Calibration of CACOS Predictive Model

Calibration plots for CACOS in the 2016 NIS derivation and verification sub-samples
demonstrated sufficient calibration in both sub-samples (Figures 3 and 4).
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3.7. Two Separate External Validations of the CACOS Predictive Model

Two separate external validations of CACOS were conducted using the 2017 and
then the 2018 NIS datasets among patients with active cancer following cardiac arrest. In
the 2017 NIS, CACOS among patients with active cancer post-arrest generated an AUC,
sensitivity, specificity, and correctly classified of 0.634, 96.51%, 17.81%, and 75.46%. This
resulted in a percentage change in discrimination (with ROC) of 0.51% versus the CACOS
derivation. In the 2018 NIS, CACOS in post-patients with active cancer generated an AUC,
sensitivity, specificity, and correctly classified of 0.643, 96.62%, 17.45%, and 74.82%. This
resulted in a percentage change in discrimination of 0.42% versus the CACOS derivation.
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3.8. Deep Learning versus ML-PSr Performance with CACOS

DL analysis was conducted ultimately with five hidden layers (consisting, respectively,
of 5, 3, 2, 10, and 5 nodes after alternative combinations of hidden layers and nodes were
confirmed to generate suboptimal performance). The model achieved a superior ROC
compared to the above regression model in the above Section 3.3 (AUC 0.695) (Figure 5).
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3.9. Cost-Effectiveness and Cost Benefit Analysis

The cost-effectiveness of LHC for patients with cardiac arrest and active cancer was
$915.82 spent to avert one additional death. The net benefit for the above intervention was
$59.72 billion.

If LHC prevalence and the related mortality reduction (from PSM above) were equally
distributed across all races according to their U.S. census population distribution, then
250 additional Hispanic patients, 31 African Americans, and 11 Asians may have been
saved with additional net savings of $1.85 billion, $0.23 billion, and $80.58 million for a
total of 292 additional minorities and $2.16 billion saved.

3.10. AI-Driven Computational Ethical and Policy Analysis: Personalist Social Contract

The above health and economic results then informed the final or focused ethical-
policy analysis step of AiCE. The primary material object of this ethical analysis was
LHC, the primary context was inpatient healthcare delivered to patients with active cancer
following sustained ROSC after cardiac arrest, and the primary formal object or ethical
analytic framework is the PSC.

Applied to this concrete ethical situation, the formal PSC argument is as follows.
(Premise 1) Cardiac arrest in active cancer diagnosed inpatient carries a high mortality,
which may be significantly reduced with LHC. (Premise 2) There appear to be significant
disparities among patients with active cancer in the prevalence of fatal out-of-hospital
cardiac arrest as patients of particular racial minorities, lower income, Medicaid, and no
insurance may be more likely to present to the hospital. After the presentation, they appear
less likely to receive LHC as do patients overall with versus without active cancer. Such
disparities within healthcare systems suggest reduced effective prevention and treatment
for reasons at least in part societal and not solely attributed to clinical differences across
patients. (Premise 3) Life and equal societal protection are fundamental individual and state
rights logically derivative from the human person’s dignity and are politically enshrined
across the United Nations, multiple other international institutions, and the majority of
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nations’ constitutions and legal statutes. (Premise 4) Respect for dignity at the individual
level requires respecting the person’s rights to goods (beginning with the primary good
of life) necessary for the person to develop through a just and stable commitment to the
common good and thus the community in reciprocal care for the individual. (Premise 5) Re-
spect for dignity at the communal level requires respecting other cultures as the communal
manifestations of their constitutive individuals seeking through justice the common good
(as the objective good of the community, entailing the objective good of individual flour-
ishing, and subjectively experienced as the ultimate individual good of self-actualization
through justice, completed in love, uniting the person to the community which is united
and animated by goodness itself). (Premise 6) Social disparities (in cardiac arrest preven-
tion and mortality-reducing treatment) including race, income, and insurance can produce
disproportionate mortality in those social sub-communities resulting in a disproportionate
threat to the preservation of those persona and related cultures, leading to the global
human community’s impoverishment with the loss or diminishment of those individuals
and cultures. (Premise 7) The reduction of such disparities may result in hundreds of
lives saved along with billions of dollars. (Premise 8) Continued disparities in prevention
and treatment of cardiac arrest in patients overall compared to patients with active cancer
and within demographic and socioeconomic subgroups within patients with active cancer
undermine respect for the rights of patients and respect for their cultures, which is critical
to the wellbeing of societies that encompass all peoples and cultures. (Premise 9) The CA-
COS score, particularly when automated as a clinical decision support tool within diverse
existing EHRs across healthcare systems using only admission ICD10s, may additionally
allow early refinement of the accuracy and precision with which post-arrest treatment is
provided by more sensitive risk stratification for those likely to survive and thus benefit
from more intense treatment efforts. (Conclusion) Therefore, clinical, economic, and ethical
justification supports greater healthcare policy and healthcare system investment reducing
disparities in the burden of cardiac arrest including with the use of such early scoring
systems as CACOS.

4. Discussion

This is the first known AI and causal inference statistical-informed clinical, cost, and
ethical integrated analysis of cardio-oncology cardiac arrests including LHC-related mortal-
ity reduction and related disparities. It is additionally the first such study to generate and
validate a novel clinical predictive model for cardiac arrest in active cancer. By using the
most recent multi-year nationally representative dataset, this study suggests that patients
with versus without active cancer are approximately one-third as likely to receive inpa-
tient LHC (though they are receiving LHC at increasing rates concurrent with decreasing
mortality over time) as LHC may reduce mortality by upwards of 42.87%. However, there
appear to be significant disparities in cardiac arrest prevalence, treatment, and outcomes.
Our results suggest among post-arrest patients that Hispanic, African American, lower
income, Medicaid, uninsured, and more urban patients with active cancer may suffer
from higher undiagnosed or under-managed chronic comorbidities. Additionally, their
culmination in cardiac arrest may be disproportionately suffered by such populations given
their lower inpatient diagnosis prevalence of cardiac arrest compared to their baseline
population distribution (while post-arrest Hispanics and African Americans with active
cancer are less likely to receive inpatient LHC and African Americans more likely to die
while hospitalized). Given such disparities and this study’s cost-effectiveness and benefit
analysis suggesting that less than $1000 needs to be spent on average on an inpatient LHC
to save the life of a patient with cardiac arrest and active cancer, our analysis suggests
that nearly 300 racial minorities and over $2 billion annually are lost nationally because of
persistent disparities in cardiac arrest inpatient treatment. Computational ethical analysis
indicates that across our diverse nations, healthcare systems, and belief systems (whether
Buddhism, Christianity, Confucianism, Daoism, Hinduism, Islam, Judaism, or secularism),
there is robust empirical and ethical evidence that such disparities should be reduced
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for the equitable benefit for cardio-oncology patients globally for a net societal benefit.
Our novel CACOS clinical predictive model for post-cardiac arrest mortality in patients
with active cancer may provide a concrete step in this direction by early sensitive risk
stratification of patients to allow healthcare systems and nations (particularly those with
fewer resources) the ability to more precisely match those limited resources for patients
who may most benefit from aggressive post-arrest care.

Prior research using a novel integration of AI, propensity score analysis, and geo-
graphic information system (GIS) heat mapping has demonstrated that lower-income racial
minorities (at an individual and community level) not only suffer higher actual rates of
cardiac arrest but also post-arrest poor neurological outcomes [71]. By accurately showing
the geographic overlap at the neighborhood level of cardiac arrest burden and residence
of lower-income racial minorities, such research can help inform more culturally sensitive
and effective local healthcare system and health policy outreach efforts to match resources
with where their demand and the potential benefit is the greatest (to treat the patient
and her/his community concurrently through the complementary collaboration of clinical
medicine and public health). Such approaches with innovative methodologies and pro-
posed applications may be helpful in reducing the largely static high burden (and related
disparities) of cardiac arrest in the last few decades. Prior research has demonstrated that
such disparities persist in pre-arrest risk factors, cardiac arrest incidence, CPR, guideline-
recommended treatment, palliative care (including lower ICD implantation among women
and racial minorities regardless of hospital traits and comorbidities), and adjusted survival
to hospital discharge [72–76]. Notably, Starks et al. 2017 demonstrated that compared to
predominantly Caucasian neighborhoods, patients from predominantly African American
neighborhoods are less likely to receive post-arrest bystander CPR and defibrillation and
thus survive ultimately to hospital discharge, with African American communities having
38.30% lower bystander CPR rates than Caucasian communities. Further, large recent
trials including in the New England Journal of Medicine increasingly suggest that cardiac
catheterization can be delayed for patients with cardiac arrest with admission non-STEMIs
in general, and thus there has been a growing trend of delayed LHC even in the outpatient
setting [77,78]. This study provides novel evidence that patients with active cancer may
particularly benefit from inpatient LHC.

Such cardiac arrest disparities from the general population are reasonably expected to
hold in the sub-group of patients with active cancer, and yet the limited research has further
limited effective action on the already daunting challenge of persistent disparities. This
study thus not only helps to accurately describe the epidemiology nationally of cardiac ar-
rest in active cancer but also does so with a granular assessment by primary malignancy and
related disparities by sex, income, insurance, and region (by arrest prevalence, treatment,
and outcomes). This study also creates and validates the novel tool of CACOS which may
accurately predict post-arrest mortality with commonly available variables usually at the
time of admission (which may allow enhanced clinical decision support to optimize health
outcomes and health equity through more precise matching of resources to not only patient
need but also their likelihood to benefit from it). The AI (a) analytics and (b) applications for
this study and particularly CACOS additionally suggest a paradigm pivot in such clinical
research to accelerate value-based healthcare performance by healthcare systems. The
above results were demonstrated using a large nationally representative dataset and robust
causal inference statistics including the propensity score adjustment and matching in a way
that is generally well accepted by the diverse clinician and researcher audiences. It also
confirms these results using (a) AI analytics (both ML and DL). Growing research emblem-
atically demonstrated by Nature’s Popescu et al. 2022 shows how AI is increasingly moving
modern medicine from cruder population-based predictions to more precise patient-specific
predictions for a new era of enhanced outcomes. Such AI-augmented analyses, such as
our study demonstrates, suggest how AI can achieve at least comparable results to the
well-accepted traditional statistical techniques dominating contemporary clinical research.
However, unlike traditional statistics, it has the increasingly operationalized potential to
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achieve new levels of accuracy and precision in real-time using the unprecedented Bid Data
volume, velocity, and variety generated by modern healthcare systems [79]. Additionally,
CACOS is meant to have innovative (b) AI applications unlike prior predictive scores and
traditional statistics—by placing CACOS within diverse healthcare systems’ EHRs (that
can rapidly pull ICD10s) it can provide real-time guidance for clinicians to improve related
patients’ equitable outcomes while allowing its underlying AI algorithms to continually
adapt the model and personalize it for the unique patient.

This AiCE analysis and intended application suggest the importance of AI augmen-
tation with the co-design (collaboratively with patients, community members, clinicians,
data scientists, policymakers, and healthcare system executives) of ethically aligned AI to
build transparency, reliability, and trust for diverse stakeholders within and outside the
healthcare system. This hybrid approach of traditional statistics and AI analytics may thus
be instrumental by additionally serving as a methodological bridge from older statistics
to next-generation AI. This new paradigm proposes a potentially promising model of the
future’s next-generation AI-empowered, health equity-focused, value-based healthcare-
orientated healthcare system [80].

This study, therefore, operates within this conceptual model of Health AI which can
be formally defined as the emerging model of the AI-driven or ‘thinking healthcare system’
and mathematically defined as the following (Monlezun 2022):

Health AI =

(
HealthBD×

[
Delivery +

∞

∑
n=1
{PrMed 〈cos Delivery〉+ PubHealth 〈sin Delivery〉}

])AI−VBHC

Conceptually, AI Health is the product of Healthcare Big Data (HealthBD) and health-
care delivery, raised to the power of AI-enabled Value-Based Healthcare (AI-VBHC). If
Health AI is meant to conceptualize the primary objective of the emerging model of health-
care systems, the means to it is the AiCE (utilized in this study and) central to its AI-VBHC
transformation. AI-VBHC specifically can be formulaically represented as:

AI VBHC = AiCE× ([Clinical + Operational]AI)×
(

QualityEquity × Personal × Social × Wellbeing

CostTime × Capacity × Support

)
Healthcare delivery as a periodic function in Health AI is represented as the trigono-

metric form of a Fourier series as the infinite convergent series of the sum of the average
unit of healthcare delivery at a patient level (as the average value of the function) and the
summation of the cosine wave (of PrMed or Personalized Medicine) and summation of
the sine wave (of PubHealth or Public Health) [81]. The successive sum of these waves
or harmonics (integer multiples of the periodic function’s fundamental frequency) con-
stituting the overall PrMed and PubHealth waves allows the convergence or increasing
approach toward the limit as the function or number of terms increases (as the function
y = 1/x converges to zero as x increases). This healthcare delivery framework represents
the operational function of healthcare systems whose central objective should be to deliver
VBHC, whose seminal definition was provided by Porter and Teisberg as a cost-benefit
function of health outcomes achieved through quality healthcare divided by the per-person
costs to achieve those outcomes [82,83]. The European Commission’s Expert Panel on
Effective Ways in Investing in Health refined the definition of quality healthcare as con-
sisting of equity, person-centeredness, social participation, and wellbeing with implied
safety [84]. The AI-driven Cardiac Arrest Inequity Index (AI-CAII) and the AI-driven
Efficiency-Inequity Index (AI-EII) are derivative of the above as the former is the ratio of
observed over predicted outcomes applied to cardiac arrest. The latter describes the more
general clinical and technical trade-off in efficiency reaching the desired value-based health-
care outcomes, and the disparities that may increase with the efficiency jumps (thus guiding
optimal efficiency boosts without disproportionate disparity increases). The AI-CAII for
this study highlights the potential preventable mortality and costs from arrest disparities,
while the AI-EII remains appropriately in the desired range over 1 as the efficiency of
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CACOS deployment in EHRs (and non-EHRs for lower resource communities) reasonably
outpaces any disparity it may produce.

This study is consistent with prior research suggesting the growing number and
application of healthcare digital innovations related to the Fourth Industrial Revolution
(Industry 4.0) [29]. Similar to prior industrial revolutions which introduced commercialized
scientific-techno innovations with subsequent force multiplying transformation of other
economic sectors (and societies more broadly), Industry 4.0 emerged in the 2010s from
the Third (Digital) Industrial Revolution marking the fundamental global shift to embed-
ded intelligent connectivity of cyber-physical systems with our augmented social reality
(driven by AI-enabled smart technologies including in the Internet of Things [IoT] and
advanced robotics). Similar to other economic sectors, Industry 4.0 is rapidly facilitating
the AI-accelerated horizontal (external) and vertical (internal) digital integration of value-
based supply chains producing a digital ecosystem that connects healthcare systems with
more dense and digitized networks of telehealth vendors, pharmaceuticals, medical de-
vice companies, insurance companies, technological companies, community organizations,
governments, and non-governmental organizations. Internally, healthcare systems are
increasingly adopting the Industry 4.0 hierarchical information technology (IT) architecture
of cloud layer (internet-based servers for data storage, processing, analytics, and related
user services) and their underlying fog layer (intermediary servers amplifying and acceler-
ating data processing, caching, buffering, and communication) and most remote edge layer
(where users, i.e., patients interface with the digital counterpart of the physical system
through IoT devices such as smartphones and remote sensors which generate data and
access architecture’s services such as telehealth). This unprecedented volume, velocity, and
variety of this increasingly dense Industry 4.0 (including healthcare) data are indicated as
Big Data which AI is increasingly required to process, analyze, and communicate with the
different components of the digital ecosystem informing clinical and operational decisions
for healthcare systems.

Accordingly, there are a growing number of AI-enabled Big Data innovations including
using the IoT that are improving the effectiveness, efficiency, and equity of traditional
healthcare operations [85]. In public health, deep extreme learning has been used to
achieve an accuracy rate of 97.59% forecasting COVID-19’s spread [86]. In precision
medicine, Adel et al. 2021 demonstrated that clinicians can more rapidly extract needed
patient data from EHRs using a fuzzy ontology-based semantic interoperability framework
with an ML-based natural language processing (NLP) approach [87]. There has been
extensive work in AI-augmented or intelligent imaging to improve monitoring of fetal
organ development with ultrasounds (using DL with convolutional neural network (CNN)),
COVID diagnoses with chest X-rays (using CNN), and even dental age in forensics (using
neural networks and X-rays) [88–90]. As such AI applications continue, there are concurrent
efforts, including the blockchain (decentralized digital ledger distributed across a network
of peer-to-peer servers), to preserve the security, integrity, and privacy of such sensitive
data from internal accidental information loss and external deliberate cyberattacks [91].
The above results should be cautiously interpreted given the study’s limitations. This is
a non-randomized observational study using only U.S. administrative de-identified data
(not able to longitudinally track at the individual level) which were used to generate a
clinical predictive model with a lower specificity and AUC than typically more general (not
specifically concurrent active cancer in) cardiac arrest models. This study sought to reduce
the threats to internal and external validity by utilizing a large nationally representative
dataset from three separate years, robust traditional causal inference statistics (including
propensity score adjustment and matching), both ML and DL, and repeated validations
of the predictive model. The design decision to optimize CACOS sensitivity even at the
expense of specificity and overall AUC was considered of sufficient net benefit, considering
its still sufficient AUC for such a novel cancer-focused arrest predictive model and its
objective to enhance its clinical utility for rapid risk stratification for such patients near
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the time of initial admission (when much of the projected hospital-based treatment plan is
initially formulated).

5. Conclusions

This is the first known AI and causal inference statistical-informed clinical, cost,
and ethical integrated analysis of cardio-oncology cardiac arrests including LHC-related
mortality reduction and related disparities, in turn, used to generate and validate the first
known clinical predictive model for cardiac arrest in active cancer (CACOS). By using the
most recent multi-year nationally representative dataset, this study suggests that patients
with versus without active cancer are less likely to receive inpatient LHC (though they are
receiving LHC at increasing rates concurrent with decreasing mortality over time). This
disparity is particularly concerning given how LHC may reduce mortality by upwards of
42.87%. However, there appear to be significant disparities in cardiac arrest prevalence,
treatment, and outcomes including by race, income, insurance, and region that empirical
and ethical evidence justifies reducing as quickly as possible. As such, this methodological
approach of AiCE within AI Health (with its above mathematical definition) proposes
not a rigid imposing roadmap but rather an inclusive formula for the future of healthcare
systems that are effective, efficient, and equitable (by being automatable and adaptable for
local communities’ needs and values, rather than being dictated externally).
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