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Abstract: The withering and fermentation degrees are the key parameters to measure the processing
technology of black tea. The traditional methods to judge the degree of withering and fermentation
are time-consuming and inefficient. Here, a monitoring model of the biochemical components of
tea leaves based on hyperspectral imaging technology was established to quantitatively judge the
withering and fermentation degrees of fresh tea leaves. Hyperspectral imaging technology was used
to obtain the spectral data during the withering and fermentation of the raw materials. The successive
projections algorithm (SPA), competitive adaptive reweighted sampling (CARS), and uninformative
variable elimination (UVE) are used to select the characteristic bands. Combined with the support
vector machine (SVM), random forest (RF), and partial least square (PLS) methods, the monitoring
models of the tea polyphenols (TPs), free amino acids (FAA) and caffeine (CAF) contents were estab-
lished. The results show that: (1) CARS performs the best among the three feature band selection
methods, and PLS performs the best among the three machine learning models; (2) the optimal
models for predicting the content of the TPs, FAA, and CAF are CARS-PLS, SPA-PLS, and CARS-PLS,
respectively, and the coefficient of determination of the prediction set is 0.91, 0.88, and 0.81, respec-
tively; and (3) the best models for quantitatively judging the withering and fermentation degrees are
FAA-SPA-PLS and TPs-CARS-PLS, respectively. The model proposed in this study can improve the
monitoring efficiency of the biochemical components of tea leaves and provide a basis for the intelli-
gent judgment of the withering and fermentation degrees in the process of black tea processing.

Keywords: tea plant; hyperspectral imaging; machine learning; withering degree; fermentation
degree; quality composition

1. Introduction

Black tea originated in China [1]. Because it has the characteristics of red leaves, red
infusion, sweet and mellow taste, as well as its rich antioxidants, it is loved by people all
over the world. Black tea is processed from the fresh leaves of tea tree, including four
processes: withering, rolling, fermentation, and drying [2]. Its quality, to some extent,
depends on the processing technology [3]. Withering is the first process of black tea
processing. When the degree of withering is moderate, it can effectively improve the
enzyme system activity in fresh leaves, so as to lay a decent foundation for the subsequent
processing and tea quality. Fermentation is the key process of black tea processing [4].
After moderate fermentation, it can promote a series of biochemical reactions centered on
polyphenolase oxidation, then change the content of the biochemical components such
as tea polyphenols (TPs), free amino acids (FAA), and caffeine (CAF), and finally form
the unique flavor quality of black tea. Therefore, monitoring the content of the quality
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components in the tea withering and fermentation processes is not only one of the important
methods to judge the degree of withering and fermentation but also the basis for evaluating
the quality of finished black tea. Traditionally, tea makers observe the changes in the tea
color and aroma through subjective and empirical methods to judge the withering and
fermentation degrees of the tea raw materials. However, this method requires considerable
time, manpower, and expertise. The evaluation results are easily affected by the professional
and emotional factors of the tea makers, and there are no strict standards. In addition,
the content of the quality components determined by a biochemical analysis can also be
used to judge the degree of withering and fermentation. For example, the CAF content
is determined by ultraviolet spectrophotometry, and the phenolic components and the
FAA content are determined by high-performance liquid chromatography [5–7]. However,
these chemical analysis methods consume samples and time, so they cannot meet the
requirements of modern production and monitoring systems. Therefore, developing a fast
and accurate method to judge the withering and fermentation degrees of fresh tea leaves is
an urgent problem to be solved in the quality control of black tea processing.

Several scholars have developed new methods and technologies to assess tea pro-
cessing and achieved many results. For example, in 2019, Xu et al. used an electronic
nose, electronic tongue, and electronic eye as alternative detection methods to qualitatively
evaluate the quality of tea and quantitatively predict the contents of the amino acids, cate-
chins, polyphenols, caffeine, and other chemical components [8]. Although the electronic
nose, electronic tongue, and other rapid detection technologies have been widely used to
detect the fermentation process of black tea, the design of these instruments is complex, so
the measurement results are vulnerable to environmental changes [9,10]. In recent years,
spectral analysis technology has been widely used in the determination of biochemical
components and the quality analysis of tea leaves [11]. In 2013, Ren et al. used near-infrared
spectroscopy combined with a PLS algorithm to determine the main chemical components
in black tea, such as CAF, TPs, and FAAs [12]. In 2015, Li et al. used infrared spectroscopy
to determine the TPs content in 14 cultivars of tea, which proved the feasibility of infrared
spectroscopy to determine the TPs content in tea [13]. In 2015, Diniz et al. used near-infrared
spectroscopy combined with PLS and SPA algorithms to determine the TPs and moisture
content in tea samples [14]. In 2022, Li et al. constructed a black tea fermentation quality
evaluation model by using an ultraviolet–visible spectrum and machine learning algorithm
and quantitatively predicted catechin and theaflavin. Among them, the CARS-PLS model
has the best performance in evaluating catechin, and the correlation coefficient (R) is as
high as 0.91 [15]. Although the above monitoring methods can quickly evaluate the quality
of tea, the spectral range is small. When the sample size is large or the test environment is
unstable, it will undoubtedly reduce the speed and accuracy of the model. Therefore, there
is still a gap between the results achieved by these technologies and people’s expectations,
and it is necessary to explore a real-time, fast, accurate, and nondestructive method to solve
these problems [16–18].

As a novel nondestructive testing technology, hyperspectral imaging technology is
developing rapidly [19,20]. It has the characteristics of a high spectral resolution, wide spec-
tral range, and continuous band and has attracted the attention of many researchers [21–23].
The results of monitoring the biochemical components of tea by hyperspectral imaging
technology have been also reported. For example, in 2021, Ye et al. used hyperspectral
images to estimate the non-galloyl and galloyl types of catechins in new shoots of green
tea, and the determination coefficient (R2) of the estimation model can exceed 0.79 [24].
Yang et al. established a model to quantitatively predict the main endoplasmic components
of Congou black tea under a different fermentation time series [25]. Dong et al. applied
hyperspectral technology with the chemometrics method to predict the catechin content
of tea leaves at different fermentation times [26]. In 2013 and 2014, Xie et al. realized the
real-time detection of the color and water content of tea leaves during drying by using
hyperspectral image technology [27,28]. At present, there are few reports on the application
of hyperspectral imaging technology in black tea processing. However, hyperspectral
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imaging technology was rarely used to monitor the contents of TPS, FAA, and CAF in tea
withering and fermentation. In addition, the impact of different band selection methods
and modeling algorithms on the performance of tea leaf component content prediction
models are rarely reported.

In this study, a hyperspectral imaging system was used to collect the hyperspectral
data during the withering and fermentation of fresh tea leaves, and the content of the TPs,
FAA, and CAF in each sample was determined. Savitzky–Golay (S-G), multiple scatter
correction (MSC), and first derivative (1D) algorithms are used to preprocess hyperspec-
tral data. The monitoring models of the TPs, FAA, and CAF content are constructed
through machine learning and various algorithms, which can quantitatively predict the
quality components of fresh tea leaves in the withering and fermentation processes and
realize the effective discrimination of withering and fermentation degrees. This study
lays a good foundation for the nondestructive on-line detection of quality components
in the process of tea withering and fermentation and provides a new method for the in-
telligent judgment of tea withering and fermentation. In addition, the samples in this
study are tea-leaves in the two key processing processes of withering and fermentation,
which has strong practical significance.

2. Materials and Methods
2.1. Experimental Design

The experiment was conducted in Rizhao Tea Science Research Institute, Shandong
Province, China (119◦33′ E, 35◦40′ N), on 30 September 2021. The raw materials of fresh tea
leaves belonged to the varieties of Zhongcha, and the tenderness was one bud and one leaf.
During the withering process of fresh tea leaves, samples were taken once every hour, a
total of 19 times. When withering to 16 h, take a large number of withered leaves for rolling,
and then enter the fermentation process. During the fermentation process, samples were
taken once every 0.5 h, a total of 10 times. For each sampling, the hyperspectral camera
(Gaia field Pro-V10, Dualix Spectral Imaging, Chengdu, China) was used to collect the
spectral data, and then the samples were put into the oven to dry, sealed, and stored under
the condition of −4 ◦C and dark. In this experiment, each sample was repeated 4 times. A
total of 76 and 40 samples were collected during withering and fermentation, respectively;
in total, 116 samples were collected in 2 days.

2.2. Data Acquisition
2.2.1. Determination of the Contents of TPs, FAA, and CAF

The contents of TPs, FAA, and CAF in the samples were determined and analyzed
according to Chinese standards such as GB/T 8313-2002 (determination of tea polyphe-
nols), GB/T 8314-2013 (determination of total free amino acids), and GB/T 8312-2013
(determination of caffeine). The specific methods are as follows:

Preparation of test solution (TS): A total of 1.5 g of tea powder was placed in a 250 mL
cup to which 150 mL of water that had been boiled was added, then put into boiling water
bath for 45 min. After that, it was filtered immediately while it was hot, the filtrate was
transferred into a 500 mL bottle, fixed the volume, and shaken well.

Determination of TPs: A total of 1 mL of TS was transferred to a 25 mL volumet-
ric flask, and 4 mL of water and 5 mL of ferrous tartrate solution were added. After
full mixing, phosphate buffer (pH 7.5) was added to the scale, and the absorbance (A1)
was measured at 540 nm.

Determination of FAA: A total of 1 mL of TS was transferred to a 25 mL volumetric
flask, 0.5 mL of phosphate buffer (pH 8.0) and 0.5 mL of 2% ninhydrin solution was added,
then put into boiling water bath for 15 min. After cooling, water was added to the scale,
and the absorbance (A2) was measured at 570 nm.

Determination of CAF: An amount of 10 mL of TS was transferred to a 100 mL
volumetric flask, 4 mL of 0.01 mol/mL hydrochloric acid and 1 mL of lead basic acetate
solution was added, water was added to the scale, then it was left to settle and filter. Then,
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25 mL of filtrate was transferred to a 50 mL volumetric flask, 0.1 mL of 4.5 mol/L sulfuric
acid solution was added, water was added to the scale. After obtaining new filtrate, the
absorbance (A3) was measured at 274 nm.

Preparation of standard curve: The standard curves of FAA and CAF are prepared
according to the methods of GB/T 8314-2013 and GB/T 8312-2013, respectively, and the
standard regression equation and R2 are calculated. Calculation of result: The contents
of TPs, FAA, and CAF in tea leaves are expressed as dry mass fraction (%), which are
calculated according to Formulas (1)–(3):

TPs =
A1 × 1.957× 2

1000
× V1

V2 ×m×ω
× 100 (1)

FAA =
C1/1000×V1/V2

m×ω
× 100% (2)

CAF =
C2 ×V1/1000× 100/10× 50/25

m×ω
× 100% (3)

where V1 is the total amount of TS (mL), V2 is the amount of TS for determination (mL),
and m is the mass of the sample (g), ω is the dry matter content (%) of the sample, C1 is the
mass of theanine found by A2 from the FAA standard curve, and C2 is the corresponding
content (mg/mL) found by A3 from the CAF standard curve.

2.2.2. Acquisition and Correction of Hyperspectral Data

Hyperspectral data acquisition and correction are carried out according to the methods
of Chen et al. [29], the basic acquisition and analysis process is shown in Figure 1. The
hyperspectral imaging acquisition system includes one imaging spectral camera, four
symmetrically distributed halogen linear light sources (hsia-ls-t-200w, China), computers,
and other components. The outside of the whole acquisition system is closed by a black,
dark box. In addition, the hyperspectral camera has 1101 × 960 (space × spectral) pixels,
the spectral range of the collected image is in the visible near-infrared bands (391–1010 nm),
and the reflectivity of 360 bands can be measured.
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In order to avoid the influence of dark current inside the spectral camera and improve
the signal-to-noise ratio of hyperspectral image, the method mentioned in Talens’s [30]
article was referred to for black-and-white correction of the collected original hyperspectral
images (R0). That is, before collecting the sample image, collect the standard whiteboard to
obtain the white reference image (W), then turn off the power, screw on the lens cover to
collect the black reference image (B), and then use Equation (4) to calculate the reflectance
image (R). Wherein, 65,552 in Formula (4) is the maximum value of digital number (DN).

R = 65, 552× R0 − B
W − B

(4)

2.3. Data Acquisition

Firstly, the hyperspectral images after black-and-white correction were standardized.
The hyperspectral images were opened in the image processing software Spec View (Dualix
Spectral Imaging, Chengdu, China) and corrected by using the analysis tool lens calibration
and reflectivity calibration.

Secondly, spectral variables were extracted through ENVI5.3 (Research System Inc.,
Boulder, CO, USA). Open the corrected hyperspectral image in the ENVI5.3, select the image
of the whole tea sample as the region of interest (ROI), extract the average reflection spectrum
value of the sample, and then obtain the spectral reflection curve of the sample. A total of
116 × 360 (number of samples × number of variables) spectral matrices were obtained.

2.4. Preprocessing Methods of Spectral Data

Due to the influence of hyperspectral acquisition instruments or environmental factors,
the original spectra of tea leaves have problems, such as scattering effect, random noise,
and system noise, which will weaken the spectral signal of tea biochemical contents and is
not conducive to the establishment of regression model. Therefore, before modeling, three
preprocessing algorithms, MSC, S-G, and 1D, were combined to preprocess the original
spectral data of tea leaves.

In order to eliminate artifacts or defect spectra in the data matrix, MSC algorithm
was used to make each spectrum closer to some “ideal” spectra. In order to obtain the
best estimate of spectral data points and effectively reduce the random noise of average
reflection spectrum, S-G was used to “average” or “fit” each point within a certain width
window of single point spectral data. In order to eliminate baseline drift and separate
overlapping spectral peaks, 1D was used to enhance a small amount of information in the
spectrum and estimate the difference between two subsequent spectral data points. Among
them, the algorithm formula of differential method 1D is shown in Equation (5).

dy

dλ
=

yi+1 − yi
∆λ

(5)

where y is the spectrum absorbance, λ is the wavelength, yi is the spectrum of the i th
sample, ∆λ is the wavelength interval.

2.5. Feature Band Extraction

In this study, spectral data of 360 bands were gained in the spectral range of
391–1010 nm. In order to improve the efficiency of later modeling, SPA, CARS, and UVE
algorithms were used to select the representative bands as “feature bands” from all spectral
data and eliminate the bands that are not useful for this study so as to reduce the amount
of data calculation. Among them, the wavelength with the least redundancy of spectral
information was selected by the SPA algorithm to solve the collinear problem [31]. The
wavelength point with the larger absolute value of the regression coefficient was selected by
the CARS algorithm to effectively find the best spectral combination [32]. The complexity
of spectral data was reduced by UVE algorithm to improve model effect [33].
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2.6. Model Construction and Accuracy Verification

Three machine learning methods, SVM, PLS, and RF, were used to construct the
regression model between the spectral data of tea samples and their quality components.

In the evaluation system of the model, the R2, root mean square error (RMSE) and
relative analysis error (RPD) were used to express the effect of the prediction model. Among
them, the higher the R2 value, the closer it is to 1, indicating the higher the accuracy of the
model. On the contrary, the lower the RMSE value, the closer it is to 0, indicating the higher
the accuracy of the model [34]. The larger the RPD value, the more reliable the model is.
If the RPD value is less than 1.4, it indicates poor prediction performance, and if the RPD
value is greater than 1.4, it indicates that it can be used for model analysis [35].

In this study, the model establishment and accuracy verification were carried out by
MATLAB (The Math Works, Natick, MA, USA).

3. Results and Discussion
3.1. Analysis of Quality Components

Standard curves of FAA and CAF were developed, and linear equations and R2

were calculated (Table 1). It can be seen from the data in Table 1 that the linear R2 of
the standard curves of FAA and CAF are both greater than 0.99, indicating a good lin-
ear relationship, which can be used as the correction curve for the determination of the
total amount of FAA and CAF.

Table 1. Standard curve of FAA and CAF.

Standard Sample Linear Equation R2

FAA A2 = 34.625 C1 − 0.0895 0.9983

CAF A3 = 26.411 C2 + 0.0141 0.9903

Based on this, the content of the TPs, FAA, and CAF components in the tea samples
were analyzed during withering and fermentation (Figure 2). The results showed that with
the extension of the withering time, the change in the TPs content was unstable, gradually
decreased from 1 to 16 h, and had no significant change after 16 h. The content of the FAA
increased steadily from 1 to 16 h, reached the maximum value at 16 h, and then had no
obvious change. The content of the CAF did not change much (Figure 2a). During the
fermentation process, the content of the TPs decreased sharply in 1–3 h, reached the lowest
value at 3 h, and then did not change. However, the content of the FAA and CAF did not
change significantly during the fermentation process (Figure 2b).
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Thus, it is suggested to judge the degree of withering by using the change in the FAA
content. When the FAA content is stably distributed in a certain range, it is considered
as moderate withering. The change in the TPs content was used to judge the degree of
fermentation. When the TPs content is stably distributed in a certain range, it is considered
to be moderate fermentation.

3.2. Division of Modeling Sample Set

The data set was randomly divided into training and testing sets in the ratio of
4:1. Table 2 shows the data distribution of the training set and testing set, including the
maximum, minimum, average, and standard deviation. The results show that the content
of the quality components in the samples varies greatly, indicating that the samples are
well representative.

Table 2. The quality component content of the sample.

Maximum/% Minimum/% Average/% Standard Deviation/%

Training Set Testing Set Training Set Testing Set Training Set Testing Set Training Set Testing Set

TPs 12.79 13.28 6.00 6.31 10.43 10.93 2.11 2.05

FAA 6.13 6.10 4.11 4.23 5.05 4.98 0.54 0.57

CAF 5.52 5.40 4.21 4.35 4.83 4.91 0.31 0.31

3.3. Preprocessing of Hyperspectral Data

In order to reduce noise interference and improve the correlation between the spectral
data and the tea quality components, the MSC, 1D, and S-G algorithms were used to
preprocess the hyperspectral data (Figure 3). The results show that compared with the
original spectrum, the spectral curve after the combined pretreatment of MSC, 1D, and
S-G is more stable, the peaks and troughs are more prominent, and the resolution and
sensitivity of the spectrum are improved.
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3.4. Selection of Characteristic Bands

Although the hyperspectral data have the characteristics of a wide spectral range and
continuous wavelength, with the increase in the bands and samples, there will be problems
such as band collinearity and data redundancy [36]. The selection of the characteristic
band is one of the important analysis methods of hyperspectral imaging technology, which
is conducive to simplifying the complexity of the prediction model and improving the
accuracy of the prediction model [37,38].

In this study, the SPA, CARS, and UVE algorithms were used to select the characteristic
bands (Figure 4, Table 3). The results show that among the selection methods of the



Foods 2022, 11, 2537 8 of 14

characteristic bands of the TPs content, the number of characteristic bands selected by UVE
is the most, which is 159, and the number of the characteristic bands selected by the SPA is
the least, which is 13. Among the selection methods of the characteristic bands of the FAA
content, the number of the characteristic bands selected by UVE is the most, 174, and the
number of the characteristic bands selected by the SPA is the least, 16. Among the selection
methods of the characteristic bands of the CAF content, the number of the characteristic
bands selected by UVE is the most, which is 90, and the number of the characteristic bands
selected by the CARS is the least, which is 13.
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Table 3. Bands screening results.

Index Screening Method Number of Bands Characteristic Bands (nm)

TPs

SPA 13 512, 569, 609, 672, 714, 764, 848, 864, 898, 913, 955, 971, 992

CARS 16 519–522, 653, 733, 764–768, 794–796, 862, 880–882, 911, 966, 1010

UVE 159 473–475, 488–532, 554–594, 606–667, 686–703, 719–738, 750–785, 814–840,
979–986, 997

FAA

SPA 16 409, 450, 512, 701, 724, 738, 778, 807, 823, 844, 869, 896, 911, 931, 946, 992

CARS 30 405–407, 425, 437–450, 522–529, 580–584, 715, 748, 784, 823–826, 896, 970,
984–986

UVE 174 391–470, 488–527, 542–559, 594–623, 679–724, 734–759, 933–960, 973–1010

CAF

SPA 14 665, 679, 703, 726, 778, 807, 823, 851, 884, 929, 944, 957, 971, 1007

CARS 13 494–498, 542, 545, 695, 710, 748, 812, 909, 922, 1007–1008

UVE 90 483–531, 544–582, 535–655, 676–700, 715–727

In brief, the characteristic bands screened by the UVE algorithm are the most, and
the bands screened by the SPA and CARS algorithms are less. By modeling the selected
characteristic variables, it is found that the prediction accuracy of the model based on the
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characteristic bands selected by the CARS or SPA algorithm is higher, while the prediction
accuracy of the model based on more characteristic bands selected by the UVE algorithm
is the lowest. Many reports indicated that selecting some important spectral variables
represents better prediction outcomes than spectra containing redundant variables [39,40].
For example, by comparing the models using the CARS algorithm for processed and
unprocessed spectral data, Yang et al. found that the characteristic wavelength model
established after screening was better than the full wavelength model [25].

Therefore, selecting the characteristic wavelength is an important step in processing a
large amount of spectral data of hyperspectral images. Through this step, the amount of data
can be reduced, and a prediction model with stronger generalization ability can be obtained.

3.5. Establishment and Analysis of Model

The SVM, PLS, and RF machine learning methods were used to establish the regression
model between the characteristic bands and the quality components content. The prediction
results are shown in Table 4. The results showed that the nine models achieved excellent
results, indicating that the extracted characteristic bands basically covered the characteristic
information of the quality components in the withering and fermentation processes. Among
them, in the TPs content prediction, the CARS-PLS model has the highest prediction
accuracy, and the RP2, RMSEP, and RPD are 0.911, 0.003, and 5.223, respectively, while
SPA-SVM has the worst prediction effect. In the prediction of the FAA content, the SPA
-PLS model has the highest prediction accuracy, and the RP2, RMSEP, and RPD are 0.882,
0.001, and 2.974, respectively, while the UVE-RF model has the worst prediction effect. In
the CAF content prediction, the CARS-PLS model has the highest prediction accuracy, and
the RP2, RMSEP, and RPD are 0.814, 0.003, and 2.426, respectively, while the CARS-RF
model has the worst prediction effect.

Table 4. Modeling results.

Index Model Valuation Index
SPA CARS UVE

SVM PLS RF SVM PLS RF SVM PLS RF

TPs

RC2 0.911 0.923 0.924 0.926 0.926 0.920 0.919 0.931 0.924

RMSEC 0.006 0.005 0.005 0.005 0.00 0.005 0.005 0.004 0.005

RMSECV 0.005 0.004 0.004 0.004 0.004 0.005 0.005 0.003 0.004

RP2 0.886 0.900 0.890 0.898 0.911 0.887 0.899 0.895 0.895

RMSEP 0.004 0.003 0.004 0.003 0.003 0.004 0.003 0.003 0.003

RPD 3.497 5.178 2.718 4.797 5.223 3.587 4.886 4.285 4.438

FAA

RC2 0.857 0.850 0.880 0.870 0.854 0.852 0.860 0.847 0.877

RMSEC 0.004 0.004 0.004 0.003 0.004 0.004 0.004 0.004 0.003

RMSECV 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

RP2 0.802 0.882 0.830 0.846 0.866 0.788 0.800 0.778 0.743

RMSEP 0.002 0.001 0.002 0.002 0.002 0.003 0.002 0.002 0.003

RPD 2.547 2.974 1.857 2.864 2.522 1.609 2.368 1.798 1.579

CAF

RC2 0.769 0.765 0.790 0.771 0.787 0.752 0.786 0.767 0.783

RMSEC 0.004 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.004

RMSECV 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004

RP2 0.756 0.757 0.748 0.763 0.814 0.742 0.721 0.741 0.752

RMSEP 0.003 0.003 0.003 0.003 0.003 0.004 0.004 0.003 0.003

RPD 2.052 2.045 1.540 1.754 2.426 1.488 1.403 2.015 1.700
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In general, the SVM and PLS models are the best, while the RF model is the worst.
Although the RF model has the same accuracy as the other two models in the modeling
stage, it performs poorly in the inversion and prediction stages. This is the same as the
research results of Wang et al. They established three models, RF, SVM, and PLS, to classify
and evaluate the quality of Ganoderma lucidum. The results show that compared with RF,
the results of the SVM and PLS methods were more satisfying, and both of them have an
accuracy of 1.000 on the test set [41]. This may be because some specific noisy data in the
inversion stage may lead to the overfitting of the model, so it is difficult to predict beyond
the data range of the training set. As a linear regression model, PLS can only use the linear
information in the spectral data, but it can easily identify the system information and noise
so as to achieve better results [12,42]. Similarly, the SVM model can make full use of the
linear and nonlinear information in the spectral data and has achieved good results in the
prediction of quality components [43,44].

The scatter diagram of the predicted values of the TPs, FAA, and CAF content based
on the SVM, PLS, and RF models are shown in Figure 5. The solid blue line represents the
ideal correlation regression line between the predicted values and the actual values of the
TPs, FAA, and CAF content. From the fitting effect of the model in Figure 5, the predicted
values of the samples are close to the regression line, which shows that the prediction effects
of the three models have good robustness and can be used for quantitatively predicting the
withering and fermentation degrees of tea raw materials.
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Figure 5. Scatter diagram of prediction of TPs, FAA, and CAF content. (a–c) TPs content prediction results obtained by CARS-SVM, CARS-PLS, and CARS-RF 
models; (d–f) FAA content prediction results obtained by CARS-SVM, CARS-PLS, and CARS-RF models; (g–i) CAF content prediction results obtained by CARS-
SVM, CARS-PLS, and CARS-RF models. 

Figure 5. Scatter diagram of prediction of TPs, FAA, and CAF content. (a–c) TPs content prediction results obtained by CARS-SVM, CARS-PLS, and CARS-RF models;
(d–f) FAA content prediction results obtained by CARS-SVM, CARS-PLS, and CARS-RF models; (g–i) CAF content prediction results obtained by CARS-SVM,
CARS-PLS, and CARS-RF models.
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4. Conclusions

The results show that it is feasible to quickly quantify the degree of the withering
and fermentation of tea leaves based on hyperspectral imaging technology. The main
conclusions are as follows:

(1) Three methods for selecting characteristic bands, SPA, CARS, and UVE, are compared
comprehensively. Among them, CARS (TPs-CARS-PLS, RP2 = 0.91) and SPA (TPs-
SPA-PLS, RP2 = 0.90) achieved higher results, which not only ensures the accuracy of
the model but also greatly reduces the complexity of the model.

(2) Three modeling methods, SVM, PLS, and RF, are compared. The SVM (TPs-UVE-SVM,
RP2 = 0.90) and PLS (TPs-CARS-PLS, RP2 = 0.91) models have strong robustness and
high model accuracy. They are more suitable for the on-line monitoring of black tea
quality and the intelligent judgment of the withering and fermentation degrees.

(3) The inversion results of the TPs, FAA, and CAF content and hyperspectral data are
compared. The prediction results of the TPs and FAA content are better. Among
them, FAA-SPA-PLS (RP2 = 0.88) is the optimal model for judging the degree of
withering, and TPs-CARS-PLS (RP2 = 0.91) is the optimal model for judging the
degree of fermentation.

In brief, through the study of methods and models, the time required for modeling can
be greatly reduced and the robustness of the model can be improved. It can also monitor
the content of key components in the withering and fermentation processes of fresh tea
leaves in real time, provide effective big data information, and then accurately and quickly
judge the degree of withering and fermentation, which is of great significance to shorten
the processing time and reduce the processing costs.
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