organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-Dichloroacetyl-t-3-isopropyl-r-2,c-6diphenylpiperidin-4-one

P. Sugumar,^a R. Kayalvizhi,^b R. Mini,^b S. Ponnuswamy^b and M. N. Ponnuswamy^a*

^aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and ^bDepartment of Chemistry. Government Arts College (Autonomous), Coimbatore 641 018, India Correspondence e-mail: mnpsy2004@yahoo.com

Received 1 July 2013; accepted 15 July 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.048; wR factor = 0.136; data-to-parameter ratio = 18.2.

In the title compound, $C_{22}H_{23}Cl_2NO_2$, the piperidine ring adopts a twist-boat conformation. The phenyl rings substituted at the 2- and 6-positions of the piperidine ring subtend dihedral angles of 60.6 (2) and 84.2 $(1)^{\circ}$, respectively, with the mean plane of the piperidine ring. In the crystal, molecules are linked by $C-H \cdots O$ interactions into zigzag chains running along the *c*-axis direction.

Related literature

For the biological activity of piperidine derivatives, see: Aridoss et al. (2009); Nalanishi et al. (1974); Michael (2001); Pinder (1992); Rubiralta et al. (1991). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983).

Me Me 0= ci

Experimental

Crystal data

C22H23Cl2NO2 $M_r = 404.31$

Orthorhombic, Pca21 a = 18.4336 (14) Å

b = 9.4516(7) Å c = 11.7077 (9) Å V = 2039.8 (3) Å³ Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{\min} = 0.929, T_{\max} = 0.941$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$	
$wR(F^2) = 0.136$	
S = 1.04	
4437 reflections	
244 parameters	
1 restraint	
H-atom parameters constrained	

Mo $K\alpha$ radiation $\mu = 0.34 \text{ mm}^{-1}$ T = 293 K $0.22 \times 0.20 \times 0.18 \text{ mm}$

10509 measured reflections 4437 independent reflections 3882 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.022$

 $\Delta \rho_{\text{max}} = 0.69 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.47 \ {\rm e} \ {\rm \AA}^{-3}$ Absolute structure: Flack (1983), 1759 Friedel pairs Absolute structure parameter: -0.08(8)

Table 1

Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D - H \cdot \cdot \cdot A$ $D \cdots A$ $C2-H2 \cdot \cdot \cdot O1^i$ 0.98 2.39 3.144 (3) 133 Symmetry code: (i) $-x + \frac{3}{2}$, $y, z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

PS thanks the UGC, New Delhi, for financial support in the form of a Research Fellowship in Science for Meritorious Students. SP thanks the UGC, New Delhi, for financial assistance in the form of a Major Research Project.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT6918).

References

- Aridoss, G., Parthiban, P., Ramachandran, R., Prakash, M., Kabilan, S. & Jeong, Y. T. (2009). Eur. J. Med. Chem. 44, 577-592.
- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Michael, J. P. (2001). The Alkaloids. Chemistry and Biology, edited by G. A. Cordell, Vol. 55, pp. 91-258. New York: Academic Press.
- Nalanishi, M., Shiraki, M., Kobayakawa, T. & Kobayashi, R. (1974). Japanese Patent No. 74-3987.
- Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
- Pinder, A. R. (1992). Nat. Prod. Rep. 9, 491-504.
- Rubiralta, M., Giralt, E. & Diez, A. (1991). Piperidine: Structure, Preparation, Reactivity, and Synthetic Applications of Piperidine and its Derivatives, pp. 225-312. Amsterdam: Elsevier.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2013). E69, o1348 [doi:10.1107/S1600536813019582]

1-Dichloroacetyl-t-3-isopropyl-r-2,c-6-diphenylpiperidin-4-one

P. Sugumar, R. Kayalvizhi, R. Mini, S. Ponnuswamy and M. N. Ponnuswamy

Comment

Piperidine derivatives are valuable heterocyclic compounds in the field of medicinal chemistry. The compounds possessing an amide bond linkage have a wide range of biological activities such as antimicrobial, anti-inflammatory, antiviral, antimalarial and general anesthetics (Aridoss *et al.*, 2009). Functionalized piperidines are familiar substructures found in biologically active natural products and synthetic pharmaceuticals (Michael, 2001; Pinder, 1992; Rubiralta *et al.*, 1991). Piperidines have been found to exhibit blood cholesterol-lowering activities (Nalanishi *et al.*, 1974). Against this background and to ascertain the molecular structure and conformation, the X-ray crystal structure determination of the title compound has been carried out.

The *ORTEP* plot of the molecule is shown in Fig. 1. The piperidine ring adopts a twist-boat conformation, with puckering parameters (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983) of: $q_2 = 0.632$ (2) Å, $q_3 = -0.088$ (3) Å, $\varphi_2 = 254.1$ (2)° and Δ_s (N1 and C4) = 69.8 (2)°.

The phenyl rings at the 2- and 6-positions of the piperidine ring occupy axial and equatorial orientation, as evidenced from the torsion angles C4—C3—C2—C13 = 70.6 (3)° and C4—C5—C6—C7 = -165.0 (2)°, respectively. The two phenyl rings are approximately perpendicular to each other with a dihedral angle of 86.6 (2)°. The best plane of the piperidine ring subtends angles of 60.6 (2)° and 84.2 (1)° with the attached phenyl rings [C7—C12 and C13—C18].

The carbonyl group is oriented *syn-periplanar* to C2 [C2—N1—C22—O2 = -10.9 (4)°] and *anti-periplanar* to C6 [C6 —N1—C22—O2 = 178.2 (2)°].

The crystal packing reveals that the symmetry-related molecules are linked through a network of C—H···O type of intermolecular interactions. Atom C2 (x, y, z) donates a proton to atom O1 (-x + 3/2, y, z + 1/2), which form a chain in *zigzag* fashion running along the c direction as shown in Fig. 2.

Experimental

t-3-Isopropyl-r-2,c-6-diphenylpiperidin-4-ones (5 mmol) was dissolved in 60 ml of anhydrous benzene. To this solution, dichloroacetylchloride (20 mmol) and triethylamine (20 mmol) were added and the reaction mixture was allowed to stir for 8 h. The course of the reaction was monitored by TLC. The organic layer was dried over anhydrous Na_2SO_4 and the resulting pasty mass was purified by recrystallization from ethyl acetate. Yield: 70%, m.p. 156–158°C.

Refinement

N and C-bound H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C)$ for all other H atoms.

Computing details

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT* (Bruker, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97*

(Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

Figure 1

The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at 50% probability level.

Figure 2

The crystal packing of the molecules. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

1-Dichloroacetyl-t-3-isopropyl-r-2,c-6-diphenylpiperidin-4-one

Crystal data	
$C_{22}H_{23}Cl_2NO_2$	F(000) = 848
$M_r = 404.31$	$D_{\rm x} = 1.317 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, $Pca2_1$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2c -2ac	Cell parameters from 3882 reflections
a = 18.4336 (14) Å	$\theta = 2.2 - 28.4^{\circ}$
b = 9.4516 (7) Å	$\mu = 0.34 \text{ mm}^{-1}$
c = 11.7077 (9) Å	T = 293 K
$V = 2039.8 (3) Å^3$	Block, yellow
Z = 4	$0.22 \times 0.20 \times 0.18 \text{ mm}$

Data collection

Bruker SMART APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2008) $T_{\min} = 0.929, T_{\max} = 0.941$ Refinement	10509 measured reflections 4437 independent reflections 3882 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$ $\theta_{max} = 28.4^{\circ}, \theta_{min} = 2.2^{\circ}$ $h = -14 \rightarrow 24$ $k = -12 \rightarrow 12$ $l = -11 \rightarrow 15$
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.048$	H-atom parameters constrained
$wR(F^2) = 0.136$	$w = 1/[\sigma^2(F_o^2) + (0.0726P)^2 + 0.6068P]$
S = 1.04	where $P = (F_o^2 + 2F_c^2)/3$
4437 reflections	$(\Delta/\sigma)_{max} = 0.001$
244 parameters	$\Delta\rho_{max} = 0.69$ e Å ⁻³
1 restraint	$\Delta\rho_{min} = -0.47$ e Å ⁻³
Primary atom site location: structure-invariant	Absolute structure: Flack (1983), 1759 Friedel
direct methods	pairs
Secondary atom site location: difference Fourier	Flack parameter: -0.08 (8)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C2	0.67099 (11)	0.9032 (2)	0.91976 (19)	0.0306 (4)	
H2	0.6651	0.9516	0.9932	0.037*	
C3	0.70822 (12)	1.0091 (2)	0.8399 (2)	0.0352 (4)	
Н3	0.7584	1.0209	0.8659	0.042*	
C4	0.71030 (13)	0.9535 (3)	0.7191 (2)	0.0421 (5)	
C5	0.65663 (14)	0.8387 (2)	0.6894 (2)	0.0414 (5)	
H5A	0.6797	0.7479	0.7023	0.050*	
H5B	0.6459	0.8452	0.6084	0.050*	
C6	0.58452 (12)	0.8409 (2)	0.7551 (2)	0.0333 (4)	
H6	0.5536	0.9146	0.7221	0.040*	
C7	0.54776 (12)	0.6975 (2)	0.7366 (2)	0.0381 (5)	
C8	0.5026 (2)	0.6797 (4)	0.6451 (4)	0.0778 (12)	
H8	0.4919	0.7560	0.5979	0.093*	
C9	0.4727 (3)	0.5481 (5)	0.6228 (4)	0.0948 (16)	
H9	0.4419	0.5374	0.5604	0.114*	

C10	0.4871 (2)	0.4346 (4)	0.6897 (3)	0.0685 (9)
H10	0.4683	0.3460	0.6720	0.082*
C11	0.5299 (2)	0.4531 (3)	0.7837 (4)	0.0712 (11)
H11	0.5386	0.3775	0.8327	0.085*
C12	0.56030 (17)	0.5841 (3)	0.8064 (3)	0.0601 (9)
H12	0.5898	0.5951	0.8703	0.072*
C13	0.71354 (11)	0.7680 (2)	0.9446 (2)	0.0348 (5)
C14	0.77614 (13)	0.7293 (3)	0.8883 (3)	0.0464 (6)
H14	0.7927	0.7833	0.8272	0.056*
C15	0.81513 (18)	0.6090 (3)	0.9224 (3)	0.0604 (8)
H15	0.8577	0.5846	0.8845	0.072*
C16	0.79074 (18)	0.5271 (3)	1.0114 (3)	0.0623 (8)
H16	0.8163	0.4467	1.0332	0.075*
C17	0.72847 (17)	0.5646 (3)	1.0682 (3)	0.0567 (7)
H17	0.7120	0.5096	1.1287	0.068*
C18	0.69012 (14)	0.6841 (3)	1.0356 (2)	0.0442 (6)
H18	0.6482	0.7088	1.0750	0.053*
C19	0.67141 (14)	1.1579 (2)	0.8402 (2)	0.0400 (5)
H19	0.6234	1.1489	0.8048	0.048*
C20	0.6614 (2)	1.2139 (3)	0.9603 (3)	0.0606 (8)
H20A	0.6331	1.1479	1.0039	0.091*
H20B	0.6368	1.3033	0.9575	0.091*
H20C	0.7080	1.2259	0.9958	0.091*
C21	0.7155 (2)	1.2637 (3)	0.7707 (3)	0.0675 (9)
H21A	0.7222	1.2280	0.6946	0.101*
H21B	0.7620	1.2774	0.8061	0.101*
H21C	0.6902	1.3523	0.7675	0.101*
C22	0.54042 (12)	0.8987 (2)	0.9506 (2)	0.0383 (5)
C23	0.46416 (13)	0.9023 (3)	0.8997 (3)	0.0506 (7)
H23	0.4622	0.8437	0.8307	0.061*
N1	0.59629 (9)	0.87405 (18)	0.87687 (17)	0.0309 (4)
01	0.75440 (14)	0.9925 (2)	0.6505 (2)	0.0671 (6)
O2	0.54794 (11)	0.9232 (3)	1.05165 (19)	0.0602 (6)
Cl2	0.44564 (6)	1.08090 (11)	0.86504 (12)	0.0926 (4)
Cl1	0.40029 (5)	0.84201 (14)	1.00044 (13)	0.0960 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C2	0.0295 (9)	0.0290 (9)	0.0334 (11)	-0.0014 (7)	-0.0020 (7)	-0.0024 (8)
C3	0.0349 (9)	0.0292 (9)	0.0414 (12)	-0.0046 (7)	0.0037 (8)	-0.0004 (9)
C4	0.0450 (11)	0.0359 (11)	0.0454 (14)	0.0003 (9)	0.0145 (10)	0.0012 (10)
C5	0.0476 (12)	0.0440 (12)	0.0325 (12)	0.0004 (10)	0.0069 (9)	-0.0047 (10)
C6	0.0358 (9)	0.0345 (9)	0.0294 (11)	0.0002 (8)	-0.0024 (8)	-0.0015 (9)
C7	0.0363 (10)	0.0391 (11)	0.0389 (13)	-0.0020 (8)	-0.0029 (9)	-0.0037 (9)
C8	0.101 (3)	0.0673 (19)	0.065 (2)	-0.0354 (19)	-0.040 (2)	0.0188 (17)
С9	0.129 (4)	0.082 (2)	0.073 (3)	-0.051 (2)	-0.055 (3)	0.008 (2)
C10	0.077 (2)	0.0510(15)	0.078 (2)	-0.0206 (15)	-0.0209 (18)	-0.0113 (15)
C11	0.081 (2)	0.0369 (13)	0.096 (3)	-0.0077 (13)	-0.037 (2)	0.0021 (15)
C12	0.0698 (18)	0.0399 (13)	0.070 (2)	-0.0064 (12)	-0.0348 (16)	0.0017 (13)

C13	0.0317 (9)	0.0298 (9)	0.0428 (13)	-0.0032 (7)	-0.0055 (9)	-0.0002 (9)
C14	0.0407 (11)	0.0413 (12)	0.0572 (17)	0.0038 (9)	0.0013 (11)	0.0002 (12)
C15	0.0531 (15)	0.0546 (15)	0.073 (2)	0.0193 (13)	-0.0017 (14)	-0.0057 (15)
C16	0.0674 (18)	0.0362 (12)	0.083 (2)	0.0118 (12)	-0.0197 (17)	0.0005 (14)
C17	0.0659 (17)	0.0392 (13)	0.0649 (19)	-0.0080 (11)	-0.0152 (14)	0.0113 (13)
C18	0.0427 (11)	0.0381 (11)	0.0517 (16)	-0.0034 (9)	-0.0032 (11)	0.0042 (11)
C19	0.0457 (12)	0.0291 (10)	0.0451 (14)	-0.0003 (8)	-0.0019 (10)	0.0012 (9)
C20	0.094 (2)	0.0332 (12)	0.0545 (18)	0.0094 (13)	0.0004 (16)	-0.0070 (12)
C21	0.094 (2)	0.0342 (13)	0.074 (2)	-0.0049 (13)	0.0195 (19)	0.0127 (14)
C22	0.0305 (10)	0.0411 (11)	0.0433 (14)	-0.0007 (8)	0.0053 (9)	-0.0033 (10)
C23	0.0322 (11)	0.0550 (14)	0.065 (2)	0.0027 (10)	0.0052 (11)	-0.0120 (13)
N1	0.0275 (7)	0.0332 (8)	0.0319 (10)	-0.0009 (6)	0.0007 (7)	-0.0015 (7)
01	0.0794 (14)	0.0592 (11)	0.0628 (14)	-0.0189 (11)	0.0378 (12)	-0.0073 (10)
02	0.0470 (10)	0.0915 (16)	0.0422 (12)	-0.0024 (10)	0.0119 (8)	-0.0122 (10)
Cl2	0.0772 (6)	0.0778 (6)	0.1229 (10)	0.0262 (5)	-0.0136 (6)	0.0178 (6)
Cl1	0.0470 (4)	0.1175 (8)	0.1233 (10)	-0.0192 (5)	0.0235 (5)	0.0129 (7)

Geometric parameters (Å, °)

C2—N1	1.491 (2)	C13—C14	1.378 (3)	
C2—C13	1.527 (3)	C13—C18	1.396 (4)	
C2—C3	1.532 (3)	C14—C15	1.403 (4)	
С2—Н2	0.9800	C14—H14	0.9300	
C3—C4	1.509 (4)	C15—C16	1.374 (5)	
C3—C19	1.562 (3)	C15—H15	0.9300	
С3—Н3	0.9800	C16—C17	1.373 (5)	
C4—O1	1.200 (3)	C16—H16	0.9300	
C4—C5	1.509 (3)	C17—C18	1.386 (4)	
C5—C6	1.536 (3)	C17—H17	0.9300	
C5—H5A	0.9700	C18—H18	0.9300	
C5—H5B	0.9700	C19—C20	1.514 (4)	
C6—N1	1.476 (3)	C19—C21	1.524 (4)	
C6—C7	1.531 (3)	C19—H19	0.9800	
С6—Н6	0.9800	C20—H20A	0.9600	
C7—C8	1.367 (4)	C20—H20B	0.9600	
C7—C12	1.368 (4)	C20—H20C	0.9600	
C8—C9	1.386 (5)	C21—H21A	0.9600	
С8—Н8	0.9300	C21—H21B	0.9600	
C9—C10	1.354 (6)	C21—H21C	0.9600	
С9—Н9	0.9300	C22—O2	1.213 (3)	
C10-C11	1.365 (5)	C22—N1	1.364 (3)	
C10—H10	0.9300	C22—C23	1.527 (3)	
C11—C12	1.385 (4)	C23—C11	1.762 (3)	
C11—H11	0.9300	C23—C12	1.769 (3)	
С12—Н12	0.9300	С23—Н23	0.9800	
N1—C2—C13	112.56 (16)	C18—C13—C2	117.5 (2)	
N1—C2—C3	109.19 (18)	C13—C14—C15	120.5 (3)	
C13—C2—C3	115.65 (18)	C13—C14—H14	119.7	
N1—C2—H2	106.3	C15—C14—H14	119.7	

С13—С2—Н2	106.3	C16—C15—C14	120.3 (3)
С3—С2—Н2	106.3	C16—C15—H15	119.8
C4—C3—C2	110.86 (18)	C14—C15—H15	119.8
C4—C3—C19	109.1 (2)	C17—C16—C15	119.7 (3)
C2—C3—C19	113.09 (18)	С17—С16—Н16	120.2
C4—C3—H3	107.9	C15—C16—H16	120.2
C2-C3-H3	107.9	C16-C17-C18	120.2 (3)
C19 - C3 - H3	107.9	C16—C17—H17	119.9
01 - C4 - C3	122.5 (2)	C18—C17—H17	119.9
01 - C4 - C5	122.3(2) 120.7(2)	C17 - C18 - C13	1210(3)
C_{3} C_{4} C_{5}	1167(2)	C17 - C18 - H18	119.5
C4-C5-C6	116.7 (2)	C13 - C18 - H18	119.5
C4-C5-H5A	108.2	C_{20} C_{19} C_{21}	119.3 109.4(2)
C6-C5-H5A	108.2	$C_{20} - C_{10} - C_{21}$	109.4(2) 111.7(2)
C_{4} C_{5} H5B	108.2	$C_{20} = C_{10} = C_{3}$	111.7(2) 111.0(2)
C6 C5 H5B	108.2	$C_{21} = C_{19} = C_{3}$	111.0(2)
	108.2	$C_{20} = C_{19} = 1119$	108.2
$H_{\text{DA}} = C_{\text{D}} = H_{\text{DB}}$	107.4 112.04 (10)	$C_{21} = C_{19} = H_{19}$	108.2
N1 = C6 = C7	112.94(19) 111.08(19)	$C_{10} = C_{10} = H_{20}$	100.2
N1 - C0 - C3	111.00(10) 107.49(19)	$C_{19} = C_{20} = H_{20} R_{20}$	109.5
C = C = C	107.46 (16)	H_{20} H_{20} H_{20} H_{20} H_{20}	109.5
	108.4	$H_20A = C_20 = H_20B$	109.5
$C = C = H \delta$	108.4	H_{20} H_{20} H_{20} H_{20}	109.5
C_{3} C_{6} H_{6}	108.4	$H_{20}A = C_{20} = H_{20}C$	109.5
$C_8 = C_7 = C_{12}$	118.4 (2)	$H_{20B} = C_{20} = H_{20}C$	109.5
(8-(7-6))	119.3 (2)	C19 - C21 - H21A	109.5
C12 - C7 - C6	122.3 (2)	C19—C21—H21B	109.5
C/C8C9	120.0 (3)	H21A—C21—H21B	109.5
C/C8H8	120.0	С19—С21—Н21С	109.5
С9—С8—Н8	120.0	H21A—C21—H21C	109.5
C10—C9—C8	121.6 (3)	H21B—C21—H21C	109.5
С10—С9—Н9	119.2	O2—C22—N1	124.3 (2)
С8—С9—Н9	119.2	02	118.8 (2)
C9—C10—C11	118.6 (3)	N1—C22—C23	116.9 (2)
С9—С10—Н10	120.7	C22—C23—Cl1	110.3 (2)
С11—С10—Н10	120.7	C22—C23—Cl2	106.77 (18)
C10—C11—C12	120.2 (3)	Cl1—C23—Cl2	109.47 (15)
C10—C11—H11	119.9	С22—С23—Н23	110.1
C12—C11—H11	119.9	Cl1—C23—H23	110.1
C7—C12—C11	121.1 (3)	Cl2—C23—H23	110.1
C7—C12—H12	119.4	C22—N1—C6	122.46 (18)
C11—C12—H12	119.4	C22—N1—C2	116.91 (19)
C14—C13—C18	118.2 (2)	C6—N1—C2	120.02 (17)
C14—C13—C2	124.1 (2)		
N1—C2—C3—C4	-57.6 (2)	C18—C13—C14—C15	-0.3 (4)
C13—C2—C3—C4	70.6 (2)	C2-C13-C14-C15	174.9 (3)
N1—C2—C3—C19	65.3 (2)	C13—C14—C15—C16	0.9 (5)
C13—C2—C3—C19	-166.52 (19)	C14—C15—C16—C17	-0.9 (5)
C2—C3—C4—O1	-156.1 (3)	C15—C16—C17—C18	0.3 (5)

C19—C3—C4—O1	78.7 (3)	C16—C17—C18—C13	0.4 (4)
C2—C3—C4—C5	20.3 (3)	C14—C13—C18—C17	-0.4 (4)
C19—C3—C4—C5	-104.8 (2)	C2-C13-C18-C17	-175.9 (2)
O1—C4—C5—C6	-153.7 (3)	C4—C3—C19—C20	174.8 (2)
C3—C4—C5—C6	29.8 (3)	C2-C3-C19-C20	50.9 (3)
C4—C5—C6—N1	-41.1 (3)	C4—C3—C19—C21	-62.9 (3)
C4—C5—C6—C7	-165.1 (2)	C2-C3-C19-C21	173.3 (2)
N1—C6—C7—C8	148.1 (3)	O2—C22—C23—Cl1	-34.0 (3)
C5—C6—C7—C8	-89.1 (3)	N1—C22—C23—Cl1	148.94 (19)
N1—C6—C7—C12	-34.1 (3)	O2—C22—C23—Cl2	84.8 (3)
C5-C6-C7-C12	88.7 (3)	N1—C22—C23—Cl2	-92.2 (2)
C12—C7—C8—C9	-2.2 (6)	O2—C22—N1—C6	178.3 (2)
C6—C7—C8—C9	175.7 (4)	C23—C22—N1—C6	-4.8 (3)
C7—C8—C9—C10	-0.1 (8)	O2—C22—N1—C2	-10.7 (4)
C8—C9—C10—C11	2.7 (8)	C23—C22—N1—C2	166.21 (19)
C9—C10—C11—C12	-2.9 (7)	C7—C6—N1—C22	-67.1 (3)
C8—C7—C12—C11	1.9 (5)	C5—C6—N1—C22	172.1 (2)
C6—C7—C12—C11	-175.9 (3)	C7—C6—N1—C2	122.20 (19)
C10-C11-C12-C7	0.7 (6)	C5-C6-N1-C2	1.4 (3)
N1-C2-C13-C14	117.0 (2)	C13—C2—N1—C22	106.7 (2)
C3—C2—C13—C14	-9.4 (3)	C3—C2—N1—C22	-123.5 (2)
N1-C2-C13-C18	-67.7 (3)	C13—C2—N1—C6	-82.1 (2)
C3—C2—C13—C18	165.8 (2)	C3—C2—N1—C6	47.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
C2—H2···O1 ⁱ	0.98	2.39	3.144 (3)	133

Symmetry code: (i) -x+3/2, *y*, z+1/2.