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Abstract: In its most basic form, decision-making can be viewed as a computational process that
progressively eliminates alternatives, thereby reducing uncertainty. Such processes are generally
costly, meaning that the amount of uncertainty that can be reduced is limited by the amount of
available computational resources. Here, we introduce the notion of elementary computation based
on a fundamental principle for probability transfers that reduce uncertainty. Elementary computations
can be considered as the inverse of Pigou–Dalton transfers applied to probability distributions, closely
related to the concepts of majorization, T-transforms, and generalized entropies that induce a preorder
on the space of probability distributions. Consequently, we can define resource cost functions that are
order-preserving and therefore monotonic with respect to the uncertainty reduction. This leads to
a comprehensive notion of decision-making processes with limited resources. Along the way, we
prove several new results on majorization theory, as well as on entropy and divergence measures.

Keywords: uncertainty; entropy; divergence; majorization; decision-making; bounded rationality;
limited resources; Bayesian inference

1. Introduction

In rational decision theory, uncertainty may have multiple sources that ultimately share the
commonality that they reflect a lack of knowledge on the part of the decision-maker about the
environment. A paramount example is the perfectly rational decision-maker [1] that has a probabilistic
model of the environment and chooses its actions to maximize the expected utility entailed by the
different choices. When we consider bounded rational decision-makers [2], we may add another
source of uncertainty arising from the decision-maker’s limited processing capabilities, since the
decision-maker will not only accept a single best choice, but will accept any satisficing option. Today,
bounded rationality is an active research topic that crosses multiple scientific fields such as economics,
political science, decision theory, game theory, computer science, and neuroscience [3–21], where
uncertainty is one of the most important common denominators.

Uncertainty is often equated with Shannon entropy in information theory [22], measuring the
average number of yes/no-questions that have to be answered to resolve the uncertainty. Even though
Shannon entropy has many desirable properties, there are plenty of alternative suggestions for entropy
measures in the literature, known as generalized entropies, such as Rényi entropy [23] or Tsallis
entropy [24]. Closely related to entropies are divergence measures, which express how probability
distributions differ from a given reference distribution. If the reference distribution is uniform then
divergence measures can be expressed in terms of entropy measures, which is why divergences can be
viewed as generalizations of entropy, for example the Kullback-Leibler divergence [25] generalizing
Shannon entropy.

Here, we introduce the concept of elementary computation based on a slightly stronger notion
of uncertainty than is expressed by Shannon entropy, or any other generalized entropy alone, but is
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equivalent to all of them combined. Equating decision-making with uncertainty reduction, this leads
to a new comprehensive view of decision-making with limited resources. Our main contributions can
be summarized as follows:

(i) Based on a fundamental concept of probability transfers related to the Pigou–Dalton principle
of welfare economics [26], we promote a generalized notion of uncertainty reduction of a
probability distribution that we call elementary computation. This leads to a natural definition
of cost functions that quantify the resource costs for uncertainty reduction necessary for
decision-making. We generalize these concepts to arbitrary reference distributions. In particular,
we define Pigou–Dalton-type transfers for probability distributions relative to a reference or prior
distribution, which induce a preorder that is slightly stronger than Kullback-Leibler divergence,
but is equivalent to the notion of divergence given by all f -divergences combined. We prove
several new characterizations of the underlying concept, known as relative majorization.

(ii) An interesting property of cost functions is their behavior under coarse-graining, which plays
an important role in decision-making and formalizes the general notion of making abstractions.
More precisely, if a decision in a set Ω is split up into two steps by partitioning Ω =

⋃
i Ai

and first deciding in the set of (coarse-grained) partitions {Ai}i and secondly choosing a
fine-grained option inside the selected partition Ai, then it is an important question how the
cost for the total decision-making process differs from the sum of the costs in each step. We
show that f -divergences are superadditive with respect to coarse-graining, which means that
decision-making costs can potentially be reduced by splitting up the decision into multiple steps.
In this regard, we find evidence that the well-known property of Kullback-Leibler divergence
of being additive under coarse-graining might be viewed as describing the minimal amount of
processing cost that cannot be reduced by a more intelligent decision-making strategy.

(iii) We define bounded rational decision-makers as decision-making processes that are optimizing a
given utility function under a constraint on the cost function, or minimizing the cost function
under a minimal requirement on expected utility. As a special case for Shannon-type information
costs, we arrive at information-theoretic bounded rationality, which may form a normative
baseline for bounded-optimal decision-making in the absence of process-dependent constraints.
We show that bounded-optimal posteriors with informational costs trace a path through
probability space that can itself be seen as an anytime decision-making process, where each
step optimally trades off utility and processing costs.

(iv) We show that Bayesian inference can be seen as a decision-making process with limited resources
given by the number of available datapoints.

Section 2 deals with Items (i) and (ii), aiming at a general characterization of decision-making
in terms of uncertainty reduction. Item (iii) is covered in Section 3, deriving information-theoretic
bounded rationality as a special case. Section 4 illustrates the concepts with an example including Item
(iv). Sections 5 and 6 contain a general discussion and concluding remarks, respectively.

Notation

Let R denote the real numbers, R+ := [0, ∞) the set of non-negative real numbers, and Q the
rational numbers. We write |A| for the number of elements contained in a countable set A, and B \ A
for the set difference, that is the set of elements in B that are not in A. PΩ denotes the set of probability
distributions on a set Ω, in particular, any p ∈ PΩ is normalized so that p(Ω) = Ep[1] = 1. Random
variables are denoted by capital letters X, Y, Z, while their explicit values are denoted by small letters
x, y, z. For the probability distribution of a random variable X we write p(X), and p(x) for the values
of p(X). Correspondingly, the expectation E[ f (X)] is also written as Ep(X)[ f (X)], Ep(X)[ f ], or Ep[ f ].
We also write 〈 f 〉p := 1

n ∑n
i=1 f (xn), to denote the approximation of Ep[ f ] by an average over samples

{x1, . . . , xn} from p ∈ PΩ.
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2. Decision-Making with Limited Resources

In this section, we develop the notion of a decision-making process with limited resources following
the simple assumption that any decision-making process

(i) reduces uncertainty

(ii) by spending resources.

Starting from an intuitive interpretation of uncertainty and resource costs, these concepts are refined
incrementally until a precise definition of a decision-making process is given at the end of this section
(Definition 7) in terms of elementary computations. Here, a decision-making process is a comprehensive
term that describes all kinds of biological as well as artificial systems that are searching for solutions
to given problems, for example a human decision-maker that burns calories while thinking, or a
computer that uses electric energy to run an algorithm. However, resources do not necessarily refer to
a real consumable quantity but can also represent more explicit resources (e.g., time) as a proxy, for
example the number of binary comparisons in a search algorithm, the number of forward simulations
in a reinforcement learning algorithm, the number of samples in a Monte Carlo algorithm, or, even
more abstractly, they can express the limited availability of some source of information, for example
the number of data that are available to an inference algorithm (see Section 4).

2.1. Uncertainty Reduction by Eliminating Options

In its most basic form, the concept of decision-making can be formalized as the process of looking
for a decision x ∈ Ω in a discrete set of options Ω = {x1, . . . , xN}. We say that a decision x ∈ Ω is
certain, if repeated queries of the decision-maker will result in the same decision, and it is uncertain, if
repeated queries can result in different decisions. Uncertainty reduction then corresponds to reducing
the amount of uncertain options. Hence, a decision-making process that transitions from a space Ω of
options to a strictly smaller subset A ( Ω reduces the amount of uncertain options from N = |Ω| to
NA := |A| < N, with the possible goal to eventually find a single certain decision x∗. Such a process is
generally costly, the more uncertainty is reduced the more resources it costs (Figure 1). The explicit
mapping between uncertainty reduction and resource cost depends on the details of the underlying
process and on which explicit quantity is taken as the resource. For example, if the resource is given by
time (or any monotone function of time), then a search algorithm that eliminates options sequentially
until the target value is found (linear search) is less cost efficient than an algorithm that takes a sorted
list and in each step removes half of the options by comparing the mid point to the target (logarithmic
search). Abstractly, any real-valued function C on the power set of Ω that satisfies C(A′) < C(A)

whenever A ( A′ might be used as a cost function in the sense that C(A) quantifies the expenses of
reducing the uncertainty from Ω to A ⊂ Ω.

Ω

A
x*

no cost
high uncertainty

more costly
little uncertainty

very costly
no uncertainty

A′�

costly
less uncertainty

Figure 1. Decision-making as search in a set of options. At the expense of more and more resources,
the number of uncertain options is progressively reduced until x∗ is the only remaining option.

In utility theory, decision-making is modeled as an optimization process that maximizes a so-called
utility function U : Ω→ R (which can itself be an expected utility with respect to a probabilistic model
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of the environment, in the sense of von Neumann and Morgenstern [1]). A decision-maker that is
optimizing a given utility function U obtains a utility of 1

NA
∑x∈A U(x) ≥ 1

N ∑x∈Ω U(x) on average
after reducing the amount of uncertain options from N to NA < N (see Figure 2). A decision-maker
that completely reduces uncertainty by finding the optimum x∗ = argmaxx∈ΩU(x) is called rational
(without loss of generality we can assume that x∗ is unique, by redefining Ω in the case when it is
not). Since uncertainty reduction generally comes with a cost, a utility optimizing decision-maker with
limited resources, correspondingly called bounded rational (see Section 3), in contrast will obtain only
uncertain decisions from a subset A ⊂ Ω. Such decision-makers seek satisfactory rather than optimal
solutions, for example by taking the first option that satisfies a minimal utility requirement, which
Herbert A. Simon calls a satisficing solution [2].

⟨U⟩ =
1
N ∑

x∈Ω

U(x) ⟨U⟩ =
1

NA′� ∑x∈A′�

U(x) ⟨U⟩ = U(x*) = max
x∈Ω

U(x)

Ω

⟨U⟩

U(x)

A′�

⟨U⟩

U(x)

x*

⟨U⟩
U(x)

⟨U⟩ =
1

NA ∑
x∈A

U(x)

A

⟨U⟩
U(x)

≤ ≤ ≤

Figure 2. Decision-making as utility optimization process.

Summarizing, we conclude that a decision-making process with decision space Ω that successively
eliminates options can be represented by a mapping φ between subsets of Ω, together with a cost
function C that quantifies the total expenses of arriving at a given subset,

Ω −→ · · · −→ A′ −→ φ(A′) −→ · · · −→ A (1)

such that
Ω ⊃ A′ ⊃ φ(A′) ⊃ A, 0 = C(Ω) < C(A′) < C(φ(A′)) < C(A) , (2)

For example, a rational decision-maker can afford C({x∗}), whereas a decision-maker with limited
resources can typically only afford uncertainty reduction with cost C(A) < C({x∗}).

From a probabilistic perspective, a decision-making process as described above is a transition from
a uniform probability distribution over N options to a uniform probability distribution over N′ < N
options, that converges to the Dirac measure δx∗ centered at x∗ in the fully rational limit. From this
point of view, the restriction to uniform distributions is artificial. A decision-maker that is uncertain
about the optimal decision x∗ might indeed have a bias towards a subset A without completely
excluding other options (the ones in Ac = Ω\A), so that the behavior must be properly described by a
probability distribution p ∈ PΩ. Therefore, in the following section, we extend Equations (1) and (2) to
transitions between probability distributions. In particular, we must replace the power set of Ω by the
space of probability distributions on Ω, denoted by PΩ.

2.2. Probabilistic Decision-Making

Let Ω be a discrete decision space of N = |Ω|<∞ options, so that PΩ consists of discrete
distributions p, often represented by probability vectors p = (p1, . . . , pN). However, many of the
concepts presented in this and the following section can be generalized to the continuous case [27,28].

Intuitively, the uncertainty contained in a distribution p ∈ PΩ is related to the relative inequality
of its entries, the more similar its entries are, the higher the uncertainty. This means that uncertainty is
increased by moving some probability weight from a more likely option to a less likely option. It turns
out that this simple idea leads to a concept widely known as majorization [27,29–33], which has roots in
the economic literature of the early 19th century [26,34,35], where it was introduced to describe income
inequality, later known as the Pigou–Dalton Principle of Transfers. Here, the operation of moving weight
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from a more likely to a less likely option corresponds to the transfer of income from one individual
of a population to a relatively poorer individual (also known as a Robin Hood operation [30]). Since a
decision-making process can be viewed as a sequence of uncertainty reducing computations, we call
the inverse of such a Pigou–Dalton transfer an elementary computation.

Definition 1 (Elementary computation). A transformation on PΩ of the form

Tε : p 7→ (p1, . . . , pm + ε, . . . , pn − ε, . . . , pN) , (3)

where m, n are such that pm ≤ pn, and 0 < ε ≤ pn−pm
2 , is called a Pigou–Dalton transfer (see Figure 3). We

call its inverse T−1
ε an elementary computation.

Since making two probability values more similar or more dissimilar are the only two possibilities
to minimally transform a probability distribution, elementary computations are the most basic principle
of how uncertainty is reduced. Hence, we conclude that a distribution p′ has more uncertainty than a
distribution p if and only if p can be obtained from p′ by finitely many elementary computations (and
permutations, which are not considered an elementary computation due to the choice of ε).

Tε

ε

Ω

p′�

higher uncertainty less uncertainty
Ω

p

Figure 3. A Pigou–Dalton transfer as given by Equation (3). The transfer of probability from a more
likely to a less likely option increases uncertainty.

Definition 2 (Uncertainty). We say that p′ ∈ PΩ contains more uncertainty than p ∈ PΩ, denoted by

p′ ≺ p , (4)

if and only if p can be obtained from p′ by a finite number of elementary computations and permutations.

Note that, mathematically, this defines a preorder on PΩ, i.e., a reflexive (p ≺ p for all p ∈ PΩ) and
transitive (if p′′ ≺ p′, p′ ≺ p then p′′ ≺ p for all p, p′, p′′ ∈ PΩ) binary relation.

In the literature, there are different names for the relation between p and p′ expressed by
Definition 2, for example p′ is called more mixed than p [36], more disordered than p [37], more chaotic
than p [32], or an average of p [29]. Most commonly, however, p is said to majorize p′, which started
with the early influences of Muirhead [38], and Hardy, Littlewood, and Pólya [29] and was developed
by many authors into the field of majorization theory (a standard reference was published by Marshall,
Olkin, and Arnold [27]), with far reaching applications until today, especially in non-equilibrium
thermodynamics and quantum information theory [39–41].

There are plenty of equivalent (arguably less intuitive) characterizations of p ≺ p′, some of which
are summarized below. However, one characterization makes use of a concept very closely related
to Pigou–Dalton transfers, known as T-transforms [27,32], which expresses the fact that moving some
weight from a more likely option to a less likely option is equivalent to taking (weighted) averages of
the two probability values. More precisely, a T-transform is a linear operator on PΩ with a matrix of the
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form T = (1− λ)I+ λΠ, where I denotes the identity matrix on RN , Π denotes a permutation matrix
of two elements, and 0 ≤ λ ≤ 1. If Π permutes pm and pn, then (Tp)k = pk for all k 6∈ {m, n}, and

(Tp)m = (1− λ)pm + λpn , (Tp)n = λpm + (1− λ)pn . (5)

Hence, a T-transform considers any two probability values pm and pn of a given p ∈ PΩ, calculates
their weighted averages with weights (1− λ, λ) and (λ, 1− λ), and replaces the original values with
these averages. From Equation (5), it follows immediately that a T-transform with parameter 0 < λ ≤ 1

2
and a permutation Π of pm, pn with pm ≤ pn is a Pigou–Dalton transfer with ε = (pn − pm)λ. In
addition, allowing 1

2 ≤ λ ≤ 1 means that T-transfers include permutations, in particular, p′ ≺ p if and
only if p′ can be derived from p by successive applications of finitely many T-transforms.

Due to a classic result by Hardy, Littlewood and Pólya ([29] (p. 49)), this characterization can
be stated in an even simpler form by using doubly stochastic matrices, i.e., matrices A = (Aij)i,j with
Aij ≥ 0 and ∑i Aij = 1 = ∑j Aij for all i, j. By writing xA := ATx for all x ∈ RN , and e := (1, . . . , 1),
these conditions are often stated as

Aij ≥ 0 , Ae = e , eA = e . (6)

Note that doubly stochastic matrices can be viewed as generalizations of T-transforms in the sense
that a T-transform takes an average of two entries, whereas if p′ = pA with a doubly stochastic matrix
A, then p′j = ∑i Aij pi is a convex combination, or a weighted average, of p with coefficients (Aij)i for
each j. This is also why p′ is then called more mixed than p [36]. Therefore, similar to T-transforms, we
might expect that, if p′ is the result of an application of a doubly stochastic matrix, p′ = pA, then p′ is
an average of p and therefore contains more uncertainty than p. This is exactly what is expressed by
Characterization (iii) in the following theorem. A similar characterization of p′ ≺ p is that p′ must be
given by a convex combination of permutations of the elements of p (see property (iv) below).

Without having the concept of majorization, Schur proved that functions of the form p 7→ ∑i f (pi)

with a convex function f are monotone with respect to the application of a doubly stochastic matrix [42]
(see property (v) below). Functions of this form are an important class of cost functions for probabilistic
decision-makers, as we discuss in Example 1.

Theorem 1 (Characterizations of p′ ≺ p [27]). For p, p′ ∈ PΩ, the following are equivalent:

(i) p′ ≺ p, i.e., p′ contains more uncertainty than p (Definition 2)

(ii) p′ is the result of finitely many T-transforms applied to p

(iii) p′ = pA for a doubly stochastic matrix A

(iv) p′ = ∑K
k=1 θkΠk(p) where K ∈ N, ∑K

k=1 θk = 1, θk ≥ 0, and Πk is a permutation for all k ∈ {1, . . . , K}

(v) ∑N
i=1 f (p′i) ≤ ∑N

i=1 f (pi) for all continuous convex functions f

(vi) ∑k
i=1(p′i)

↓ ≤ ∑k
i=1 p↓i for all k ∈ {1, . . . , N−1}, where p↓ denotes the decreasing rearrangement of p

As argued above, the equivalence between (i) and (ii) is straight-forward. The equivalences
among (ii), (iii), and (vi) are due to Muirhead [38] and Hardy, Littlewood, and Pólya [29].
The implication (v)⇒ (iii) is due to Karamata [43] and Hardy, Littlewood, and Pólya [44], whereas
(iii)⇒ (v) goes back to Schur [42]. Mathematically, (iv) means that p′ belongs to the convex hull of
all permutations of the entries of p, and the equivalence (iii) ⇔ (iv) is known as the Birkhoff–von
Neumann theorem. Here, we state all relations for probability vectors p ∈ PΩ, even though they are
usually stated for all p, p′ ∈ RN with the additional requirement that ∑N

i=1 pi = ∑N
i=1 p′i.

Condition (vi) is the classical and most commonly used definition of majorization [27,29,34], since
it is often the easiest to check in practical examples. For example, from (vi), it immediately follows
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that uniform distributions over N options contain more uncertainty than uniform distributions over
N′ < N options, since ∑k

i=1
1
N = k

N 6 k
N′ = ∑k

i=1
1

N′ for all k < N, i.e., for N ≥ 3 we have( 1
N , . . . , 1

N
)
≺
( 1

N−1 , . . . , 1
N−1 , 0

)
≺
( 1

2 , 1
2 , 0, . . . , 0

)
≺
(
1, 0 . . . , 0

)
. (7)

In particular, if A ⊂ A′ ⊂ Ω, then the uniform distribution over A contains less uncertainty
than the uniform distribution over A′, which shows that the notion of uncertainty introduced in
Definition 2 is indeed a generalizatin of the notion of uncertainty given by the number of uncertain
options introduced in the previous section.

Note that ≺ only being a preorder on PΩ, in general, two distributions p′, p ∈ PΩ are not
necessarily comparable, i.e., we can have both p′ 6≺ p and p 6≺ p′. In Figure 4, we visualize the regions
of all comparable distributions for two exemplary distributions on a three-dimensional decision space
(N = 3), represented on the two-dimensional simplex of probability vectors p = (p1, p2, p3). For
example, p = ( 1

2 , 1
4 , 1

4 ) and p′ = ( 2
5 , 2

5 , 1
5 ) cannot be compared under ≺, since 1

2 > 2
5 , but 3

4 < 4
5 .

p

≺

≻
≺≺

p

≺

≻
≺≺

(a) (b)

Figure 4. Comparability of probability distributions in N = 3. The region in the center consists of all p′

that are majorized by p, i.e., p � p′, whereas the outer region consists of all p′ that majorize p, p ≺ p′.
The bright regions are not comparable to p. (a) p = ( 1

3 , 1
2 , 1

6 ); (b) p = ( 1
2 , 1

4 , 1
4 ).

Cost functions can now be generalized to probabilistic decision-making by noting that the property
C(A′) < C(A) whenever A ( A′ in Equation (2) means that C is strictly monotonic with respect to the
preorder given by set inclusion.

Definition 3 (Cost functions on PΩ). We say that a function C : PΩ → R+ is a cost function, if it is strictly
monotonically increasing with respect to the preorder ≺, i.e., if

p′ ≺ p ⇒ C(p′) ≤ C(p) , (8)

with equality only if p and p′ are equivalent, p′ ∼ p, which is defined as p′ ≺ p and p ≺ p′. Moreover, for a
parameterized family of posteriors (pr)r∈I , we say that r is a resource parameter with respect to a cost function
C, if the mapping I 7→ R+, r 7→ C(pr) is strictly monotonically increasing.

Since monotonic functions with respect to majorization were first studied by Schur [42], functions
with this property are usually called (strictly) Schur-convex ([27] (Ch. 3)).

Example 1 (Generalized entropies). From (v) in Theorem 1, it follows that functions of the form

C(p) =
N

∑
i=1

f (pi), (9)

where f is strictly convex, are examples of cost functions. Since many entropy measures used in the literature can
be seen to be special cases of Equation (9) (with a concave f ), functions of this form are often called generalized
entropies [45]. In particular, for the choice f (t) = t log t, we have C(p) = −H(p), where H(p) denotes the
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Shannon entropy of p. Thus, if p′ contains more uncertainty than p in the sense of Definition 2 (p′ ≺ p) then the
Shannon entropy of p′ is larger than the Shannon entropy of p and therefore p′ contains also more uncertainty
in the sense of classical information theory than p. Similarly, for f (t) = − log(t) we obtain the (negative)
Burg entropy, and for functions of the form f (t) = ±tα for α ∈ R\{0, 1} we get the (negative) Tsallis entropy,
where the sign is chosen depending on α such that f is convex (see, e.g., [46] for more examples). Moreover, the
composition of any (strictly) monotonically increasing function g with Equation (9) generates another class of
cost functions, which contains for example the (negative) Rényi entropy [23]. Note also that entropies of the form
of Equation (9) are special cases of Csiszár’s f-divergences [47] for uniform reference distributions (see Example 3
below). In Figure 5, several examples of cost functions are shown for N = 3. In this case, the two-dimensional
probability simplex PΩ is given by the triangle in R3 with edges (1, 0, 0), (0, 1, 0), and (0, 0, 1). Cost functions
are visualized in terms of their level sets.

We prove in Proposition A1 in Appendix A that all cost functions of the form of Equation (9) are
superadditive with respect to coarse-graining. This seems to be a new result and an improvement upon
the fact that generalized entropies (and f -divergences) satisfy information monotonicity [48]. More precisely, if a
decision in Ω, represented by a random variable Z, is split up into two steps by partitioning Ω =

⋃
i∈I Ai and

first deciding about the partition i ∈ I, correspondingly described by a random variable X with values in I, and
then choosing an option inside of the selected partition Ai, represented by a random variable Y, i.e., Z = (X, Y),
then

C(Z) ≥ C(X) + C(Y|X) , (10)

where C(X) := C(p(X)) and C(Y|X) := Ep(X)[C(p(Y|X))]. For symmetric cost functions (such as
Equation (9)) this is equivalent to

C(p1, . . . , pN) ≥ C(p1 + p2, p3, . . . , pN) + (p1+p2)C( p1
p1+p2

, p2
p1+p2

) . (11)

The case of equality in Equations (10) and (11) (see Figure 6) is sometimes called separability [49], strong
additivity [50], or recursivity [51], and it is often used to characterize Shannon entropy [23,52–56]. In fact, we
also show in Appendix A (Proposition A2) that cost functions C that are additive under coarse-graining are
proportional to the negative Shannon entropy −H. See also Example 3 in the next section, where we discuss the
generalization to arbitrary reference distributions.

(a) (b) (c)

Figure 5. Examples of cost functions for decision spaces with three elements (N = 3): (a) Shannon
entropy; (b) Tsallis entropy of order α = 4; and (c) Rényi entropy of order α = −3.5.

We can now refine the notion of a decision-making process introduced in the previous section
as a mapping φ together with a cost function C satisfying Equation (2). Instead of simply mapping
from sets A′ to smaller subsets A ( A′ by successively eliminating options, we now allow φ to be a
mapping between probability distributions such that φ(p) can be obtained from p by a finite number
of elementary computations (without permutations), and we require C to be a cost function on PΩ,
so that

p � φ(p), C(p) < C(φ(p)) ∀p ∈ PΩ . (12)
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+ C(Y |X )C(X )C(X, Y ) =

Figure 6. Additivity under coarse-graining. If the cost for Z = (X, Y) is the sum of the costs for X and
the cost for Y given X, then the cost function is proportional to Shannon entropy.

Here, C(p) quantifies the total costs of arriving at a distribution p, and p′ � p means that p′ ≺ p
and p 6≺ p′. In other words, a decision-making process can be viewed as traversing probability space
by moving pieces of probability from one option to another option such that uncertainty is reduced.

Up to now, we have ignored one important property of a decision-making process, the distribution
q with minimal cost, i.e., satisfying C(q) ≤ C(p) for all p, which must be identified with the initial
distribution of a decision-making process with cost function C. As one might expect (see Figure 5), it
turns out that all cost functions according to Definition 3 have the same minimal element.

Proposition 1 (Uniform distributions are minimal). The uniform distribution ( 1
N , . . . , 1

N ) is the unique
minimal element in PΩ with respect to ≺, i.e.( 1

N , . . . , 1
N
)
≺ p ∀p ∈ PΩ . (13)

Once Equation (13) is established, it follows from Equation (8) that C(( 1
N , . . . , 1

N )) ≤ C(p) for
all p, in particular the uniform distribution corresponds to the initial state of all decision-making
processes with cost function C satisfying Equation (12). In particular, it contains the maximum
amount of uncertainty with respect to any entropy measure of the form of Equation (9), known as
the second Khinchin axiom [49], e.g., for Shannon entropy 0 ≤ H(p) ≤ log N. Proposition 1 follows
from Characterization (iv) in Theorem 1 after noticing that every p ∈ PΩ can be transformed to a
uniform distribution by permuting its elements cyclically (see Proposition A3 in Appendix A for a
detailed proof).

Regarding the possibility that a decision-maker may have prior information, for example originating
from the experience of previous comparable decision-making tasks, the assumption of a uniform initial
distribution seems to be artificial. Therefore, in the following section, we arrive at the final notion
of a decision-making process by extending the results of this section to allow for arbitrary initial
distributions.

2.3. Decision-Making with Prior Knowledge

From the discussion at the end of the previous section we conclude that, in full generality, a
decision-maker transitions from an initial probability distribution q ∈ PΩ, called prior, to a terminal
distribution p ∈ PΩ, called posterior. Note that, since once eliminated options are excluded from the
rest of the decision-making process, a posterior p must be absolutely continuous with respect to the prior
q, denoted by p� q, i.e., p(x) can be non-zero for a given x ∈ Ω only if q(x) is non-zero.

The notion of uncertainty (Definition 2) can be generalized with respect to a non-uniform prior
q ∈ PΩ by viewing the probabilities qi as the probabilities Q(Ai) of partitions Ai of an underlying
elementary probability space Ω̃ =

⋃
i Ai of equally likely elements under Q, in particular Q represents

q as the uniform distribution on Ω̃ (see Figure 7). The similarity of the entries of the corresponding
representation P ∈ PΩ̃ of any p ∈ PΩ (its uncertainty) then contains information about how close p is
to q, which we call the relative uncertainty of p with respect to q (Definition 4 below).

The formal construction is as follows: Let p, q ∈ PΩ be such that p� q and qi ∈ Q. The case when
qi ∈ R then follows from a simple approximation of each entry by a rational number. Let α ∈ N be
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such that α qi ∈ N for all i ∈ {1, . . . , N}, for example α could be chosen as the least common multiple of
the denominators of the qi. The underlying elementary probability space Ω̃ then consists of α elements
and there exists a partitioning {Ai}i=1,...,N of Ω̃ such that

|Ai| = α qi ∀i ∈ {1, . . . , N} , (14)

where Q denotes the uniform distribution on Ω̃. In particular, it follows that

Q(Ai) =
|Ai |

∑
j=1

1
α
= qi ∀i ∈ {1, . . . , N} , (15)

i.e., Q represents q in Ω̃ with respect to the partitioning {Ai}i. Similarly, any p ∈ PΩ can be represented
as a distribution on Ω̃ by requiring that P(Ai) = pi for all i ∈ {1, . . . , N} and letting P to be constant
inside of each partition, i.e., similar to Equation (15) we have P(Ai) = |Ai| P(ω) = pi for all ω ∈ Ai
and therefore by Equation (14)

P(ω) =
1
α

pi
qi

∀ω ∈ Ai . (16)

Note that, if qi = 0 then pi = 0 by absolute continuity (p � q) in which case we can either exclude
option i from Ω or set P(ω) = 0.

Ω

q

1/6

1/ 3

1/ 2

2 / 3

Ω̃

Q
Ω

p

Ω̃

P

A1⏟ A2 ⏟A3 A1⏟ A2 ⏟A3

1/6

1/ 3

1/ 2

2 / 3

1/6

1/ 3

1/6

1/ 3

ΛqΛq

Figure 7. Representation of q and p by Q and P on Ω̃ (Example 2), such that the probabilities qi and pi

are given by the probabilities of the partitions Ai with respect to Q and P, respectively.

Example 2. For a prior q = ( 1
6 , 1

2 , 1
3 ) we put α = 6, so that Ω̃ = {ω1, . . . , ω6} should be partitioned as

Ω̃ = {ω1} ∪ {ω2, ω3, ω4} ∪ {ω5, ω6}. Then, qi corresponds to the probability of the ith partition under
the uniform distribution Q = 1

6 (1, . . . , 1), while the distribution p = ( 1
6 , 3

4 , 1
12 ) is represented on Ω̃ by the

distribution P =
( 1

6 , 1
4 , 1

4 , 1
4 , 1

24 , 1
24 ) (see Figure 7).

Importantly, if the components of the representation Λq p := P in PΩ̃ given by Equation (16) are
similar to each other, i.e., if P is close to uniform, then the components of p must be very similar to the
components of q, which we express by the concept of relative uncertainty.

Definition 4 (Uncertainty relative to q). We say that p′ ∈ PΩ contains more uncertainty with respect to a
prior q ∈ PΩ than p ∈ PΩ, denoted by p′ ≺q p, if and only if Λq p′ contains more uncertainty than Λq p, i.e.
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p′ ≺q p :⇔ Λq p′ ≺ Λq p (17)

where Λq : PΩ → PΩ̃, p 7→ P is given by Equation (16).

As we show in Theorem 2 below, it turns out that ≺q coincides with a known concept called
q-majorization [57], majorization relative to q [27,28], or mixing distance [58]. Due to the lack of a
characterization by partial sums, it is usually defined as a generalization of Characterization (iii)
in Theorem 1, that is p′ is q-majorized by p iff p′ = pA, where A is a so-called q-stochastic matrix, which
means that it is a stochastic matrix (Ae = e) with qA = q. In particular, ≺q does not depend on the
choice of α in the definition of Λq. Here, we provide two new characterizations of q-majorization,
the one given by Definition 4, and one using partial sums generalizing the original definition of
majorization.

Theorem 2 (Characterizations of p′ ≺q p). The following are equivalent

(i) p′ ≺q p, i.e., p′ contains more uncertainty relative to q than p (Definition 4).

(ii) Λq p can be obtained from Λq p′ by a finite number of elementary computations and permutations on PΩ̃.

(iii) p′ = pA for a q-stochastic matrix A, i.e., Ae = e and qA = q.

(iv) ∑N
i=1 qi f

( p′i
qi

)
≤ ∑N

i=1 qi f
( pi

qi

)
for all continuous convex functions f .

(v) ∑l−1
i=1(p′i)

↓ + aq(k, l)(p′l)
↓ ≤ ∑l−1

i=1 p↓i + aq(k, l)p↓l for all α ∑l−1
i=1 q↓i ≤ k ≤ α ∑l

i=1 q↓i and 1 ≤ l ≤ N,
where aq(k, l) := ( k

α −∑l−1
i=1 q↓i )/q↓l , and the arrows indicate that (p↓i /q↓i )i is ordered decreasingly.

To prove that (i), (iii), and (v) are equivalent (see Proposition A4 in Appendix A), we make
use of the fact that Λq : PΩ → PΩ̃ has a left inverse Λ−1

q : Λq(PΩ) → PΩ. This can be verified by
simply multiplying the corresponding matrices given in the proof of Proposition A4. The equivalence
between (iii) and (iv) is shown in [28] (see also [27,58]). Characterization (ii) follows immediately
from Definitions 2 and 4.

As required from the discussion at the end of the previous section, q is indeed minimal with
respect to ≺q, which means that it contains the most amount of uncertainty with respect to itself.

Proposition 2 (The prior is minimal). The prior q ∈ PΩ is the unique minimal element in PΩ with respect
to ≺q, that is

q ≺q p ∀p ∈ PΩ . (18)

This follows more or less directly from Proposition 1 and the equivalence of (i) and (iii) in
Theorem 2 (see Proposition A5 in Appendix A for a detailed proof).

Order-preserving functions with respect to≺q generalize cost functions introduced in the previous
section (Definition 3). According to Proposition 2, such functions have a unique minimum given
by the prior q. Since cost functions are used in Definition 7 below to quantify the expenses of a
decision-making process, we require their minimum to be zero, which can always be achieved by
redefining a given cost function by an additive constant.

Definition 5 (Cost functions relative to q). We say that a function Cq : PΩ → R+ is a cost function relative
to q, if Cq(q) = 0, if it is invariant under relabeling (qi, pi)i, and if it is strictly monotonically increasing with
respect to the preorder ≺q, that is if

p′ ≺q p ⇒ Cq(p′) ≤ Cq(p) , (19)
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with equality only if p′ ∼q p, i.e., if p′ ≺q p and p ≺q p′. Moreover, for a parameterized family of posteriors
(pr)r∈I , we say that r is a resource parameter with respect to a cost function Cq, if the mapping I 7→ R+, r 7→
Cq(pr) is strictly monotonically increasing.

Similar to generalized entropy functions discussed in Example 1, in the literature, there are many
examples of relative cost functions, usually called divergences or measures of divergence.

Example 3 ( f -divergences). From (iv) in Theorem 2, it follows that functions of the form

Cq(p) :=
N

∑
i=1

qi f
( pi

qi

)
, (20)

where f is continuous and strictly convex with f (1) = 0, are examples of cost functions relative to q. Many
well-known divergence measures can be seen to belong to this class of relative cost functions, also known as
Csiszár’s f -divergences [47]: the Kullback-Leibler divergence (or relative entropy), the squared `2 distance, the
Hartley entropy, the Burg entropy, the Tsallis entropy, and many more [46,50] (see Figure 8 for visualizations of
some of them in N = 3 relative to a non-uniform prior).

As a generalization of Proposition A1 (superadditivity of generalized entropies), we prove in Proposition A6
in Appendix A that f -divergences are superadditive under coarse-graining, that is

Cq(Z) ≥ Cq(X) + Cq(Y|X) (21)

whenever Z = (X, Y), and Cq(X) := Cq(X)(p(X)) and Cq(Y|X) := Ep(X)[Cq(Y|X)(p(Y|X))],
This generalizes Equation (10) to the case of a non-uniform prior. Similar to entropies, the case of equality

in Equation (21) is sometimes called composition rule [59], chain rule [60], or recursivity [50], and is often used
to characterize Kullback-Leibler divergence [8,50,59,60].

Indeed, we also show in Appendix A (Proposition A7) that all additive cost functions with respect to q are
proportional to Kullback-Leibler divergence (relative entropy). This goes back to Hobson’s modification [59] of
Shannon’s original proof [22], after establishing the following monotonicity property for uniform distributions:
If f (M, N) denotes the cost CuN (uM) of a uniform distribution uM over M elements relative to a uniform
distribution uN over N ≥ M elements, then (see Figure 9).

f (M′, N) ≤ f (M, N) ∀M ≤ M′ ≤ N ,

f (M, N) ≥ f (M, N′) ∀M ≤ N′ ≤ N .
(22)

Note that, even though our proof of Proposition A7 uses additivity under coarse graining to show the
monotonicity property in Equation (22), it is easy to see that any relative cost function of the form of Equation (20)
also satisfies Equation (22) by using the convexity of f as f (t) ≤ t

s f (s) + (1− t
s ) f (0) with t = N′

M < N
M = s.

In terms of decision-making, superadditivity under coarse-graining means that decision-making costs can
potentially be reduced by splitting up the decision into multiple steps, for example by a more intelligent search
strategy. For example, if N = 2k for some k ∈ N and Cq is superadditive, then the cost for reducing uncertainty
to a single option, i.e., p = (1, 0, . . . , 0), when starting from a uniform distribution q, satisfies

Cq(p) ≥ Cq2(1, 0) + CqN/2(1, 0, . . . , 0) ≥ . . . ≥ log N = DKL(p‖q) ,

where qn := ( 1
n , . . . , 1

n ), and we have set Cq2(1, 0) = 1 as unit cost (corresponding to 1 bit in the case
of Kullback-Leibler divergence). Thus, intuitively the property of the Kullback-Leibler divergence of being
additive under coarse-graining might be viewed as describing the minimal amount of processing costs that
must be contained in any cost function, because it cannot be reduced by changing the decision-making process.
Therefore, in the following, we call cost functions that are proportional to the Kullback-Leibler divergence simply
informational costs.
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(a) (b) (c)

Figure 8. Examples of cost functions for N = 3 relative to q = ( 1
3 , 1

2 , 1
6 ): (a) Kullback-Leibler divergence;

(b) Squared `2 distance; and (c) Tsallis relative entropy of order α = 3.0.

Ω

(a)

uN′�

(b) f (M, N ) > f (M, N′�)

uM

uN

uM

uN

uM

uN

uM′�

f (M′�, N ) < f (M, N )

Ω Ω Ω

Figure 9. Monotonicity property in Equation (22): and (a) the cost is higher when more uncertainty
has been reduced; and (b) if the posterior is the same, then it is cheaper to start from a prior with
fewer options.

In contrast to the previous section, in the definition of ≺q and its characterizations, we never use
elementary computations on PΩ directly. This is because permutations interact with the uncertainty
relative to q, and therefore ≺q cannot be characterized by a finite number of elementary computations
and permutations on PΩ. However, we can still define elementary computations relative to q by the
inverse of Pigou–Dalton transfers Tε of the form of Equation (3) such that Tε p �q p for ε > 0, which is
arguably the most basic form of how to generate uncertainty with respect to q.

Even for small ε, a regular Pigou–Dalton transfer does not necessarily increase uncertainty relative
to q, because the similarity of the components now needs to be considered with respect to q. Instead,
we compare the components of the representation P = Λq p of p ∈ PΩ, and move some probability
weight ε ≥ 0 from P(An) to P(Am) whenever P(ω) ≤ P(ω′) for ω ∈ Am and ω′ ∈ An, by distributing
ε evenly among the elements in Am (see Figure 10), denoted by the transformation T̃ε. Here, ε must
be small enough such that the inequality 1

α
pm
qm

= P(ω) ≤ P(ω′) = 1
α

pn
qn

is invariant under T̃ε, which
means that

(T̃εP)(ω) ≤ (T̃εP)(ω′) ⇔ 1
α

pm

qm
+

ε

|Am|
≤ 1

α

pn

qn
− ε

|An|
(14)⇐⇒ ε ≤

pn
qn
− pm

qm
1

qm
+ 1

qn

. (23)

By construction, T̃ε minimally increases uncertainty in PΩ̃ while staying in the image of PΩ
under Λq, by keeping the values of P constant in each partition, and therefore Tε := Λ−1

q T̃εΛq can be
considered as the most basic way of how to increase uncertainty relative to q.

Definition 6 (Elementary computation relative to q). We call a transformation on PΩ of the form

Tε : p 7→ (p1, . . . , pm + ε, . . . , pn − ε, . . . , pN) , (24)

with m, n such that pm
qm
≤ pn

qn
, and ε satisfying Equation (23), a Pigou–Dalton transfer relative to q, and its

inverse T−1
ε an elementary computation relative to q.
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Ω

p′�

1/6

1/ 3

1/ 2

2 / 3

Ω

p

1/6

1/ 3

1/ 2

2 / 3

Ω̃

P

A1⏟ A2 ⏟A3

1/6

1/ 3

Tε

ε

Ω̃

P′�

A1⏟ A2 ⏟A3

1/6

1/ 3

/ 3ε

/ 2ε

T̃ε

ΛqΛ−1
q

Figure 10. Pigou–Dalton transfer relative to q. A distribution p ∈ PΩ is transformed relative to q by first
moving some amount of weight ε ≥ 0 from P(An) to P(Am) where n, m are such that P(ω) ≤ P(ω′)
whenever ω ∈ Am and ω′ ∈ An, with ε small enough such that this relation remains true after the
transformation, and then mapping the transformed distribution back to PΩ by Λ−1

q (see Definition 6).

We are now in the position to state our final definition of a decision-making process.

Definition 7 (Decision-making process). A decision-making process is a gradual transformation

q −→ · · · −→ p′ −→ φ(p′) −→ · · · −→ p

of a prior q ∈ PΩ to a posterior p ∈ PΩ, such that each step decreases uncertainty relative to q. This means that
p is obtained from q by successive application of a mapping φ between probability distributions on Ω, such that
φ(p′) can be obtained from p′ by finitely many elementary computations relative to q, in particular

q �q p′ �q φ(p′), 0 = Cq(q) < Cq(p′) < Cq(φ(p′)) , (25)

where Cq(p′) quantifies the total costs of a distribution p′, and p′ �q p means that p′ ≺q p and p 6≺q p′.

In other words, a decision-making process can be viewed as traversing probability space from
prior q to posterior p by moving pieces of probability from one option to another option such that
uncertainty is reduced relative to q, while expending a certain amount of resources determined by the
cost function Cq.

3. Bounded Rationality

3.1. Bounded Rational Decision-Making

In this section, we consider decision-making processes that trade off utility against costs. Such
decision-makers either maximize a utility function subject to a constraint on the cost function, for
example an author of a scientific article who optimizes the article’s quality until a deadline is reached,
or minimizing the cost function subject to a utility constraint, for example a high-school student
who minimizes effort such that the requirement to pass a certain class is achieved. In both cases, the
decision-makers are called bounded rational, since in the limit of no resource constraints they coincide
with rational decision-makers.

In general, depending on the underlying system, such an optimization process might have
additional process dependent constraints that are not directly given by resource limitations, for example
in cases when the optimization takes place in a parameter space that has less degrees of freedom than
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the full probability space PΩ. Abstractly, this is expressed by allowing the optimization process to
search only in a subset Γ ⊂ PΩ.

Definition 8 (Bounded rational decision-making process). Let U : Ω → R be a given utility function,
and Γ ⊂ PΩ. A decision-making process with prior q, posterior p∗ ∈ Γ, and cost function Cq is called bounded
rational if its posterior satisfies

p∗ = argmax
p∈Γ

{
Ep[U]

∣∣∣Cq(p) ≤ C0

}
, (26)

for a given upper bound C0 ≥ 0, or equivalently

p∗ = argmin
p∈Γ

{
Cq(p)

∣∣∣Ep[U] ≥ U0

}
, (27)

for a given lower bound U0 ∈ R. In the case when the process constraints disappear, i.e., if Γ = PΩ, then a
bounded rational decision-maker is called bounded-optimal.

The equivalence between Equation (26) and Equation (27) is easily seen from the equivalent
optimization problem given by the formalism of Lagrange multipliers [61],

pβ := argmin
p∈Γ

(
Cq(p)− βEp[U]

)
= argmax

p∈Γ

(
Ep[U]− 1

β Cq(p)
)

, (28)

where the cost or utility constraint is expressed by a trade-off between utility and cost, or cost and
utility, with a trade-off parameter given by the Lagrange multiplier β, which is chosen such that the
constraint given by C0 or U0 is satisfied. It is easily seen from the maximization problem on the right
side of Equation (28) that a larger value of β decreases the weight of the cost term and thus allows for
higher values of the cost function. Hence, β parameterizes the amount of resources the decision-maker
can afford with respect to the cost function Cq, and, at least in non-trivial cases (non-constant utilities)
it is therefore a resource parameter with respect to Cq in the sense of Definition 5. In particular, for
β→ 0, the decision-maker minimizes its cost function irrespective of the expected utility, and therefore
stays at the prior, p0 = q, whereas β→ ∞ makes the cost function disappear so that the decision-maker
becomes purely rational with a Dirac posterior centered on the optima x∗ of the utility function U.

For example, in Figure 11, we can see how the posteriors (pβ)β≥0 of bounded-optimal
decision-makers with different cost functions for N = 3 and with utility U = (0.8, 1.0, 0.4) leave
a trace in probability space, by moving away from an exemplary prior q = ( 1

3 , 1
2 , 1

6 ) and eventually
arriving at the rational solution δ(0,1,0).

(a) (b) (c)

Figure 11. Paths of bounded-optimal decision-makers in P(Ω) for N = 3. The straight lines in the
background denote level sets of expected utility, the solid lines are level sets of the cost functions, and the
dashed curves represent the paths (pβ)β≥0 of a bounded-optimal decision-maker given by Equation (28)
with utility U = (0.8, 1.0, 0.4), prior q = ( 1

3 , 1
2 , 1

6 ), and cost functions given by: (a) Kullback-Leibler
divergence; (b) Tsallis relative entropy of order α = 3; and (c) Burg relative entropy.
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For informational costs (i.e., proportional to Kullback-Leibler divergence), β is a resource
parameter with respect to any cost function.

Proposition 3. If (pβ)β≥0 is a family of bounded-optimal posteriors given by Equation (28) with Cq(p) =
DKL(p‖q), then β is a resource parameter with respect to any cost function, in particular

q = p0 �q pβ′ �q pβ ∀β′, β with β′ < β . (29)

This generalizes a result in [37] to the case of non-uniform priors, by making use of our new
Characterization (v) of ≺q, by which it suffices to show that β 7→ ∑l−1

i=1(pβ,i)
↓ + aq(k, l)(pβ,l)

↓ is an
increasing function of β for all k, l specified in Theorem 2 (see Proposition A8 in Appendix A for
details). For simplicity, we restrict ourselves to the case of the Kullback-Leibler divergence, however
the proof is analogous for cost functions of the form of Equation (20) with f being differentiable and
strictly convex on [0, 1] (so that f ′ is strictly monotonically increasing and thus invertible on [0, 1],
see [37] for the case of uniform priors).

Hence, for any β > 0, the posteriors (pβ′)β′<β of a bounded-optimal decision-making process
with the Kullback-Leibler divergence as cost function can be regarded as the steps of a decision-making
process (i.e., satisfying Equation (25)) with posterior pβ, where each step optimally trades off utility
against informational cost. This means that with increasing β the posteriors pβ do not only decrease
entropy in the sense of the Kullback-Leibler divergence, but also in the sense of any other cost function.

The important case of bounded-optimal decision-makers with informational costs is termed
information-theoretic bounded rationality [14,18,62] and is studied more closely in the following sections.

3.2. Information-Theoretic Bounded Rationality

For bounded-optimal decision-making processes with informational costs, the unconstrained
optimization problem in Equation (28) takes the form maxp∈PΩ F [p], where

F [p] := Ep[U]− 1
β DKL(p‖q) , (30)

which has a unique maximum pβ, the bounded-optimal posterior given by

pβ(x) =
1

Zβ
q(x) eβU(x) (31)

with normalization constant Zβ. This form can easily be derived by finding the zeros of the
functional derivative of the objective functional in Equation (30) with respect to p (with an additional
normalization constraint), whereas the uniqueness follows from the convexity of the mapping
p 7→ DKL(p‖q). For the actual maximum of F we obtain

Fβ := max
p∈PΩ

F [p] = F [pβ] =
1
β

log Zβ ,

so that pβ(x) = q(x) eβ(U(x)−Fβ).
Due to its analogy with physics, in particular thermodynamics (see, e.g., [18]), the maximization of

Equation (30) is known as the Free Energy principle of information-theoretic bounded rationality, pioneered
in [14,18,62], further developed in [63,64], and applied in recent studies of artificial systems, such as
generative neural networks trained by Markov chain Monte Carlo methods [65], or in reinforcement
learning as an adaptive regularization strategy [66,67], as well as in recent experimental studies on
human behavior [68,69]. Note that there is a formal connection of Equation (30) and the Free Energy
principle of active inference [70], however, as discussed in [64] Section 6.3: both Free Energy principles
have conceptually different interpretations.
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Example 4 (Bayes rule as a bounded-optimal posterior). In Bayesian inference, the parameter θ of the
distribution pθ of a random variable Y is inferred from a given dataset d = {y1, . . . , yN} of observations of
Y by treating the parameter itself as a random variable Θ with a prior distribution q(Θ). The parameterized
distribution of Y evaluated at an observation yi ∈ d given a certain value of Θ, i.e., p(yi|Θ=θ), is then
understood as a function of θ, known as the likelihood of the datapoint yi under the assumption of Θ = θ. After
seeing the dataset d, the belief about Θ is updated by using Bayes rule

p(θ) =
q(θ)p(d|θ)
Eq(Θ)[p(d|Θ)]

.

This takes the form of a bounded-optimal posterior in Equation (31) with β = N and utility function given
by the average log-likelihood per datapoint,

U(θ) :=
1
N

log p(d|θ) = 1
N

N

∑
i=1

log(p(yi|θ)) ,

since then Bayes rule reads

p(θ) =
1
Z

q(θ) eβ U(θ). (32)

The corresponding Free Energy in Equation (30), which is maximized by Equation (32),

F [p(Θ)] = Ep(Θ)[U(Θ)]− 1
β

DKL(p(Θ)‖q(Θ))

=
1
N
Ep(Θ)

[
log p(d|Θ)− log

p(Θ)

q(Θ)

]
= − 1

N
DKL

(
p(Θ)‖q(Θ)p(d|Θ)

)
(33)

coincides with the variational Free Energy Fvar from Bayesian statistics. Indeed, from Equation (33) it is easy to
see that F assumes its maximum when p(Θ) is proportional to q(Θ)p(d|Θ), that is when p(Θ) is given by
Equation (32). In the literature, Fvar is used in the variational characterization of Bayes rule, in cases when the
form of Equation (32) cannot be achieved exactly but instead is approximated by optimizing Equation (33) over
the parameters ϑ of a parameterized distribution pϑ(Θ) [71,72].

In the following section, we show that the Free Energy F of a bounded rational decision-making
process satisfies a recursivity property, which allows the interpretation of F as a certainty-equivalent.

3.3. The Recursivity of F and the Value of a Decision Problem

Consider a bounded-optimal decision-maker with an informational cost function deciding about
a random variable Z with values in Ω that is decomposed into the random variables X and Y,
i.e., Z = (X, Y). This decomposition can be understood as a two-step process, where first a decision
about a partition Ai of the full search space Ω =

⋃
i∈I Ai is made, represented by a random variable X

with values in I, followed by a decision about Y inside the partition selected by X (see Figure 6).
Since p(Z) = p(X)p(Y|X), by the additivity of the Kullback-Leibler divergence (Proposition A7),

we have

F [p(Z)] = Ep(Z)[U(Z)]− 1
β

DKL(p(Z)‖q(Z))

= Ep(X)

[
Ep(Y|X)[U(X, Y)]− 1

β
DKL

(
p(Y|X)‖q(Y|X)

)]
− 1

β
DKL(p(X)‖q(X)) ,

and therefore, if Fβ[p(Y|X)] := Ep(Y|X)[U(X, Y)]− 1
β DKL(p(Y|X)‖q(Y|X)) denotes the Free Energy

of the second step,

F [p(X)p(Y|X)] = Ep(X)

[
Fβ[p(Y|X)]

]
− 1

β
DKL(p(X)‖q(X)) . (34)
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In particular, the Free Energy Fβ[p(Y|X)] of the second decision-step plays the role of the utility
function of the first decision-step (see Figure 12). In Equation (34), the two decision-steps have the
same resource parameter β, controlling the strength of the constraint on the total informational costs

DKL(p(Z)‖q(Z)) = DKL(p(X)‖q(X)) +Ep(X)

[
DKL(p(Y|X)‖q(Y|X))

]
.

More generally, each step might have a separate information-processing constraint, which requires
two resource parameters β1 and β2, and results in the total Free Energy

F [p(X), p(Y|X)] = Ep(X)

[
Fβ2 [p(Y|X)]

]
− 1

β1
DKL(p(X)‖q(X)) .

x1 x2 x3

U(x3, y)

x1
x2

x3

U(x, y)

x1
x2

x3

1 2

⇔

F [p(Y |X = x)]
<latexit sha1_base64="iSwPHNf0NSB7xJobwbdT0oGVqLk="></latexit><latexit sha1_base64="iSwPHNf0NSB7xJobwbdT0oGVqLk="></latexit><latexit sha1_base64="iSwPHNf0NSB7xJobwbdT0oGVqLk="></latexit><latexit sha1_base64="iSwPHNf0NSB7xJobwbdT0oGVqLk="></latexit>

Figure 12. Recursivity of the Free Energy under coarse-graining. The decision about Z = (X, Y) is
equivalent to a two-step process consisting of the decision about X and the decision about Y given X.
The objective function for the first step is the Free Energy of the second step.

Example 5. Consider a bounded-rational decision-maker with informational cost function and a utility function
U defined on a set Ω = {z1, . . . , z4} with values as given in Figure 13 and an information-processing bound of
0.2 bits (β ≈ 0.9). If we partition Ω into the disjoint subsets {z1, z2} and {z3, z4}, then the decision about Z
can be decomposed into two steps, Z = (X, Y), the decision about X corresponding to the choice of the partition
and the decision about Y given X corresponding to the choice of zi inside the given partition determined by X.
According to Equation (34), the choice of the partition X = xi is not in favor of the achieved expected utility
inside each partition, but of the Free Energy (see Figure 13).

pβ(xi)

x1 x2

2.5 2.5 3.0 1.0

z1 z2
z3

z4

2.5
2.7

x1
x2

U(zi)

(a) (b)

2.5
2.4

Epβ(Y|X=xi)[U ] F[pβ(Y |X = xi)]

⏟⏟

Figure 13. The Free Energy as certainty-equivalent (Example 5). (a) Utility function U as a function
of zi (top) and expected utilities for the coarse-grained partitions {z1, z2} and {z3, z4} corresponding
to the choices x1 and x2, respectively, for a bounded-rational decision-maker with β = 0.9 (bottom).
(b) The bounded optimal probability distribution over xi (top) does not correspond to the expected
utilities in (a) but to the Free Energy of the second decision-step, i.e., the decision about Y given
X (bottom).
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Therefore, a bounded rational decision-maker that has the choice among decision-problems ideally
should base its decision not on the expected utility that might be achieved but on the Free Energy of
the subordinate problems. In other words, the Free Energy quantifies the value of a decision-problem
that, besides the achieved average utility, also takes the information-processing costs into account.

3.4. Multi-Task Decision-Making and the Optimal Prior

Thus far, we have considered decision-making problems with utility functions defined on Ω only,
modeling a single decision-making task. This is extended to multi-task decision-making problems by
utility functions of the form U :W ×Ω→ R, (w, x) 7→ U(w, x), where the additional variable w ∈ W
represents the current state of the world. Different world states w in general lead to different optimal
decisions x∗(w) := argmaxx∈ΩU(w, x). For example, in a chess game, the optimal moves depend on
the current board configurations the players are faced with.

The prior q for a bounded-rational multi-task decision-making problem may either depend or not
depend on the world state w ∈ W . In the first case, the multi-task decision-making problem is just
given by multiple single-task problems, i.e., for each w ∈ W , q(X|W = w) and p(X|W = w) are the
prior and posterior of a bounded rational decision-making process with utility function x 7→ U(x, w),
as described in the previous sections. In the case when there is a single prior for all world states w ∈ W ,
the Free Energy is

F [p(X|W)] = Ep(W)

[
Ep(X|W)[U(W, X)]− 1

β
DKL(p(X|W)‖q(X))

]
(35)

where p(W) is a given world state distribution. Note that, for simplicity, we assume that β is
independent of w ∈ W , which means that only the average information-processing is constrained, in
contrast to the information-processing being constrained for each world state which in general would
result in β being a function of w. Similar to single-task decision-making (Equation (31)), the maximum
of Equation (35) is achieved by

pβ(x|w) =
1

Zβ(w)
q(x) eβU(w,x) (36)

with normalization constant Zβ(w). Interestingly, the deliberation cost in Equation (35) depends on
how well the prior was chosen to reach all posteriors without violating the processing constraint. In
fact, viewing the Free Energy in Equation (35) as a function of both, posterior and prior, F [p(X|W)] =

F [p(X|W), q(X)], and optimizing for the prior yields the marginal of the joint distribution p(W, X) =

p(W)p(X|W), i.e., the mean of the posteriors for the different world states,

q∗(X) := argmaxq(X)F [p(X|W), q(X)] = Ep(W)[p(X|W)] . (37)

Similar to Equation (31), Equation (37) follows from finding the zeros of the functional derivative of
the Free Energy with respect to q(X) (modified by an additional term for the normalization constraint).

Optimizing the Free Energy F [p(X|W), q(X)] for both prior and posterior can be achieved by
iterating Equations (36) and (37). This results in an alternating optimization algorithm, originally
developed independently by Blahut and Arimoto to calculate the capacity of a memoryless channel [73,74]
(see [75] for a convergence proof by Csiszár and Tusnády). Note that

F [p(X|W), q∗(X)] = Ep(W)p(X|W)[U(W, X)]− 1
β

I(W; X) ,

in particular that the information-processing cost is now given by the mutual information I(W; X)

between the random variables W and X. In this form, we can see that the Free Energy optimization
with respect to prior and posterior is equivalent to the optimization problem in classical rate distortion
theory [76], where U is given by the negative of the distortion measure.
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Similar to in rate-distortion theory, where compression algorithms are analyzed with respect
to the rate-distortion function, any decision-making system can now be analyzed with respect to
informational bounded-optimality. More precisely, when plotting the achieved expected utility against
the information-processing resources of a bounded-rational decision-maker with optimal prior, we
obtain a Pareto-optimality curve that forms an efficiency-frontier that cannot be surpassed by any
decision-making process (see Figure 14c).

3.5. Multi-Task Decision-Making with Unknown World State Distribution

A bounded rational decision-making process with informational cost and utility U :W ×Ω→ R
that has an optimal prior q∗(X) given by the marginal in Equation (37) must have perfect knowledge
about the world state distribution p(W). In contrast, here we consider the case when the exact shape
of the world state distribution is unknown to the decision-maker and therefore has to be inferred
from the already seen world states. More precisely, we assume that the world state distribution is
parameterized by a parameter θ ∈ R, i.e., p(W) = pθtrue(W) for a given parameterized distribution
pθ(W). Since the true parameter θtrue is unknown, θ is treated as a random variable by itself, so that
pθ(W) = p(W|Θ = θ). After a dataset d = {w1, . . . , wN} ∈ WN of samples from p(W|Θ = θtrue) has
been observed the joint distribution of all involved random variables can be written as

p(Θ, D, W, X) = p(Θ)p(D|Θ)p(W|Θ)p(X|D, W)

where p(Θ) denotes the decision-maker’s prior belief about Θ, and p(D = d|Θ) = ∏N
i=1 p(wi|Θ) is the

likelihood of the previously observed world states. Therefore, the resulting (multi-task) Free Energy
(see Equation (35)) is given by

Ep(Θ)p(D|Θ)p(W|Θ)

[
Ep(X|D,W)[U(W, X)]− 1

β
DKL(p(X|D, W)‖q(X|D))

]
. (38)

It turns out that we obtain Bayesian inference as a byproduct of optimizing Equation (38) with
respect to the prior q(X|D). Indeed, by calculating the functional derivative with respect to q(X|D) of
the Free Energy in Equation (38) plus an additional term for the normalization constraint of q(X|D)

(with Lagrange multiplier λ), we can see that any distribution q∗(X|D) that optimizes Equation (38)
must satisfy

1
β
Ep(Θ)p(W|Θ)

[
p(D|Θ)p(X|D,W)

q∗(X|D)

]
+ λ = 0 ,

where λ ∈ R is chosen such that q∗(X|D=d) ∈ PΩ for any d ∈ WN . This is equivalent to

q∗(X|D) =
1

ZD
Ep(Θ)

[
p(D|Θ)Ep(W|Θ)[p(X|D, W)]

]
,

where ZD denotes the normalization constant of q∗(X|D), given by ZD = Ep(Θ)[p(D|Θ)], since
Ep(X|D,W)[1] = 1 as well as Ep(W|Θ)[1] = 1. Therefore, we obtain

q∗(X|D) = Ep∗(Θ|D)

[
Ep(W|Θ)[p(X|D, W)]

]
with p∗(Θ|D) as defined in Equation (39). Hence, we have shown

Proposition 4 (Optimality of Bayesian inference). The optimal prior q∗(X|D) that maximizes Equation (38)
is given by q∗(X|D) = Ep∗(Θ|D)p(W|Θ)[p(X|D, W)], where p∗(Θ|D) is the Bayes posterior

p∗(Θ|D) :=
p(Θ)p(D|Θ)

Ep(Θ)[p(D|Θ)]
. (39)
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Figure 14. Absolute identification task with known world state distribution: (a) utility function;
(b) world states distribution (a mixture of two Gaussians); (c) expected utility as a function of
information-processing resources for a bounded-optimal decision-maker with a uniform and with
an optimal prior (the shaded region cannot be reached by any decision-making process); and (d)
exemplary optimal priors q∗(X) for different information-processing bounds.

4. Example: Absolute Identification Task with Known and Unknown Stimulus Distribution

Consider a bounded rational decision-maker with a multi-task utility function U such that, for
each w ∈ W , U(w, x) is non-zero for only one choice x ∈ Ω, as shown in Figure 14. Here, the decision
and world spaces are both finite sets of N = 20 elements. The world state distribution p(W) is given
by a mixture of two Gaussian distributions, as shown in Figure 14b. Due to some world states w ∈ W
being more likely than others, there are some choices x ∈ Ω that are less likely to be optimal.

4.1. Known Stimulus Distribution

As can be seen in Figure 14c (dashed line), here it is not ideal to have a uniform prior distribution,
q(x) = 1

N for all x ∈ Ω. Instead, if the world state distribution is known perfectly and the prior has
the form suggested by Equation (37), i.e., q(x) = ∑w p(w)pβ(x|w), then, as can be seen in Figure 14c
(solid line), achieving the same expected utility as with a uniform prior requires less informational
resources. In particular, the explicit form of q∗ depends on the resource parameter β, see Figure 14d.
For low resource availability (small β), only the choices that correspond to the most probable world
states are considered. However, for β→ ∞, we have

q∗(x) = ∑
w

p(W=w)δw,x = p(W=x) ,

because here limβ→∞ pβ(x|w) = δw,x is the posterior of a rational decision-maker, where δw,x denotes
the Kronecker-δ (which is only non-zero if w=x). Hence, for decision-makers with abundant
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information-processing resources (large β) the optimal prior q∗(X) approaches the form of the world
state distribution p(W) (since hereW = Ω).

4.2. Unknown Stimulus Distribution

In the case when the decision-maker has to infer its knowledge about p(W) from a set of samples
d = {w1, . . . , wN}, we know from Section 3.5 that this is optimally done via Bayesian inference. Here,
we assume a mixture of two Gaussians as a parameterization of p(W), so that θ = (µ1, µ2, σ1, σ2),
where µi and σi denote mean and standard-deviation of the ith component, respectively (for simplicity,
with fixed equal weights for the two mixture components).

In Figure 15a, we can see how different values of N affect the belief about the world state
distribution, p(W|D) = Ep(Θ|D)[p(W|Θ)], when p(Θ|D) is given by the Bayes posterior (39) with a
uniform prior belief p(Θ). The resulting expected utilities (averaged over samples from p(D|θtrue))
as functions of available information-processing resources are displayed in Figure 15b, which shows
how the performance of a bounded-rational decision-maker with optimal prior and perfect knowledge
about the true world state distribution is approached by bounded rational decision-makers with
limited but increasing knowledge given by the sample size N.

Abstractly, we can view Equation (39) as the bounded optimal solution to the decision-making
problem that starts with a prior p(Θ) and arrives at a posterior p(Θ|D = d) after processing the
samples in d = {w1, . . . , wN} (see also Example 4). In fact, the posteriors shown in Figure 15a satisfy
the requirements for a decision-making process with resource given by the number of data N, when
averaged over p(D). In particular, by increasing N the posteriors contain less and less uncertainty
with respect to the preorder ≺ given by majorization. Accordingly, if we plot the achieved expected
utility against the number of samples, we obtain an optimality curve similar to Figures 14c and 15b.
In Figure 16, we can see how Bayesian Inference outperforms Maximum Likelihood when evaluated
with respect to the average expected utility of a bounded-rational decision-maker with 2 bits of
information-processing resources.
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Figure 15. Absolute identification task with unknown world state distribution: (a) average of inferred
world state distributions for different sizes N of datasets (standard-deviations across datasets indicated
by error bars); and (b) resulting utility-information curves of a bounded-rational decision-maker with
optimal prior that has to infer the world state distribution from datasets with different sizes N.
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Figure 16. Optimality curve given by Bayesian inference. The average expected utility as a function of
N achieved by a bounded-rational decision-maker that infers the world state distribution with Bayes
rule in Equation (39) forms an efficiency frontier that cannot be surpassed by any other inference scheme,
like for example Maximum Likelihood, when starting from the same prior belief about the world.

5. Discussion

In this work, we have developed a generalized notion of decision-making in terms of uncertainty
reduction. Based on the simple idea of transferring pieces of probability between the elements of
a probability distribution, which we call elementary computations, we have promoted a notion of
uncertainty which is known in the literature as majorization, a preorder ≺ on PΩ. Taking non-uniform
initial distributions into account, we extended the concept to the notion of relative uncertainty, which
corresponds to relative majorization ≺q. Even though a large amount of research has been done on
majorization theory, from the early works [29,34,38] through further developments [27,30–32,36,77,78] to
modern applications [39–41], there is a lack of results on the more general concept of relative majorization.
This does not seem to be due to a lack of interest, as can be seen from the results [28,57,58,79], but mostly
because relative majorization looses some of the appealing properties of majorization which makes it
harder to deal with, for example that permutations no longer leave the ordering ≺q invariant, in contrast
to the case of a uniform prior. This restriction does, however, not affect our application of the concept
to decision-making, as permutations are not considered as elementary computations, since they do not
diminish uncertainty. By reducing the non-uniform to the uniform case, we managed to prove new
results on relative majorization (Theorem 2), which then enabled new results in other parts of the paper
(Example 3 and Propositions A6 and A8), and allowed an intuitive interpretation of our final definition of
a decision-making process (Definition 7) in terms of elementary computations with respect to non-uniform
priors (Definition 6).

More precisely, starting from stepwise elimination of uncertain options (Section 2.3), we have
argued that decision-making can be formalized by transitions between probability distributions
(Section 2.2), and arrived at the concept of decision-making processes traversing probability space
from prior to posterior by successively moving pieces of probability between options such that
uncertainty relative to the prior is reduced (Section 2.1). Such transformations can be quantified by
cost functions, which we define as order-preserving functions with respect to ≺q and capture the
resource costs that must be expended by the process. We have shown (Propositions A1 and A6)
that many known generalized entropies and divergences, which are examples of such cost functions
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(Examples 1 and 3), satisfy superadditivity with respect to coarse-graining. This means that under such
cost functions, decision-making costs can potentially be reduced by a more intelligent search strategy,
in contrast to Kullback-Leibler divergence, which was characterized as the only additive cost function
(Proposition A7). There are plenty of open questions for further investigation in that regard. First,
it is not clear under which assumptions on the cost functions Cq superadditivity could be improved
to Cq(p) = αDKL(p‖q) + r(p, q) with α > 0 and r(p, q) ≥ 0. Additionally, it would be an interesting
challenge to find sufficient conditions implying super-additivity that include more cost functions than
f -divergences. The field of information geometry might give further insights on the topic, since there
are studies in similar directions, in particular characterizations of divergence measures in terms of
information monotonicity and the data-processing inequality [48,80–82]. One interesting result is
the characterization of Kullback-Leibler divergence as the single divergence measure being both an
f -divergence and a Bregman divergence.

In Section 3, bounded rational decision-makers were defined as decision-making processes that are
maximizing utility under constraints on the cost function, or equivalently minimizing resource costs
under a minimal utility requirement. In the important case of additive cost functions (i.e., proportional to
Kullback-Leibler divergence), this leads to information-theoretic bounded rationality [14,18,62–64], which
has precursors in the economic and game-theoretic literature [4,8,11–16,19,83–85]. We have shown that
the posteriors of a bounded rational decision-maker with increasing informational constraints leave a
path in probability space that can itself be considered an anytime decision-making process, in each step
perfectly trading off utility against processing costs (Proposition 3). In particular, this means that the path
of a bounded rational decision-maker with informational cost decreases uncertainty with respect to all
cost functions, not just Kullback-Leibler divergence. We have also studied the role of the prior in bounded
rational multi-task decision-making, where we have seen that imperfect knowledge about the world
state distribution leads to Bayesian inference as a byproduct, which is in line with the characterization of
Bayesian inference as minimizing prediction surprise [86], but also demonstrates the wide applicability of
the developed theory of decision-making with limited resources.

Finally, in Section 4, we have presented the results of a simulated bounded rational decision-maker
solving an absolute identification task with and without knowledge about the world state distribution.
Additionally, we have seen that Bayesian inference can be considered a decision-making process with
limited resources by itself, where the resource is given by the number of available data points.

6. Conclusions

To our knowledge, this is the first principled approach to decision-making based on the intuitive
idea of Pigou–Dalton-type probability transfers (elementary computations). Information-theoretic
bounded rationality has been introduced by other axiomatic approaches before [8,62]. For example,
in [62], a precise relation between rewards and information value is derived by postulating that systems
will choose those states with high probability that are desirable for them. This leads to a direct coupling
of probabilities and utility, where utility and information inherit the same structure, and only differ
with respect to normalization (see [87] for similar ideas). In contrast, we assume utility and probability
to be independent objects a priori that only have a strict relationship in the case of bounded-optimal
posteriors. The approach in [8] introduces Kullback-Leibler divergence as disutility for decision
control. Based on Hobson’s characterization [59], the authors argued that cost functions should be
monotonic with respect to uniform distributions (the property in Equation (22)) and invariant under
decomposition, which coincides with additivity under coarse-graining (see Examples 1 and 3). Both
assumptions are special cases of our more general treatment, where cost functions must be monotonic
with respect to elementary computations and are generally not restricted to being additive.

In the literature, there are many mechanistic models of decision-making that instantiate
decision-making processes with limited resources. Examples include reinforcement learning algorithms
with variable depth [88,89], Markov chain Monte Carlo (MCMC) models where only a certain
number of samples can be evaluated [65,85,90], and evidence accumulation models that accumulate
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noisy evidence until either a fixed threshold is reached [91–95] or where thresholds are determined
dynamically by explicit cost functions depending on the number of allowed evidence accumulation
steps [96,97]. Many of these concrete models may be described abstractly by resource parameterizations
(Definition 5). More precisely, in such cases, the posteriors {pr}r∈I ⊂ Γ ⊂ PΩ are generated by an
explicit process with process constraints Γ and resource parameter r. For example, in diffusion
processes r may correspond to the amount of time allowed for evidence accumulation, in Monte Carlo
algorithms r may reflect the number of MCMC steps, and in a reinforcement learning agent r may
represent the number of forward-simulations. If the resource restriction is described by a monotonic
cost function r 7→ cr [96,97], then the process can be optimized by a maximization problem of the form

max
r∈I,p∈Γr

{
Ep[U]− cr

}
= max

r∈I,p∈Γr

{
Ep[U]

∣∣ cr ≤ M
}

= max
p∈Γ

{
Ep[U]

∣∣Cq(p) ≤ M′
}

,

where M, M′ are non-negative constants, Γr ⊂ Γ denotes the subset of probability distributions with
resource r, and Cq denotes a cost function such that r 7→ Cq(p) for p ∈ Γr is strictly monotonically
increasing. In particular, such cases can also be regarded as bounded rational decision-making
problems of the form of Equation (26).

Bounded rationality models in the literature come in a variety of flavors. In the heuristics
and biases paradigm, the notion of optimization is often dismissed in its entirety [7], even though
decision-makers still have to have a notion of options being better or worse, for example to adapt
their aspiration levels in a satisficing scheme [98]. We have argued that from an abstract normative
perspective we can formulate satisficing in probabilistic terms, such that one could investigate the
efficiency of heuristics within this framework. Another prominent approach to bounded rationality
is given by systems capable of decision-making about decision-making, i.e., meta-decision-making.
Explicit decision-making processes composed of two decision steps have been studied, for example,
in the reinforcement learning literature [88,89,99,100], where the first step is represented by a meta
decision about whether a cheap model-free or a more expensive model-based learning algorithm is
used in the second step. The meta step consists of a trade-off between the estimated utility against the
decision-making costs of the second decision step. In the information-theoretic framework of bounded
rationality, this could be seen as a natural property of multi-step decision-making and the recursivity
property in Equation (34), from which it follows that the value of a decision-making problem is given
by its free energy that, besides the achieved utility, also takes the corresponding processing costs into
account. Another prominent approach to bounded rationality is computational rationality [19], where
the focus lies on finding bounded-optimal programs that solve constrained optimization problems
presented by the decision-maker’s architecture and the task environment. As described above, such
architectural constraints could be represented by a process dependent subset Γ ⊂ PΩ, and in fact
our resource costs could be included into such a subset Γr as well. From this point of view, both
frameworks would look for bounded-optimal solutions in that the search space is first restricted and
then the best solution in the restricted search space is found. However, our search space would consist
of distributions describing probabilistic input-output maps, whereas the search space of programs
would be far more detailed.

The notion of decision-making presented in this work, intuitively developed from the basic
concept of uncertainty reduction given by elementary computations and motivated by the simple idea
of progressively eliminating options, on the one hand provides a promising theoretical playground
that is open for further investigation (e.g., superadditivity of cost functions and minimality of relative
entropy), potentially providing new insights into the connection between the fields of rationality
theory and information theory, and on the other hand serves the purpose of a general framework to
describe and analyze all kinds of decision-making processes (e.g., in terms of bounded-optimality).
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Appendix A. Proofs of Technical Results from Sections 2 and 3

Proposition A1 (Superadditivity of generalized entropies under coarse-graining, Example 1). All cost
functions of the form

C(p) = ∑N
i=1 f (pi) , (A1)

with f (strictly) convex and differentiable on [0, 1], and f (1) = 0, are superadditive with respect to
coarse-graining, that is

C(Z) ≥ C(X) + C(Y|X)

whenever Z = (X, Y), and C(X) := C(p(X)) and C(Y|X) := Ep(X)[C(p(Y|X))].

Proof. As shown in the following proof, strict convexity is not needed for superadditivity, but it is
required for the definition of a cost function. First, since ∑i pi = 1, notice that we can always redefine
the convex function f in Equation (A1) by fc(t) := f (t)− c(t − 1) for an arbitrary constant c ∈ R
without changing C(p) for all p ∈ PΩ. Hence, without loss of generality, we may assume f ′(1) = 0, so
that t = 1 is a global minimum of f (since f (t) ≥ f (1) + (t− 1) f ′(1) = f (1) due to convexity). Since
C is symmetric, superadditivity under coarse-graining is equivalent to

C(p1, . . . , pN) ≥ C(p1 + p2, p3, . . . , pN) + (p1+p2)C( p1
p1+p2

, p2
p1+p2

) (A2)

This simply follows by induction, since Equation (A2) corresponds to the partitioning Ω =⋃N−1
j=1 Aj with A1 = {x1, x2} and Aj = {xj+1} for all j = 2, . . . , N − 1 (see also [101] Proposition 2.3.5).

In terms of f , Equation (A2) reads

f (p1) + f (p2) ≥ f (p1 + p2) + (p1 + p2)
(

f
( p1

p1+p2

)
+ f

( p2
p1+p2

))
By setting u = p1 + p2 and v = p1

p1+p2
, this is equivalent to

f (uv) + f (u(1− v)) ≥ f (u) + u
(

f (v) + f (1− v)
)

(A3)

for all u, v ∈ [0, 1]. Writing Fv(u) := f (uv) + f (u(1− v))− f (u)− u ( f (v) + f (1− v)) and noting that
Fv(0) ≥ 0 and Fv(1) = 0, it suffices to show that F′v(u) ≤ 0, which shows that Fv is monotonically
decreasing from Fv(0) to Fv(1) = 0 and thus Fv(u) ≥ 0 for all u ∈ [0, 1]. We have for all v, u ∈ [0, 1]

F′v(u) = v f ′(uv) + (1−v) f ′(u(1−v))− f ′(u)− f (v)− f (1−v)

By the symmetry of Fv under the replacement of v by 1−v, without loss of generality, we may
assume that v ≤ 1

2 , so that uv ≤ u(1−v) ≤ u. Since f is convex, f ′ is monotonically increasing on [0, 1],
and thus f ′(uv) ≤ f ′(u(1−v) ≤ f ′(u). In particular,

f ′(u) = v f ′(u) + (1− v) f ′(u) ≥ v f ′(uv) + (1− v) f ′(u(1−v))

and thus, since f (v) + f (1−v) ≥ 0, it follows that F′v(u) ≤ 0, which completes the proof.

Proposition A2 (Characterization of Shannon entropy, Example 1). If a cost function C is additive under
coarse-graining, that is if C(Z) = C(X) + C(Y|X) with the notation from Proposition A1, then
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C = −αH

for some α ≥ 0, i.e., C is proportional to the negative Shannon entropy −H.

Proof. Since uniform distributions over N options are majorized by uniform distributions over
N′ < N options (see Equation (7)), it follows for any cost function C that the function f defined
by f (N) := C

( 1
N , . . . , 1

N
)

is monotonically increasing. Therefore, the claim follows directly from
Shannon’s proof [22], who showed that this monotonicity, additivity under coarse-graining, and
continuity determine Shannon entropy up to a constant factor.

Proposition A3 (Proposition 1). The uniform distribution ( 1
N , . . . , 1

N ) is the unique minimal element in PΩ
with respect to ≺, i.e., ( 1

N , . . . , 1
N
)
≺ p ∀p ∈ PΩ . (A4)

Proof. For the proof of Equation (A4), let (Πi)
N
i=1 be the family of all cyclic permutations of the N

entries of a probability vector p, such that

Π1(p) = p, Π2(p) = (pN , p1, . . . , pN−1), . . . , ΠN(p) = (p2, . . . , pN , p1) .

It follows that ∑N
i=1 Πi(p) = e for all p ∈ PΩ, where e = (1, . . . , 1) as above, and therefore

the uniform distribution 1
N e is given by a convex combination of permutations of p, so that (iv)

in Theorem 1 implies 1
N e ≺ p. There are many different ways to prove uniqueness. A direct way

is to assume there exists q ∈ P with q ≺ 1
N e for all p ∈ PΩ, so that by (iii) in Theorem 1 there

exists a stochastic matrix A with 1
N eA = q. However, since eA = e (A stochastic), it follows that

q = 1
N e. An indirect way would be to use that if q ≺ p for all p ∈ PΩ, then from Example 1 we

know that this implies H(q) ≥ H(p) for all p ∈ PΩ, where H denotes the Shannon entropy, simply
because −H is a cost function. In particular, q maximizes H and therefore coincides with the uniform
distribution 1

N e.

Proposition A4 (Equivalence of (i), (iii), (v) in Theorem 2). The following are equivalent

(i) p′ ≺q p, i.e., p′ contains more uncertainty relative to q than p (Definition 4).

(iii) p′ = pA for a q-stochastic matrix A, i.e., Ae = e and qA = q.

(v) ∑l−1
i=1(p′i)

↓ + aq(k, l)(p′l)
↓ ≤ ∑l−1

i=1 p↓i + aq(k, l)p↓l for all α ∑l−1
i=1 q↓i ≤ k ≤ α ∑l

i=1 q↓i and 1 ≤ l ≤ N,
where aq(k, l) := ( k

α −∑l−1
i=1 q↓i )/q↓l , and the arrows indicate that (p↓i /q↓i )i is ordered decreasingly.

Proof. We use the fact that Λq : PΩ → PΩ̃ has a left inverse Λ−1
q : Λq(PΩ)→ PΩ satisfying Λ−1

q Λq = I,
where I denotes the identity on PΩ. This can be verified by simply multiplying the corresponding
matrices, given by

Λ−1
q =



1 · · · 1 0 · · · · · · · · · · · · 0
0 · · · 0 1 · · · 1 0 · · · 0

. . .
. . .

0 · · · · · · · · · · · · 0 1 · · · 1


︸ ︷︷ ︸

|A1|+···+|AN |=α

, Λq =
1
α



1
q1

0 · · · 0 0
...

...
...

...
1
q1

0 · · · 0 0
. . .

0 0 · · · 0 1
qN

...
...

...
...

0 0 · · · 0 1
qN




α

and noting that, by definition, α qi = |Ai|.
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Characterization (v) follows from (vi) of Theorem 1 and Definition 4, since p′ ≺q p if and only if

k

∑
i=1

(Λq p′)↓i ≤
k

∑
i=1

(Λq p)↓i

for all 1 ≤ k ≤ α− 1, from which (v) is an immediate consequence.
(i) ⇒ (iii): Assuming that p′ ≺q p, we have Λq p′ ≺ Λq p and, therefore, by (iii) in Theorem 1,

there exists a doubly stochastic matrix B such that Λq p′ = BTΛq p. With AT := Λ−1
q BTΛq, it follows that

Ae = ΛT
q B(Λ−1

q )Te = (Λ−1
q )T Be = (Λ−1

q )Te = e ,

where we use that (Λ−1
q )Te = e and ΛT

q e = e which is easy to check, and Be = e from B being a
stochastic matrix. Note that, by slightly abusing notation, here e is always the constant vector (1, . . . , 1)
irrespective of the number of its entries (N or α, depending on which space the operator is defined).
Moreover, we have

ATq = Λ−1
q BTΛqq = 1

α Λ−1
q BTe = 1

α Λ−1
q e = q

where we have used that Λqq by definition is the uniform distribution on PΩ̃, i.e., Λqq = 1
α e, and

therefore also Λ−1
q e = α q. In particular, since also Aij ≥ 0 (B, Λq, Λ−1

q have non-negative entries), it
follows that A is a q-stochastic matrix such that p′ = AT p = pA.

(i) ⇐ (iii): Similarly, if A is a q-stochastic matrix with p′ = pA, then Λq p′ = BTΛq p, where
B := (Λ−1

q )T AΛT
q satisfies BTe = α Λq ATq = α Λqq = e and Be = (Λ−1

q )T Ae = (Λ−1
q )Te = e, where

we have used that Λ−1
q e = αq, Λqq = 1

α e, ΛT
q e = e, and (Λ−1

q )Te = e. In particular, since also Bij ≥ 0,
B is doubly stochastic and therefore Λq p′ ≺ Λq p, i.e., p′ ≺q p.

Proposition A5 (Proposition 2). The prior q ∈ PΩ is the unique minimal element in PΩ with respect to ≺q,
that is q ≺q p for all p ∈ PΩ.

Proof. Let p ∈ PΩ, and let P := Λq p denote its representation in PΩ̃. Then, Q ≺ P by Proposition A3
(uniform distributions are minimal) and therefore q = Λ−1

q Q ≺q p, in particular q is minimal with
respect to ≺q. For uniqueness, let p′ be possibly another minimal element. Then, p′ ≺q q and therefore
by (iii) in Theorem 2 there exists a q-stochastic matrix A with p′ = qA. However, since A is q-stochastic,
qA = q, and thus p′ = q.

Proposition A6 (Example 3: Superadditivity of f -divergences under coarse-graining). All relative cost
functions of the form

Cq(p) =
N

∑
i=1

qi f
( pi

qi

)
, (A5)

with f (strictly) convex and differentiable on [0, 1], and f (1) = 0, are superadditive with respect to
coarse-graining, that is

Cq(Z) ≥ Cq(X) + Cq(Y|X)

whenever Z = (X, Y), and Cq(X) := Cq(X)(p(X)) and Cq(Y|X) := Ep(X)[Cq(Y|X)(p(Y|X))], which for
cost functions that are symmetric with respect to permutations of ((pi, qi))i=1,...,N (such as Equation (20)) is
equivalent to

Cq(p) ≥ C(q1+q2,q3 ...,qN)(p1+p2, p3, . . . , pN) + (p1+p2)C
(

q1
q1+q2

, q2
q1+q2

)

( p1
p1+p2

, p2
p1+p2

)
. (A6)

Proof. This is a simple corollary to Proposition A1, after establishing the following interesting property
of cost functions of the form of Equation (A5):

Cq(p) = CΛqq(Λq p) (A7)
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where Λq denotes the representation mapping defined in Section 2.3 that maps q to a uniform
distribution on an elementary decision space Ω̃ of |Ω̃| = α elements, given by (Λq p)(ω) = 1

α
pi
qi

whenever ω ∈ Ai, where {Ai}N
i=1 is a disjoint partition of Ω̃ such that |Ai| = α qi. Equation (A7) then

follows from

CΛqq(Λq p) = ∑
ω∈Ω̃

(Λqq)(ω) f
(
(Λq p)(ω)

(Λqq)(ω)

)
=

1
α

N

∑
i=1

∑
w∈Ai

f
(

pi
qi

)
=

N

∑
i=1

qi f
(

pi
qi

)
,

where we use that ∑w∈Ai
1 = |Ai| = αqi. Hence, the case of a non-uniform prior reduces to the case of

a uniform prior, which is shown in Proposition A1.

Proposition A7 (Example 3: Characterization of Kullback-Leibler divergence). If Cq is a continuous cost
function relative to q that is additive under coarse-graining, that is Cq(Z) = Cq(X) + Cq(Y|X) in the notation
of Proposition A6, then

Cq(p) = α DKL(p‖q) (A8)

for some α ≥ 0, where DKL(p‖q) denotes the Kullback-Leibler divergence DKL(p‖q) = ∑i pi log(pi/qi).

Proof. First, we show that any relative cost function that is additive under coarse-graining satisfies
Equation (22), the monotonicity property for uniform distributions: If f (M, N) denotes the cost
CuN (uM) of a uniform distribution uM over M elements relative to a uniform distribution uN over
N ≥ M elements, then (22) is true. Once Equation (22) has been established, then Equation (A8) goes
back to a result by Hobson [59] (see also [8]), whose proof is a modification of Shannon’s axiomatic
characterization [22].

The first property in Equation (22) actually is true for all relative cost functions: For q = uN with
N = |Ω|, we have p′ ≺q p iff p′ ≺ p and thus the first property follows from Equation (7), and the
same is true in the case when N < |Ω|, since we always assume that p′, p are absolutely continuous
with respect to q, which allows to redefine Ω to only contain the N options covered by q.

For the proof of the second property in Equation (22), we let the random variable X indexing the
partitions E1, E2 of Ω, where E1 denotes the support of uN′ and E2 = Ω\E1 its complement, and Y
representing the choice inside of the selected partition Ei given X = i. Letting q(Z) = uN , and p(Z) =
uN′ , then it follows from addivity under coarse-graining that Cq(X)(p(X)) = CuN (uN′) = f (N′, N),
and letting p(Z) = uM, we obtain

f (M, N) = Cq(X)(p(X)) + C(Y|X = 1) = f (N′, N) + f (M, N′) ,

since p(X=1) = 1, p(X=2) = 0, and C(Y|X = 1) = CuN′ (uM), and thus f (M, N) ≥ f (M, N′).

Proposition A8 (Proposition 3). If (pβ)β≥0 is a family of bounded-optimal posteriors given by Equation (28)
with cost function Cq(p) = DKL(p‖q), then β is a resource parameter with respect to any cost function,
in particular

q = p0 �q pβ′ �q pβ ∀β′, β with β′ < β . (A9)

Proof. Part of the proof generalizes a result in [37] to the case of a non-uniform prior q, by making use of
our new Characterization (v) of ≺q, by which it suffices to show that β 7→ ∑l−1

i=1(pβ,i)
↓ + aq(k, l)(pβ,l)

↓

is an increasing function of β for all k, l specified in Theorem 2. By Equation (31) below, we have

∂β pβ,i = ∂β

( 1
Zβ

qi eβUi
)
= pβ,i(Ui −Epβ

[U]) ,

where Ui are the decreasingly arranged utility values U(x) for x ∈ Ω, so that also pβ,i/qi is arranged
decreasingly. From the ordering of the Ui, it is easy to see that
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(
k

∑
i=1

piUi + pk+1Uk+1

)
k

∑
j=1

pj ≤
k

∑
i=1

piUi

(
k

∑
j=1

pj + pk+1

)

with the notation pk := pβ,k, from which it follows that Sk := ∑k
i=1 p̂kUi with p̂k := pk/∑k

j=1 pj, is
monotonically decreasing in k (with SN = Ep[U]), and therefore

k

∑
i=1

pi(Ui −Ep[U]) =

(
k

∑
i=1

p̂iUi −Ep[U]

)
k

∑
j=1

pj = (Sk − SN)
k

∑
j=1

pj ≥ 0

for all k ≤ N. Hence, it suffices to show that ∑l−1
i=1 xi + txl ≥ 0 if ∑k

i=1 xi ≥ 0 for all k and t ∈ [0, 1]. If
xl ≥ 0, there is nothing to show, and if xl < 0, we have ∑l−1

i=1 xi + txl ≥ ∑l
i=1 xi ≥ 0, which completes

the proof of pβ′ ≺q pβ.
It remains to be shown that pβ 6≺q pβ′ . This follows again from (v) in Theorem 2,

more precisely from the requirement that pβ,1 ≤ pβ′ ,1 if pβ ≺q pβ′ , after establishing that
β 7→ Z−1

β eβU1 is monotonically increasing. For the latter, note that since the Ui are ordered
decreasingly, ∑N

i=1 UiqieβUi ≤ U1 ∑N
i=1 qieβUi from which follows that ∂β(Z−1

β eβU1) ≥ 0, which
completes the proof.
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