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It has been recognized that the sympathetic nervous system is abnormally activated in chronic heart failure, and leads to further
worsening chronic heart failure. In the treatment of chronic heart failure many clinical studies have already suggested that
the inhibition of the abnormal sympathetic hyperactivity by beta blockers is beneficial. It has been classically considered that
abnormal sympathetic hyperactivity in chronic heart failure is caused by the enhancement of excitatory inputs including changes
in peripheral baroreceptor and chemoreceptor reflexes and chemical mediators that control sympathetic outflow. Recently, the
abnormalities in the central regulation of sympathetic nerve activity mediated by brain renin angiotensin system-oxidative stress
axis and/or proinflammatory cytokines have been focused. Central renin angiotensin system, proinflammatory cytokines, and
the interaction between them have been determined as the target of the sympathoinhibitory treatment in experimental animal
models with chronic heart failure. In conclusion, we must recognize that chronic heart failure is a syndrome with an abnormal
sympathoexcitation, which is caused by the abnormalities in the central regulation of sympathetic nerve activity.

1. Introduction

Sympathetic nervous system has a wide variety of cardiovas-
cular actions, including heart rate acceleration, increase in
cardiac contractility, reduction of venous capacitance, and
constriction of resistance vessels [1, 2]. It has already been
known that abnormal autonomic nervous system regulation
is involved in the pathogenesis of chronic heart failure [1–
4]. Among the abnormal autonomic nervous regulation,
this paper focuses on the central mechanisms of abnormal
sympathoexcitation in chronic heart failure.

2. Sympathetic Nerve Activity Is Abnormally
Activated in Chronic Heart Failure

Activation of sympathetic nervous system, reduction of
the vagal activity, and the secretion of renin angiotensin-
aldosterone axis are occurred in chronic heart failure with

left ventricular systolic dysfunction [1, 2, 5] and diastolic
dysfunction [6, 7]. A previous study demonstrated that
the spillover of norepinephrine and epinephrine in internal
jugular venous is increased in chronic heart failure [2].
Chronic heart failure is characterized by rapidly respon-
sive arterial baroreflex regulation of muscle sympathetic
nerve activity (MSNA), attenuated cardiopulmonary reflex
modulation of MSNA, a cardiac sympathoexcitatory reflex
related to increased cardiopulmonary filling pressure, and
by individual variation in non-baroreflex-mediated sympa-
thoexcitatory mechanisms, including coexisting sleep apnea,
myocardial ischemia, obesity, and reflexes from exercis-
ing muscle [2]. In several animal models with chronic
heart failure, the sensitivity of various sympathoinhibitory
reflexes is reduced [8, 9]. Furthermore, experimental abnor-
mal function of cardiovascular reflex contributes to the
sympathetic activation in animal models with chronic
heart failure [10]. These previous reports suggest that
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the reduction of sympathoinhibitory reflex is a main
cause of abnormal sympathoexcitation in chronic heart
failure.

There are several animal models with chronic heart
failure, and those animal models may mimic the human
condition with chronic heart failure closely [11]. In spite of
various methodologies, all animal models with chronic heart
failure have sympathoexcitation [11], which strongly suggest
that abnormal sympathoexcitation is commonly occurred in
chronic heart failure, independent of its pathophysiology. In
the aspect of abnormal sympathetic activation in chronic
heart failure, it should be considered that abnormal central
mechanisms of sympathetic nervous system regulation is
occurred in chronic heart failure [3], because sympathetic
nervous system activation is determined by brain [12].
Interestingly, in the patients with heart failure, significant
increases in internal jugular venous spillover of metabolites
of norepinephrine and epinephrine, with a positive corre-
lation between brain norepinephrine turnover and cardiac
norepinephrine spillover [2]. Moreover, central mechanisms
of abnormal sympathoexcitation would be a target of the
treatments for chronic heart failure.

3. Central Mechanisms of Abnormal
Sympathoexcitation in Chronic Heart
Failure: Brain Renin Angiotensin System

In the brain, renin angiotensin system is considered to be
a main system of regulating sympathetic nervous system
[12]. In the brain of experimental heart failure, it has been
demonstrated that angiotensin II and aldosterone produced
locally in the brain are related to sympathetic activation and
progression of heart failure with left ventricular systolic dys-
function [9, 13]. The brain renin angiotensin system is acti-
vated in experimental chronic heart failure with enhanced
central sympathetic outflow [8, 14–18]. Angiotensin II type 1
(AT1) receptors are found in the central nervous system and
are expressed to a high degree in areas of the hypothalamus
and medulla, which regulate sympathetic outflow [9, 19].
Aldosterone increases angiotensin-converting enzyme and
AT1 receptor in the paraventricular nucleus (PVN) of the
hypothalamus in chronic heart failure with postmyocardial
infarction [20]. These previous reports have suggested that
the activation of renin angiotensin system in the brain
is associated with sympathoexcitation in chronic heart
failure.

As the mechanisms in which brain renin angiotensin
system causes sympathoexcitation, brain oxidative stress has
been focused. Brain renin angiotensin system is involved
in the production of oxidative stress in the brain [8, 21–
23]. It has been determined that mitochondria-derived
oxidative stress mediates sympathoexcitation induced by
angiotensin II in the brain [24, 25]. Particularly, in the brain,
rostral ventrolateral medulla (RVLM) is well known as a
vasomotor center [26], and oxidative stress in the RVLM
causes sympathoexcitation [27]. It is well established that the
AT1 receptor-induced oxidative stress in the RVLM causes
sympathoexcitation in the animal models with chronic heart

failure [8, 21, 22, 28]. Microinjection of angiotensin II
into the RVLM causes sympathoexcitation, and microin-
jection of AT1 receptor blocker into the RVLM causes
sympathoinhibition in experimental chronic heart failure
[8, 14–18]. AT1 receptor protein, AT1 receptor mRNA, and
angiotensin II levels are increased in the RVLM and nucleus
tractus solitarii (NTS) in rabbits and rats with chronic
heart failure [8, 21, 22]. These previous results strongly
indicate that the upregulation of central AT1 receptor
and oxidative stress plays a critical role in the abnormal
sympathoexcitation in chronic heart failure. Furthermore,
the balance between angiotensin-converting enzyme (ACE)
and its homolog ACE2 or between AT1 and angiotensin
II type 2 receptor in the brain may be an important
determinant of sympathoexcitation in chronic heart failure
[8, 25, 29, 30]. Combined these previous studies, it should
be considered that the AT1 receptor-induced oxidative stress
in the brain, especially in the RVLM, might be a novel
target of the therapy for chronic heart failure through the
sympathoinhibition.

4. Central Mechanisms of
Sympathoexcitation in Chronic Heart
Failure: Brain Inflammation

Brain inflammatory mediators and the brain renin angi-
otensin system are both implicated in sympathoexcitation in
experimental chronic heart failure [31, 32]. Recently, the fur-
ther central mechanisms of sympathoexcitation associated
with oxidative stress are focused, such as upregulating brain
proinflammatory cytokines with renin angiotensin system
[33–37], perivascular macrophages in the brain [38, 39],
neuronastrocyte uncoupling [40, 41], transcription factor
nuclear factor kappa B (NF-κB) [42], or microglial cytokines
[43] in the brain. Proinflammatory cytokines, such as tumor-
necrosis factor alpha, increase the number of brain perivas-
cular macrophages, thereby activating cyclooxygenase 2 and
generating prostaglandin E2, which leads to sympathoex-
citation in rats with chronic heart failure after myocardia
infarction [38]. There may be some interactions between
proinflammatory cytokines and autonomic nervous system
[44]. In addition, microglial activation with inflammation
also plays an important role in sympathoexcitation [45].
Moreover, NF-κB-mediates cross talk between proinflam-
matory cytokines and brain renin angiotensin system in
rats with chronic heart failure [31, 37]. Interestingly, per-
oxisome proliferator-activated receptor gamma in rats with
ischemia-induced heart failure is involved in the expression
of inflammatory mediators and a key component of the
brain renin angiotensin system in PVN, reduced sympathetic
nerve activity [46]. Combined with these previous reports,
brain inflammatory pathway, probably associated with renin
angiotensin system, could be considered to be the important
mechanisms of abnormal sympathoexcitation in chronic
heart failure. Further basic and clinical experiments are
necessary to determine whether the brain inflammation
could be a novel target of the treatment for chronic heart
failure or not.
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5. Central Mechanisms of Abnormal
Sympathoexcitation in Chronic Heart
Failure: Other Possible Mechanisms

We have also demonstrated other several mechanisms of
abnormal sympathoexcitation in chronic heart failure. In the
brain, nitric oxide (NO) causes sympathoinhibition [47, 48],
and the dysfunction of NO production in the brain occurs
in the rats with chronic heart failure [49]. Overexpression
of NO synthase in the brain attenuates the abnormal
sympathoexcitation in mice with heart failure [50]. In the
brain, NO could counteract against oxidative stress [51].
These results indicate that the dysfunction of NO pathway in
the brain would cause sympathoexcitation in chronic heart
failure. Moreover, it has been demonstrated that each of
small G protein Rho/Rho kinase pathway, mineral corticoid
receptors and/or Na sensitivity, or toll-like receptor 4 in the
brain causes sympathoexcitation in rats with chronic heart
failure [52–55]. It would be necessary to clarify whether
these various mechanisms have interaction with brain renin
angiotensin system and/or inflammation in chronic heart
failure with sympathoexcitation.

6. Sympathoinhibitory Therapy for
Chronic Heart Failure

Many clinical studies have already and strongly suggested
that chronic beta blocker therapy improves left ventricu-
lar performance and reverses left ventricular remodeling,
reduces risk of hospitalization for heart failure, and improves
survival of chronic heart failure [56–61]. Among all beta
blockers, bisoprolol (except in the USA), carvedilol, and
metoprolol succinate (except in Canada) are almost univer-
sally approved for the treatment of chronic heart failure [56–
61]. However, previous studies could not demonstrate the
benefits of alpha1-blocker in chronic heart failure [62–64].

Central alpha2 receptor has been considered to be
possible targets of treatment for chronic heart failure,
because the excitation of the central alpha2 receptor causes
sympathoinhibition [9, 65]. In modest doses of clonidine, it
significantly attenuates cardiac and renal sympathetic tone
in the patients with chronic heart failure [66]. The other
centrally acting sympathoinhibitory agent, moxonidine, acts
through both alpha2- and imidazoline receptors [9, 67].
However, in clinical trials, moxonidine led to increased
mortality [9, 68].

Angiotensin II and aldosterone production enhances the
release and inhibits the uptake of norepinephrine at nerve
endings [69]. ACE inhibitors have a predictable effect in
increasing plasma renin and decreasing angiotensin II and
aldosterone levels, whereas norepinephrine and vasopressin
reduction is attributed to the hemodynamic improvement
[70]. Previous large clinical trial has already shown the
benefit with aldosterone antagonists in patients with chronic
heart failure and may be partially related to their effect on
norepinephrine [71]. The high density of AT1 receptors is
present in brain regions outside of the blood-brain barrier
where peripherally administered AT1 receptor blockers are

able to access without considering the existence of the blood-
brain barrier as well as inside of the blood-brain barrier
[72]. Recent studies suggest that the systemic administered
AT1 receptor blockers also act on the AT1 receptors within
the brain, thereby reducing blood pressure in hypertensive
rats [51, 73–77]. It should be determined in future studies
whether ACE inhibitors or AT1 receptor blockers could cause
beneficial sympathoinhibition via blockade of brain renin
angiotensin system.

Several studies in rabbits with pacing-induced heart
failure have demonstrated that statins normalize abnormal
sympathetic hyperactivity in experimental chronic heart fail-
ure [78–80]. Previous studies have suggested that simvastatin
could inhibit AT1 receptor and production of superoxide
with upregulating NO synthase in the RVLM of the ani-
mal models with chronic heart failure [78, 80]. We also
demonstrated that orally administered atorvastatin causes
sympathoinhibition and improves baroreflex dysfunction
via reduction of oxidative stress and upregulation of NO
synthase in the brain of hypertensive rats [81–83]. Although
there is no clinical study suggesting the benefits of statins on
chronic heart failure, these experimental results suggest that
stains could attenuate sympathoexcitation in chronic heart
failure, independent of cholesterol-lowering effect. Further
clinical trials are necessary to clarify whether statins in
clinical dose would have the sympathoinhibitory benefit in
chronic heart failure or not.

As the nonpharmacological therapy for chronic heart
failure, exercise training is considered to have sympathoin-
hibitory benefit on chronic heart failure. Exercise intolerance
is a characteristic of patients with chronic heart failure, and
skeletal myopathy contributes to the limitation of functional
capacity in chronic heart failure [1, 2, 9]. Abnormal sym-
pathetic hyperactivity contributes to the skeletal myopathy
in chronic heart failure [84]. Interestingly, current evidences
have suggested that exercise training improves central hemo-
dynamics, peripheral muscle function, and symptoms and
causes sympathoinhibition even in patients treated with beta
blockers [85–88]. Recent experimental evidence suggests that
the exercise training-induced beneficial effects on autonomic
activity in heart failure may be due to an upregulation
in central antioxidative mechanisms and suppressed central
pro-oxidant mechanisms [29].

Recent novel topic in the therapy with sympathoin-
hibition is renal sympathetic denervation. Renal afferent
nerves may also contribute to the blood pressure elevation
according to the recent findings of the renal nerve ablation in
patients with resistant hypertension [89–91]. Renal afferent
nerves project directly into many areas in the central nervous
system controlling the sympathetic nervous system activity
[92–94]. We consider that the renal nerve ablation could be
a novel therapy for chronic heart failure, and further clinical
trials and basic researches are expected.

7. Summary and Future Prospects

In chronic heart failure, it has been recognized that the
abnormal sympathoexcitation occurs. In the treatment of
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Figure 1: A schema of the concept in the central abnormalities of
regulation for sympathetic nerve activity in chronic heart failure.

chronic heart failure, the therapy with sympathoinhibition,
such as beta blockers and/or exercise training, has already
been considered to be important. We must recognize that
chronic heart failure is a complex syndrome with sym-
pathoexcitation and that the abnormal sympathoexcitation
should be the target of the treatments for chronic heart
failure. In this aspect, conservative pharmacological therapy
is not sufficient, and the additive new and novel device
therapy and/or nonpharmacological therapy are necessary.

The mechanisms in which the abnormal sympathoex-
citation occurred in chronic heart failure have not been
fully determined. Particularly, the central abnormalities need
further examinations in clinical and basic research. It is
interesting and important to consider that AT1 receptors,
oxidative stress, and inflammatory pathway in the brain
are novel sympathoinhibitory therapeutic targets for chronic
heart failure (Figure 1).
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