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1  |  INTRODUC TION

Glioma is the most lethal and common type of malignancy found in 
the nervous system and presents a significant burden to the public 
health system worldwide.1 Due to the difficulty of complete surgical 
resection, high recurrence rates after surgery lead to poor outcomes 

and high mortality rates. Surgical resection followed by radiation 
with concomitant and adjuvant temozolomide has improved out-
comes in some patient subsets.2,3 However, overall outcomes are 
still poor, with a median survival time of less than 15 months.4 Thus, 
detailed analyses of the molecular mechanisms are needed for the 
identification of new prognostic markers.
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Abstract
Glioma is the most common malignancy of the nervous system with high rates of 
recurrence and mortality, even after surgery. The 5- year survival rate is only about 
5%. NEK8 is involved in multiple biological processes in a variety of cancers; however, 
its role in glioma is still not clear. In the current study, we evaluated the prognostic 
value of NEK8, as well as its role in the pathogenesis of glioma. Using a bioinformatics 
approach and RNA- seq data from public databases, we found that NEK8 expression 
is elevated in glioma tissues; we further verified this result by RT‑ PCR, Western blot-
ting and immunochemistry using clinical samples. Functional enrichment analyses of 
genes with correlated expression indicated that elevated NEK8 expression is associ-
ated with increased immune cell infiltration in glioma and may affect the tumour mi-
croenvironment via the regulation of DNA damage/repair. Survival analyses revealed 
that high levels of NEK8 are associated with a poorer prognosis; higher WHO grade, 
IDH status, 1p/19q codeletion, age and NEK8 were identified as an independent prog-
nostic factor. These findings support the crucial role of NEK8 in the progression of 
glioma via effects on immune cell infiltration and suggest that it is a new prognostic 
biomarker.
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NEK family members, Nek1 to Nek11,5 encode serine/
threonine- specific protein kinases that are widely expressed in cilia, 
centrosomes, nuclei, cytoplasm and mitochondria. As cell cycle ki-
nases, NEKs are related to the mitotic regulator ‘never in mitosis, 
gene A’ (NIMA)6,7 and regulate the cell cycle progression from the 
G2 to M phase.8,9 NEKs are associated with multiple cancers.10,11 
Furthermore, their involvement in specific aspects of microtubule 
function and the DNA damage checkpoint, a key target pathway for 
cancer drugs, has led to considerable interest in mitotic enzymes as 
candidate cancer drug targets.

NEK2 is overexpressed in many human tumours. Its depletion 
prevents centrosome separation, blocks mitosis and increases apop-
tosis.12 It has been identified as a therapeutic target in breast can-
cer,13 cholangiocarcinoma and colorectal cancer,14 to name a few. 
Similarly, NEK3 overexpression in human breast cancer affects pro-
lactin receptor signalling and upregulates Vav2 phosphorylation.15 
Nek6 has also been identified as a tumorigenesis protein and po-
tential therapeutic target in cancer. For instance, the activation of 
Nek6 facilitates anchorage- independent growth. Its depletion leads 
to cancer cell death,16 and its overexpression has been reported to 
suppress p53- dependent cellular senescence.17

NEK8 is of particular interest, owing to the discovery of specific 
mutations that cause polycystic kidney disease in zebrafish and 
mice.18 NEK8 is a 692 amino acid protein with a molecular weight 
of 75 kDa.19 The protein consists of an N- terminal catalytic domain 
and a C- terminal domain, which are typical characteristics of serine/
threonine kinases, including other mitotic kinases.6 Missense muta-
tions in NEK8 may induce defects in DNA repair and increased apop-
tosis.20 These findings indicate that the dysfunction of NEK8 may 
contribute to tumorigenesis.21 For example, missense mutations 
in NEK8 are underlying driver mutations in pancreatic cancer.22 
Bowers et al.23 found that NEK8 expression is elevated in human 
breast cancer. However, the fundamental mechanism by which 
NEK8 contributes to glioma is still poorly understood.

In this study, we investigated NEK8 expression and its prognos-
tic value in glioma using clinical samples and data from The Cancer 
Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA). 
Furthermore, we assessed correlations between clinical- pathologic 
features and the expression of NEK8. Finally, we evaluated the bio-
logical functions and pathways associated with NEK8. Our results 
provide potential therapeutic targets in glioma, as well as novel 
insights into the molecular mechanisms underlying the effects of 
NEK8.

2  |  MATERIAL S AND METHODS

2.1  |  Patients and specimens

Patient specimens for PCR, Western blotting, immunohistochemi-
cal (IHC) staining and flow cytometry were collected at the Beijing 
Tiantan Hospital from August 2019 to June 2021. Three non‑ tumour 
brain samples from traumatic brain injury internal decompression 

and nine tumour samples (three grade II, three grade III and three 
grade IV cases) were acquired for the PCR assay. Six non‑ tumour 
samples and four WHO II, III and IV glioma samples (different from 
the samples used for PCR) were used for Western blotting. Besides, 
the above clinical specimens and other samples were collected for 
the IHC staining and flow cytometry. The clinical information of 
patients was shown in Table S1. Two neuropathologists confirmed 
the histological diagnosis of the specimens according to the classi-
fication guidelines of the 2016 World Health Organization (WHO). 
Informed consent was obtained from all patients, and the study 
was approved by the Ethics Committee of Beijing Tiantan Hospital, 
Capital Medical University (KY 2018– 052– 01).

2.2  |  RNA isolation and quantitative RT- PCR

Total RNA was isolated from clinical tissues using an RNA Kit (Omega) 
based on the manufacturer's protocol. RNA was reverse transcribed 
into cDNA via NovoScript II Reverse Transcriptase (Novoprotein). 
Quantitative PCR was performed using a Biosystem thermal cycler 
(Life Technologies, Singapore) and NovoStart® SYBR qPCR SuperMix 
Assay (Novoprotein). The relative mRNA expression levels of NEK8 and 
GAPDH were calculated using the 2−ΔΔCt method. The primers were 
as follows: NEK8 forward 5′‑ ATGGCAGCCTCACTGACATCAG‑ 3′ 
and reverse 5′‑ CCAGGCAAATAGTTCTCGCTCAG‑ 3′ and 
GAPDH forward 5′‑ CTCCTCCACCTTTGACGCTG‑ 3′ and reverse 
5′‑ TCCTCTTGTGCTCTTGCTGG‑ 3′.

2.3  |  Western blot analysis

The clinical samples were lysed with RIPA lysate buffer. The su-
pernatants were collected after centrifugation and then boiled for 
5 minutes with loading buffer (40% glycerol, 100- mM Tris, bromo-
phenol blue) at a ratio of 25:100. Proteins were separated using 
sodium dodecyl sulphate- polyacrylamide gel electrophoresis (SDS- 
PAGE) and transferred to polyvinylidene fluoride (PVDF) mem-
branes. The membranes were blocked in 5% non- fat milk in TBS- T 
for 1 hour at room temperature and then incubated with anti- NEK8 
(1:2000) and anti‑ GAPDH (1:5000) antibodies (Abcam) overnight 
at 4°C. Subsequently, the membranes were washed and incubated 
with secondary anti- rabbit antibodies (1:5000) coupled to horserad-
ish peroxidase for 1 hour at room temperature. Finally, the protein 
expression levels of samples were detected using a chemilumines-
cence (ECL) system.

2.4  |  Immunohistochemistry

The sections were deparaffinized with xylene and rehydrated with 
gradient ethanol, and antigen retrieval was carried out in a microwave 
oven with citric acid. Endogenous peroxidase activity was blocked 
using 3% H2O2. The sections were incubated in 10% normal goat serum 
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to block the non- specific binding of the antibody and were incubated 
with anti- NEK8 (dilution 1:100; Abcam) as the primary antibody over-
night at 4°C. The sections were subsequently incubated for 30 min-
utes at room temperature with the secondary antibody conjugated 
with horseradish peroxidase, immersed in diaminobenzidine(DAB) 
and counterstained with haematoxylin for 2 minutes.

2.5  |  Flow cytometry

Clinical tissues were rinsed in PBS, minced into fine pieces and di-
gested at 37°C for 1 hour in 0.5 g/L collagenase (Sigma- Aldrich), then 
incubated in 10% foetal bovine serum (FBS) (Gibco). Digests were 
filtered through a 75- μm mesh for single- cell isolation. After a cen-
trifugation at 1500 rpm for 5 minutes, the cell pellet was collected in 
the bottom. After counting, cells were washed twice with PBS. Then, 
antibodies against CD45‑ APC‑ 750, CD16‑ ECD, CD56‑ PE, CD3‑ 
PE‑ Cy5.5, CD4‑ PE‑ Cy7, CD194‑ APC (BioLegend) were added and 
incubated in the dark for 30 minutes on ice. Single cells were washed 
twice in PBS before analysis on a Beckman Coulter CytoFLEX flow 
cytometer. Analysis of flow cytometry results was performed using 
FlowJo software.

2.6  |  Public databases

RNA- seq data were downloaded from TCGA and GTEx using UCSC 
XENA (https://xenab rowser.net/datap ages/). These data were uni-
formly transformed into TPM (transcripts per million reads) by the 
Toil process [22] for comparative analyses. The Wilcoxon rank‑ sum 
test was used to compare NEK8 levels in normal samples from GTEx 
combined with TCGA and tumour samples obtained from TCGA. 
Expression profiles (HT Seq- Counts) were compared between 
high and low NEK8 expression groups using the median value as 
the cut- off to identify differentially expressed genes (DEGs) using 
the DESeq2 (3.8) package [23]. A volcano plot and heat map were 
generated for visualization. RNA- seq data were also obtained from 
CGGA (http://www.cgga.org.cn/). The Wilcoxon rank‑ sum test and 
Wilcoxon signed‑ rank test were used to compare NEK8 expression 
levels between tumour samples and control samples. The Kruskal- 
Wallis test, Wilcoxon signed‑ rank test and Spearman's correlation 
coefficients were used to assess the correlations between clinical- 
pathologic features and the expression of NEK8. The Pearson chi‑ 
square test was used to analyse the direct correlation between high 
and low NEK8 groups and the grade of clinicopathologic factors 
(Fisher's exact test was used when needed). All statistical analyses 
and the generation of plots were performed using R (v3.6.2).

2.7  |  Prognostic analysis and nomogram

To evaluate prognostic factors, the Kaplan- Meier method was used 
to construct survival curves. Additionally, relationships between 

survival and clinical factors, including gender, age, race, WHO grade, 
IDH status, 1p/19q codeletion, primary therapy outcome, EGFR 
status, PIK3CA status and NEK8 level, were evaluated. Univariate 
Cox regression analyses were performed. Then, significant variables 
from the univariate analyses (p < 0.1) were included in a multivari-
ate analysis to confirm independent predictors. To precisely predict 
the 1- year, 3- year and 5- year survival probabilities, a nomogram 
was constructed based on the results of the multivariate analysis. 
Furthermore, we compared the predictive accuracy of the nomo-
gram with respective prognostic factors based on the C- index and 
receiver operating characteristic (ROC) analyses. Finally, we con-
structed a calibration curve to evaluate the predictive value for 
overall survival (OS), progression‑ free interval (PFI) and disease‑ 
specific survival (DSS).

2.8  |  Functional enrichment analyses

Functional enrichment analyses of DEGs, including gene ontol-
ogy (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analyses, were performed using clusterProfiler.24 Immune 
infiltration associated with NEK8 was evaluated via single- sample 
gene set enrichment analysis (ssGSEA) using the GSVA package 
(http://www.bioco nduct or.org/packa ges/relea se/bioc/html/GSVA.
html). The relative levels of each tumour- infiltrating immunocyte 
were quantified according to the signature genes of 24 immune cell 
types.25 Spearman's correlation coefficients were determined to 
evaluate the correlation between NEK8 and levels of immune cell 
infiltration. The Search Tool for the Retrieval of Interacting Genes 
(STRING) (http://strin g- db.org/) database26 was used to explore in-
teractions among the DEGs in the protein‑ protein interaction (PPI) 
network. An interaction with a combined score >0.4 was regarded 
as statistically significant.

3  |  RESULTS

3.1  |  Differential expression analysis of NEK8

We first analysed the pan‑ cancer expression of NEK8 by using the 
combined data gathered from TCGA and GTEx. As determined by 
the Wilcoxon rank‑ sum test, NEK8 expression was upregulated 
in the majority of cancer types, including glioblastoma and low- 
grade glioma, compared with normal tissues (Figure 1A). We then 
performed quantitative PCR using our clinical tissue samples and 
found that the mRNA levels of NEK8 were higher in both grade III 
and grade IV samples than in non- tumour specimens (Figure 1B). A 
Western blotting assay showed that NEK8 protein expression was 
significantly upregulated in grade III and IV glioma samples com-
pared with non- tumour (Figure 1C, D). IHC staining suggested that 
patients with high level of positive NEK8 expression corresponded 
to the high glioma grade (Figure 1E) and further confirmed by the 
ImageJ software semi‑ quantitative expression analysis (Figure 1H). 

https://xenabrowser.net/datapages/
http://www.cgga.org.cn/
http://www.bioconductor.org/packages/release/bioc/html/GSVA.html
http://www.bioconductor.org/packages/release/bioc/html/GSVA.html
http://string-db.org/
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Moreover, we found that NEK8 was partially expressed both in as-
trocytoma and oligodendroglioma (Figure 1F– G). These results were 
consistent with those of analyses of NEK8 data in TCGA and CGGA 
(Figure 1I– K), which also showed a clear trend towards increased 
expression according to the WHO grade.

3.2  |  Correlation between the NEK8 expression 
level and prognosis in glioma

We then performed a Kaplan‑ Meier survival analysis using data ob-
tained from TCGA to investigate the prognostic value of NEK8 in 
glioma. As shown in Figure 2A– C, a worse prognosis was observed 
in the high NEK8 expression group than in the low NEK8 expression 
group when considering OS, PFI (Figure S1A) and DSS (Figure S1B) 
(p < 0.001). Similar results were obtained using data in the CGGA 
database (Figure 2F).

We evaluated the impact of clinical variables and NEK8 on glioma 
overall survival by a Cox regression analysis. In univariate analyses, 
the clinicopathologic variables associated with OS were WHO grade 
(p < 0.001), IDH status (p < 0.001), 1p/19q codeletion (p < 0.001), 
primary therapy outcome (p < 0.001), age (p < 0.001), EGFR sta-
tus (p < 0.001), histological type (p = 0.005) and NEK8 (p < 0.001) 
(Table 1). To further identify factors correlated with prognosis, the 
clinical features with statistical significance in univariate analyses 
were included in a multivariate Cox regression analysis. In summary, 
WHO grade (p = 0.028), IDH status (p = 0.007), 1p/19q codeletion 
(p = 0.043), primary therapy outcome (p = 0.002), age (p < 0.001) 
and NEK8 expression (p < 0.001) were identified as independent 
prognostic factors associated with OS (Table 1).

Subsequently, as shown in Figure 2B&C, higher expression of 
NEK8 was correlated with a worse OS in the WHO grade III and 
IV subgroup (p < 0.001). We also discovered that higher NEK8 ex-
pression related to a poorer OS both in astrocytoma and oligoden-
droglioma (Figure 2D– E). Correlations between the level of NEK8 
expression and major clinical features are shown in a forest plot in 
Figure 2D. Finally, a Kaplan- Meier prognostic analysis suggested that 
high NEK8 expression is associated with a worse PFI and DSS in the 

different subgroups of glioma (p < 0.05) (Figure S1C– L). Collectively, 
these results showed that NEK8 is a potential prognostic marker for 
patients with glioma.

3.3  |  NEK8-related prognostic nomogram

A nomogram was established to integrate NEK8 and other independ-
ent prognostic factors identified in the multivariate Cox regression 
analysis, including the WHO grade, IDH status, 1p/19q codeletion 
and age. A higher score based on the nomogram indicated a worse 
prognosis, and survival periods of 1, 3 and 5 years were evaluated. 
The C- index value for the prediction model was 0.867, indicating a 
moderate predictive accuracy for OS in glioma (Figure 3A). To ver-
ify the predictive value, we used variables included in the nomo-
gram to construct a calibration curve. The bias- corrected curve in 
the calibration plot conformed well to the ideal line (the 45° line), 
demonstrating an excellent predictive ability (Figure 3B). The corre-
sponding ROC curve for NEK8 expression is shown in Figure 3C. The 
area under the curve (AUC) was 0.795, indicating good performance. 
These data demonstrated that the nomogram could be used to ac-
curately predict 1- , 3-  and 5- year survival in patients with glioma.

3.4  |  Correlations between NEK8 expression 
levels and clinicopathologic characteristics

In an evaluation of correlations between NEK8 expression and clin-
icopathologic variables, we found that NEK8 expression was higher 
in patients with WT IDH than those with mutant IDH (p < 0.001) 
(Figure 4A). We also found that the expression level of NEK8 was 
higher in older patients (>60 years) and lower in younger patients 
(≤60 years) (p < 0.001) (Figure 4B). As shown in Figure 4C, the ex-
pression level of NEK8 was significantly higher in Asian and black 
or African American patients with glioma than that observed with 
white (p = 0.037). The expression level of NEK8 was significantly 
higher in glioblastoma than in other histological types (p < 0.001; 
Kruskal‑ Wallis rank‑ sum test) (Figure 4D). Similar results were 

F I G U R E  1  NEK8 expression in a pan‑ cancer database and clinical samples. (A) Comparison of NEK8 expression between cancer tissues 
and control samples in 33 tumour types. (B) Bar charts of normalized mRNA expression levels of NEK8 in glioma and non- tumour samples. 
(C) Representative Western blotting images of NEK8 in glioma and non‑ tumour samples. (D) Bar charts of normalized protein expression 
levels of NEK8 in glioma and non‑ tumour samples. (E– G) Representative IHC staining images of NEK8 in WHO grades, astrocytoma 
and oligodendroglioma. (H) Semi- quantitative expression analysis of NEK8 in the low and high NEK8 group. The non- tumour and grade 
II were set as the low NEK8 group, while grades III and IV were set as the high NEK8 group. (I– J) Analysis of the differential expression 
of NEK8 between glioma samples and normal samples in TCGA datasets. (K) Analysis of the differential expression of NEK8 with WHO 
grade between glioma and normal samples in CGGA. Data have been presented as normalized mean ± SD. Ns: p ≥ 0.05; *: p < 0.05; **: 
p < 0.01; * * *: p < 0.001. ACC, adrenocortical carcinoma; BLCA, bladder urothelial carcinoma; BRCA, invasive breast carcinoma; CHOL, 
cholangiocarcinoma; COAD, colon adenocarcinoma; DLBC, Lymphoid Neoplasm Diffuse Large B- cell Lymphoma; ESCA, oesophageal 
carcinoma; GBM, glioblastoma multiforme; HNSC, Head and Neck squamous cell carcinoma; KICH, kidney chromophobe; KIRC, Kidney renal 
clear cell carcinoma; KIRP, Kidney renal papillary cell carcinoma; LAML, acute myeloid leukaemia; LGG, brain lower grade glioma; LUAD, 
Lung adenocarcinoma; LUSC, Lung squamous cell carcinoma; OV, Ovarian serous cystadenocarcinoma; PAAD, Pancreatic adenocarcinoma; 
PRAD, Prostate adenocarcinoma; READ, Rectum adenocarcinoma; SKCM, Skin Cutaneous Melanoma; STAD, Stomach adenocarcinoma; 
TGCT, Testicular Germ Cell Tumours; THCA, Thyroid carcinoma; THYM, Thymoma; UCEC, Uterine Corpus Endometrial Carcinoma; UCS, 
Uterine Carcinosarcoma
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observed using data from the CGGA database (Figure 4E– G). 
Moreover, the expression level of NEK8 was higher in patients with 
the 1p/19q non- codeletion status than those with the codeletion 
status (p < 0.01), based on the CGGA datasets (Figure 4G). To fur-
ther demonstrate the clinical significance of NEK8 protein expres-
sion, we analysed the relationship between clinical characteristics 
and the groups with low and high NEK8 expression. As presented in 
Table 2, in the high expression group, grade IV was more frequent 
type compared with low- expression group (p < 0.01). The majority of 
cases in the low- expression group showed mutant IDH (63%), while 
an opposite trend of IDH statuses was found in the high expression 
group (p < 0.001). Complete response (CR) and stable disease (SD) 
was more common primary therapy outcome in the low- expression 
group (p = 0.034). Asian expressed high level of NEK8 more easily 
in glioma, while a nearly equal distribution of NEK8 was found in 
White (p = 0.017). We found that the older over 60 years old (70.6%) 
were more likely to express high level of NEK8 (p < 0.001). In the 
high expression group, glioblastoma was most frequent, and a similar 
distribution of astrocytoma and oligodendroglioma was discovered 
both in the low and high NEK8 expression group (p < 0.001). High 
NEK8 expression group had a worse prognosis in OS event (60.7%) 
(p < 0.001).

Similarly, univariate analyses using logistic regression indicated 
that NEK8 expression is correlated with clinicopathologic character-
istics (Table 3). NEK8 expression in glioma was significantly asso-
ciated with the WHO grade (OR = 3.05 for Grade IV vs. II and III), 
IDH status (OR = 4.60 for WT vs. Mutant), EGFR status (OR = 4.07 
for WT vs. Mutant), PIK3CA status (OR = 2.17 for WT vs. Mutant), 
primary therapy outcome (OR = 0.58 for CR vs. PD, SD and PR), 
age (OR = 0.31 for ≤60 years vs. >60 years), and histological type 
(OR = 2.91 for astrocytoma vs. glioblastoma). These findings sug-
gested that NEK8 is closely correlated with clinicopathologic factors 
mentioned above in glioma.

3.5  |  Differentially expressed genes 
between the NEK8 high and low- expression 
groups and functional enrichment

We analysed DEGs between the groups with low and high NEK8 
expression, using the median expression level as the cut- off 
value. By using the criteria |log fold change (FC)| >2 and adjusted 

p < 0.01, we obtained 72 DEGs (68 upregulated and 4 downregu-
lated) (Figure 5A). According to the log FC values, information for 
the top 15 genes is shown in a heat map (Figure 5B). A KEGG en-
richment analysis indicated that DEGs were involved in pathways 
related to protein digestion and absorption and proteoglycan me-
tabolism in the tumour microenvironment (Figure 5C). Moreover, 
the NEK8 and DDR2 expression levels were highly correlated for 
all WHO grades (Figure 5D). In the biological process category, 52 
enriched GO terms were identified, mainly related to the develop-
ment and morphogenesis of the organ, limb, skin, skeletal system 
and brain, as well as with dopaminergic neuron differentiation and 
the humoral immune response (Figure 5E). In the cellular component 
category, we detected 7 significantly enriched GO terms linked to 
collagen trimer, extracellular matrix component and endocytic vesi-
cle lumen (Figure 5F). Finally, 8 enriched GO terms were detected 
in the molecular function category, including DNA binding and RNA 
polymerase II (Figure 5G). Based on these analyses, NEK8 may influ-
ence the glioma microenvironment via the DNA damage response 
(DDR) pathway.

3.6  |  Effects of NEK8 on infiltrating immune 
cells and related genes in glioma

We determined Spearman correlation coefficients to analyse as-
sociations between NEK8 expression and immune cell infiltration 
via ssGSEA in the tumour microenvironment. NEK8 expression was 
positively associated with the abundances of Th2 cells, NK cells, 
eosinophils and other cell types and was negatively associated 
with the abundances of T follicular helper cells, B cells and mast 
cells (Figure 6A, also see Figure S2A– K). The correlation between 
NEK8 expression and Th2 cell infiltration was significant (Figure 6B; 
R = 0.259, p < 0.001). In a comparison between the high-  and low- 
expression groups, we found that the high NEK8 expression indi-
cates a significantly higher level of Th2 cell infiltration (Wilcoxon 
rank- sum test; Figure 6C). Additionally, Th17 cell, regulatory T cell, 
T gamma delta cell, Tfh cell, T central memory cell, T helper cell, 
NK CD56dim cell, neutrophil, mast cell, macrophage, eosinophil, 
dendritic cell (DC), activated DC and B- cell infiltration differed 
significantly between the NEK8 high-  and low- expression groups 
(Figure S2L– Y). Finally, a PPI network analysis of DEGs illustrated 
that these genes are closely correlated with biomorph regulation 

F I G U R E  2  Prognostic analysis of NEK8. (A) Survival curve for NEK8 using data obtained from TCGA. The risk table recorded the number 
of patients followed up at various time points. (B– C) Kaplan‑ Meier prognostic analysis of WHO grades III and IV compared to grade II 
according to the level of NEK8 expression. The risk table recorded the number of patients followed up at various time points. (D– E) Kaplan- 
Meier prognostic analysis of astrocytoma and oligodendroglioma according to the level of NEK8 expression. The risk table recorded the 
number of patients followed up at various time points. (F) Kaplan- Meier prognostic analysis based on the CGGA database according to the 
level of NEK8 expression. (G) Univariate Cox prognostic analysis of the correlation between NEK8 expression with clinical- pathological 
factors. The NEK8 expression level showed significant prognostic value in the following subgroups: grade III & IV (p < 0.001), IDH mutation 
(p = 0.003), non- codeletion (p < 0.001) for the 1p/19q codeletion, female (p < 0.001) and male (p < 0.001), ≤60 years of age (p < 0.001) and 
>60 years of age (p = 0.012), wild‑ type (WT) EGFR status (p < 0.001), WT PIK3CA status (p < 0.001), progressive disease (p < 0.001) and 
stable disease (p < 0.001) for the primary therapy outcome; astrocytoma (p < 0.001) and oligodendroglioma (p = 0.03) histological types and 
white race (p < 0.001)
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and development (Figure 6D). Interestingly, mutations in immune 
infiltration- related genes27 were significantly associated with NEK8 
expression in glioma datasets from CGGA. These genes included 
DNAH10, DNAH11, ALK, FAT2, ZEB2 and CD274 (Figure 6E– J). We 
performed flow cytometry to further confirm the above speculation 
using our clinical tissue samples. We calculated that the expression 
percentage of Th2 cells in glioblastoma (Grade IV) was about 1.33% 
(Figure 7B), while little was expressed in the astrocytoma (Grade 
II) (Figure 7A). Similarly, we detected that the expression percent-
age of NK cells in glioblastoma was approximately 3.8% (Figure 7D), 
and little was expressed in the astrocytoma (Figure 7C). As shown 
in Figure 7E– F, there were significant differences in expression of 
NK cells and Th2 cells in the high and low NEK8 expression glio-
mas. The above trends were consistent with recent research28 and 
revealed that NEK8 affects the infiltration of immune cells in the 
glioma microenvironment.

4  |  DISCUSSION

NEK8 plays an essential role in cell cycle regulation from the G2 to 
M phase and encodes a serine/threonine- specific protein kinase.6,8 
These two functions may explain the role of NEK8 in the occurrence 
and development of cancer. NEK8 is overexpressed in breast and 
pancreatic cancer and affects prognosis.22,23 However, the expres-
sion of NEK8 and its clinical prognostic value on glioma has not been 
investigated. In the present study, we performed bioinformatics 
analyses of high‑ throughput RNA sequencing data. We found that 
elevated NEK8 expression in glioma is associated with various clini-
cal and pathological parameters (WHO grade, histological type, IDH, 
EGFR, PIK3CA status and primary therapy outcome) and survival 
time. A functional enrichment analysis of TCGA data further showed 
that the high NEK8 expression group was enriched for terms related 

to development and morphogenesis of organs, tissues, proliferation, 
differentiation and the tumour microenvironment. Additionally, el-
evated NEK8 expression was associated with levels of immune cell 
infiltration. These findings indicated that NEK8 might serve as a po-
tential prognostic marker and therapeutic target in glioma.

We developed novel nomograms, showing better performance 
than that of standard staging systems.29,30 The nomogram included 
eleven parameters from clinical records and tissue samples. As 
previously reported, age is an independent prognostic factor and 
is positively correlated with a poor prognosis.31 PIK3CA and IDH 
mutations are an early event in glioma and are associated with pro-
gression.32,33 WT PIK3CA, IDH and high WHO grade (III or IV) may 
be associated with poor outcomes, while the opposite results have 
been obtained for EGFR.34 With respect to gender, rates of tum-
origenesis are higher in males than in females.35 Astrocytoma is a 
common malignant glioma with a poor prognosis.36 These results are 
consistent with those of our study. The C- index values, AUC values 
and calibration plots suggested that the nomogram effectively pre-
dicts 3-  or 5- year survival for patients with glioma; accordingly, the 
nomogram may be a valuable clinical tool for patients with glioma.

Our GO enrichment analysis suggested that NEK8 is strongly 
associated with DNA binding, RNA polymerase II and extracellular 
matrix components; it was also related to the development and 
morphogenesis of the limbs, skin, skeletal system, brain and or-
gans. NEK8 might promote the development of glioma via DNA 
damage/repair.37 Additionally, a KEGG functional analysis sug-
gested that NEK8 is involved in the microenvironment of glioma. 
Previous studies have shown that NEK2, NEK4, NEK8, NEK10 
and NEK11 are related to genome instability and mutations.38,39 
Similarly, NEK8 is a critical regulator of replication and prolifera-
tion; the deletion of NEK8 results in DNA double- strand breaks in 
the S phase and the accumulation of DNA damage.21 DDR plays 
a crucial role in maintaining genome stability; DDR alterations 

TA B L E  1  Univariate/multivariate Cox regression analysis of risk factors according to overall survival (OS)

Characteristics Total (N)
HR (95% CI) univariate 
analysis

p- value 
univariate 
analysis

HR (95% CI) 
multivariate analysis

P- value 
multivariate 
analysis

WHO grade (G IV vs. G II &G III) 612 9.504 (7.162– 12.611) <0.001 4.099 (1.166– 14.413) 0.028

IDH status (WT vs. Mut) 660 9.850 (7.428– 13.061) <0.001 2.326 (1.253– 4.317) 0.007

1p/19q codeletion (codel vs. non- codel) 663 0.216 (0.138– 0.338) <0.001 0.522 (0.278– 0.979) 0.043

Primary therapy outcome (CR vs. PD & SD 
& PR)

443 0.238 (0.115– 0.489) <0.001 0.285 (0.130– 0.629) 0.002

Gender (Male vs. Female) 669 1.230 (0.955– 1.585) 0.109

Age (> 60 vs. ≤60) 669 4.716 (3.609– 6.161) <0.001 4.116 (2.459– 6.889) < 0.001

Race (White vs. Asian & Black or African 
American)

657 0.806 (0.492– 1.321) 0.393

EGFR status (Mut vs. WT) 655 3.628 (2.672– 4.927) <0.001 1.810 (0.858– 3.817) 0.119

PIK3CA status (Mut vs. WT) 655 1.011 (0.625– 1.635) 0.966

Histological type (Astrocytoma vs. 
Oligodendroglioma)

381 1.783 (1.192– 2.666) 0.005 1.271 (0.681– 2.373) 0.451

NEK8 (High vs. Low) 669 2.879 (2.212– 3.746) <0.001 2.633 (1.606– 4.317) < 0.001



8756  |    XIAO et Al.

increase the risk of tumour occurrence and development.40 The 
tumour microenvironment refers to the interactions between 
cancer cells and their surrounding cells, such as cancer- associated 
fibroblasts, throughout the stages of cancer progression, leading 
to a poor prognosis.41 DNA damage affects the tumour microenvi-
ronment via a range of molecular and cellular mechanisms; for ex-
ample, it decreases genomic stability, activates immune pathways 
and upregulates programmed death‑ ligand 1 (PD‑ L1) expression, 

which increases the complexity of cancer treatment.42 Clinical 
oncology has made significant breakthroughs in the development 
of therapies targeting DNA repair.43 For instance, the key tran-
scription factor p53 in the DDR pathway can affect the glioma 
microenvironment in immunotherapy.44 Other DDR targets, such 
as DNA‑ PKcs, ATM/ATR, DNA LIG4, HDAC, and CDK1, have also 
been identified.45 Despite these advances, primary or acquired re-
sistance often results in tumour escape.46

F I G U R E  3  NEK8‑ related prognostic model. (A) Calibration curve for NEK8. The abscissa is the probability of nomogram‑ predicted OS, 
and the ordinate is the observed OS. (B) Nomogram for 1- , 3- , and 5- year survival. The C- index is generally between 0.5– 1, where a value of 
0.50– 0.70 indicates low accuracy, 0.71– 0.90 indicates moderate accuracy, and >0.90 indicates high accuracy. (C) ROC curve showing that 
NEK8 effectively discriminates glioma from normal tissues. The abscissa is the false- positive rate, and the ordinate is the true- positive rate
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The biological toxicity and mechanisms of action of inhibitors 
of DDR are not completely understood; this emphasizes the impor-
tance of statistical approaches for the exploration of accurate and 
predictive biomarkers based on large datasets.45,46 Our bioinfor-
matics analyses revealed that NEK8 is closely correlated with DDR 
in glioma. In addition, we elucidated that NEK8 might modulate the 
glioma microenvironment via the DDR pathway and, therefore, is a 
target for suppressing DDR in glioma.

Furthermore, DDR contributes to the immune composition of 
the tumour microenvironment in glioma.44 In particular, DDR alter-
ations are related to immunosuppression and to the positive regu-
lation of cytokine biosynthesis.44 Tumours with DDR alterations 
avoid host immune- mediated elimination by activating immunosup-
pression.47 The changes in the immune microenvironment result in 
the release of excessive cytokines and chemokines to coordinate 
immune responses, leading to the infiltration of various immune 
cells affecting tumour behaviour and prognosis.48 We also detected 
that NEK8 affects the infiltration of immune cells in the glioma mi-
croenvironment. High NEK8 expression was associated with a high 
percentage of activated dendritic cells, plasmacytoid dendritic cells, 
macrophages, NK cells and Th2 cells. In glioma, immune cells aggre-
gate and are modified to escape the host immune system surveil-
lance.49 For instance, glioma cells induce the abnormal expression of 
Nrf2 in DCs to suppress their maturation and T- cell activation, finally 
leading to immune escape.50 Domingues et al. observed that DCs 
downregulate costimulatory molecules (CD40, B7.1 and B7.2) and 
fail to stimulate T cells in a mouse model of glioma.51

Additionally, glioma cells positively recruit microglia/mac-
rophages and induce M2 polarization.52 Interestingly, glioma- 
associated M2 macrophages are more highly distributed in the DDR 
cluster2 tissues.44 M2 microglia are also differentially expressed in 
glioma samples with DDR alterations.44 Moreover, M2- polarized 
macrophage infiltration is associated with a poor prognosis in high- 
grade gliomas and with an aggressive glioma subtype.53 These 
changes generate a supportive environment, promote a variety of 
immune responses and maintain glioma growth and progression.54 
Therefore, it is necessary to explore the mechanism by which NEK8 
influences the infiltration of immune cells in the glioma microenvi-
ronment, in future research.

Although our results improve our understanding of the relation-
ship between NEK8 and the pathogenesis of glioma, the study had 
some limitations. First, cell or animal experiments were not per-
formed. We used a bioinformatics approach based largely on RNA 
sequencing data from TCGA and CGGA. Second, the research was 
performed at multiple institutions, which can lead to gaps in data 
processing and analysis via inconsistent methods. Third, although 
multi- centre studies can address various drawbacks of single- 
centre studies, retrospective studies still have important limitations. 
Therefore, additional prospective studies are needed to avoid anal-
ysis bias. Broadly, further analyses of the precise role of NEK8 in 
glioma are needed.

NEK8 participates in cell cycle regulation6,8 and the mainte-
nance of replication stability via the regulation of DNA repair and 
the replication protein RAD51.37 We further showed that NEK8 

F I G U R E  4  Association between NEK8 expression and clinicopathological factors. Relationships between NEK8 expression and (A) IDH 
status, (B) age, (C) race, (D) histological type, (E) IDH mutation status, (F) age status and (G) 1p/19q codeletion status
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expression is elevated in glioma and is associated with the WHO 
grade. High NEK8 expression is associated with a poor survival. 
A nomogram including NEK8 was established to precisely predict 
1- , 3-  and 5- year survival for patients with glioma. The effects of 
NEK8 in glioma may be mediated by alterations in immune cell 

infiltration into the tumour microenvironment via the regulation of 
DDR. These results provide insights into the biological properties 
of glioma and may facilitate the development of molecular markers 
to effectively assess prognosis, improve treatment and accelerate 
drug development.

TA B L E  2  Correlation between the clinical variables in TCGA and NEK8 high‑  and low‑ expression groups

Characteristic Levels
Low expression of 
NEK8

High expression of 
NEK8 p

n 348 348

WHO grade, n (%) G IV 56 (33.3%) 112 (66.7%) <0.01

IDH status, n (%) WT 66 (26.8%) 180 (73.2%) <0.001

Mut 277 (63%) 163 (37%)

1p/19q codeletion, n (%) codel 89 (52%) 82 (48%) 0.612

non- codel 256 (49.4%) 262 (50.6%)

Primary therapy outcome, n (%) PD 54 (48.2%) 58 (51.8%) 0.034

SD 92 (62.6%) 55 (37.4%)

PR 31 (48.4%) 33 (51.6%)

CR 86 (61.9%) 53 (38.1%)

Gender, n (%) Female 156 (52.3%) 142 (47.7%) 0.319

Male 192 (48.2%) 206 (51.8%)

Race, n (%) Asian 3 (23.1%) 10 (76.9%) 0.017

Black or African American 11 (33.3%) 22 (66.7%)

White 329 (51.6%) 308 (48.4%)

Age, n (%) <=60 306 (55.3%) 247 (44.7%) <0.001

>60 42 (29.4%) 101 (70.6%)

Histological type, n (%) Astrocytoma 107 (54.9%) 88 (45.1%) <0.001

Glioblastoma 56 (33.3%) 112 (66.7%)

Oligodendroglioma 103 (51.8%) 96 (48.2%)

OS event, n (%) Alive 241 (56.8%) 183 (43.2%) <0.001

Dead 107 (39.3%) 165 (60.7%)

Age, median (IQR) 39 (32, 53) 52 (39, 63) <0.001

Note: Chi‑ square tests and Fisher's exact tests were used to evaluate WHO grade, IDH status, primary outcome, histological type and OS event. The 
t test or Wilcoxon rank‑ sum test was used to evaluate age.

Characteristics
Odds ratio for 
NEK8 expression Odds ratio (OR) p- value

WHO grade (Grade IV vs. II & III) 613 3.05 (2.09– 4.51) <0.001

IDH status (WT vs. Mut) 661 4.60 (3.26– 6.54) <0.001

1p/19q codeletion (codel vs. non- codel) 664 0.97 (0.68– 1.37) 0.858

Primary therapy outcome (CR vs. 
PD&SD&PR)

444 0.58 (0.38– 0.89) 0.012

EGFR status (Mut vs. WT) 656 4.07 (2.34– 7.48) <0.001

PIK3CA status (Mut vs. WT) 656 2.17 (1.19– 4.12) 0.014

Histological type (Astrocytoma vs. 
Glioblastoma)

352 2.91 (1.88– 4.55) <0.001

Gender (Female vs. Male) 670 0.95 (0.70– 1.29) 0.755

Race (Asian vs. White & Black or African 
American)

658 2.29 (0.74– 8.50) 0.173

Age (≤60 years vs. >60 years) 670 0.31 (0.20– 0.46) <0.001

TA B L E  3  Relationship between 
clinicopathological features of glioma and 
NEK8 high or low expression, as analysed 
using logistic regression
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F I G U R E  5  Differential expression analysis of NEK8 high‑  and low‑ expression groups. (A) Volcano plot. (B) Heat map showing the 
co- expression of differentially expressed genes in NEK8 high-  and low- expression groups. (C) Results of a KEGG enrichment analysis. (D) 
Relationship between NEK8 and DDR2 gene expression in the WHO grade primary glioma. (E) GO terms related to biological processes 
(BPs) are shown in a bubble chart. (F) GO terms associated with cellular components (CCs) are shown in a bubble chart. (G) GO terms related 
to molecular functions (MFs) are shown in the histogram
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F I G U R E  6  Correlation between NEK8 and immune cell infiltration. (A) Associations between the expression level of NEK8 and immune 
cell infiltration levels were analysed using a lollipop plot. (B) Correlations between NEK8 expression and Th2 cells infiltration. (C) Comparison 
of Th2 cells infiltration between the NEK8 high‑  and low‑ expression groups. (D) PPI network. (E– J) Correlations between NEK8 expression 
and immune infiltration‑ related genes in WHO grade primary glioma
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5  |  CONCLUSIONS

We elucidated that NEK8 expression is increased in glioma and is 
associated with the WHO grade and prognosis. We established a 
nomogram including NEK8 to effectively predict 1- , 3-  and 5- year 
year survival for patients with glioma. With respect to biological 
functions, we elucidated that NEK8 influences immune cell infiltra-
tion into the glioma microenvironment via the regulation of DDR. 
These results suggest NEK8 may serve as a prognostic biomarker 
and therapeutic target for glioma.
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